CHAPTER II

GENERAL PROPERTIES

In this chapter, general properties of skew-semifields are given, and we also characterize cyclic groups admitting skew-semifield structure.

Theorem 2.1. Let S be a skew-semifield. Then either S is a skew-field or every nonzero element of S has no additive inverse.

<u>Proof</u>: Suppose that there is an element $x \in S \setminus \{0\}$ such that x has an additive inverse, say z. To show that every element in S has an additive inverse, let $y \in S$. Since x + z = 0, $yx^{-1}(x + z) = 0$. Then $y + yx^{-1}z = 0$, so $yx^{-1}z$ is an additive inverse of y. Therefore we have that S is an abelian group under addition. Hence S is a skew-field.

The following corollary follows directly from Theorem 2.1.

Corollary 2.2. Let S be a skew-semifield. If S is not a skew-field, then $a + b \neq 0$ for all $a,b \in S \setminus \{0\}$.

Theorem 2.3. Let S be a skew-semifield. If S contains more than two elements, then S has no additive zero.

<u>Proof</u>: Suppose that S has an additive zero, say a. Then x + a = a for all $x \in S$. Since |S| > 1, $a \ne 0$. Then $a^{-1}x + 1 = 1$ for all $x \in S$. If follows that for each $x \in S$, $x + 1 = a^{-1}(ax) + 1 = 1$.

If $x \in S\setminus\{0\}$, then $1 + x = 1 = 1 + x^{-1}$ and hence $x = x1 = x(1 + x^{-1}) = x + 1 = 1$. Thus $S\setminus\{0\} = \{1\}$ which implies that |S| = 2. This proves that if |S| > 2, then S has no additive zero, as required.

Theorem 2.4. Let S be a finite skew-semifield. Then S is not a skew-field if and only if x + x = x for all $x \in S$.

<u>Proof</u>: Assume that S is not a skew-field. By Corollary 2.2, $(S \setminus \{0\}, +)$ is a finite semigroup. Then there exists an element a $\in S \setminus \{0\}$ such that a + a = a (see [8], page 20). Then $1 = a^{-1}a = a^{-1}(a + a) = 1 + 1$. This implies that x + x = x for all $x \in S$.

Conversely, assume that x + x = x for all $x \in S$. Then (S,+) is not a group since |S| > 1. Hence S is not a skew-field.

Theorem 2.5. A finite skew-semifield containing more than two elements is a field.

Proof: Let $S = (S,+,\cdot)$ be a finite skew-semifield and |S| > 2. Suppose that S is not a skew-field. By Theorem 2.4, x + x = x for all $x \in S$. It follows that nx = x for all $x \in S$ and for all positive integer n where $nx = x + x + \ldots + x$ (n times). Let $y \in S \setminus \{0,1\}$. Since $(S \setminus \{0\},\cdot)$ is a finite group, $(1 + y)^m = 1$ for some positive integer m. Since (S,+) is commutative and 1 and y commute under multiplication, it follows that

 $1 = (1 + y)^{m} = 1 + {m \choose 1}y + {m \choose 2}y^{2} + \dots + {m \choose m-1}y^{m-1} + y^{m}.$ But ${m \choose i}$ $y^{i} = y^{i}$ for all $i = 1, 2, \dots, m-1$, so we have that $1 = 1 + y + y^{2} + \dots + y^{m}$. Thus

$$1 + y = (1 + y + y^{2} + \dots + y^{m}) + y$$

$$= 1 + (y + y) + y^{2} + \dots + y^{m}$$

$$= 1 + y + y^{2} + \dots + y^{m}$$

$$= 1.$$

This proves that 1 + y = 1 for all $y \in S \setminus \{0,1\}$. Let $t \in S \setminus \{0,1\}$. Then 1 + t = 1, so $t^{-1} + 1 = t^{-1}$. Since $t^{-1} \in S \setminus \{0,1\}$, $1 + t^{-1} = 1$. Then $t^{-1} = 1$. Therefore t = 1, a contradiction. Hence S is a skew-field. Since S is finite, S is a field.

Note that if S is a skew-semifield such that |S| = 2 and S is not a field, then 1 + 1 = 1 (Theorem 2.4), and hence S is the Boolean algebra of 2 elements.

- Theorem 2.6. Let S = (S,+,·) be a skew-semifield. Then the following statements hold:
- (i) If there exists an element $a \in S$ such that $a \ne 1$ and $a^2 = 1$, then 1 + a = 0, and hence S is a skew-field.
- (ii) There exists at most one element a ϵ S such that a \neq 1 and a^2 = 1.
- \underline{Proof} : (i) Since (S $\{0\}$,·) is a group, a(1 + a) = a + 1 = 1 + a and a \neq 1, it follows that 1 + a = 0, and hence S is a skew-field.
- (ii) Suppose that a,b ϵ S are such that a \neq 1, a² = 1, b \neq 1 and b² = 1. By (i), (S,+) is an abelian group and a and b are inverses of 1 in (S,+). Then a = b.

#

In the last part of this chapter, we characterize cyclic groups admitting skew-semifield structure (that is, cyclic groups admitting semifield structure).

Let G be an infinite cyclic group with a generator a. Then $G = \{a^n \mid n \in \mathbb{Z}\} \text{ and } a^i \neq a^j \text{ if } i \neq j \text{ where } \mathbb{Z} \text{ is the set of all integers.}$ Let \cdot denote the operation on G° . Define the operation + on G° by

$$a^{i} + a^{j} = a^{max\{i,j\}}$$

and

$$a^{i} + 0 = 0 + a^{i} = a^{i}$$

for all i,j \in Z. Then x + y = y + x for all $x,y \in$ G°. Claim that $(G^{\circ},+,\cdot)$ is a semifield. To show that + is associative and \cdot is distributive over + in G° , let $x,y,z \in G^{\circ}$. If x = 0, y = 0 or z = 0, it is easy to see that x + (y + z) = (x + y) + z and $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$. Assume that $x \neq 0$, $y \neq 0$ and $z \neq 0$. Then $x = a^{i}$, $y = a^{j}$ and $z = a^{k}$ for some i,j,k \in Z. Then $(x + y) + z = (a^{i} + a^{j}) + a^{k} = a^{max\{i,j,k\}} = a^{i} + (a^{j} + a^{k}) = x + (y + z)$ and $x \cdot (y + z) = a^{i} \cdot (a^{j} + a^{k}) = a^{i+max\{j,k\}} = a^{max\{i+j,i+k\}} = a^{i+j} + a^{i+k} = (a^{i} \cdot a^{j}) + (a^{i} \cdot a^{k}) = (x \cdot y) + (x \cdot z)$. Hence we have the claim, so we have

Theorem 2.7. An infinite cyclic group admits a semifield structure.

Theorem 2.7 and the next theorem show that an infinite cyclic group is an example of a group which admits a semifield structure but does not admit a field structure.

Theorem 2.8. An infinite cyclic group does not admit a field structure.

Proof: Let G be an infinite cyclic group with a generator a. Then $G = \{a^n \mid n \in \mathbb{Z}\}$ and $a^i \neq a^j$ if $i \neq j$. Suppose that G admits a field structure under an addition +. Then a + x = 0 for some $x \in G^0$. Since $a \neq 0$, $x \neq 0$. Then $x = a^k$ for some $k \in \mathbb{Z}$. Therefore $a + a^k = 0$.

Case 1 : k ≠ 1. Then

$$a^{k} + a^{2k-1} = a^{k-1}(a + a^{k}) = 0$$

which implies that

$$a = a + (a^{k} + a^{2k-1}) = (a + a^{k}) + a^{2k-1} = a^{2k-1}$$
.

It is a contradiction since 2k - 1 ≠ 1.

Case 2: k = 1. Then a + a = 0 which implies that $1 + 1 = a^{-1}a + a^{-1}a = a^{-1}(a + a) = 0$. Hence x + x = 0 for all $x \in G^0$. Therefore we have $(x + y)^2 = x^2 + y^2$ for all $x, y \in G^0$. Since a is a generator of G, $a \ne 1$. Then $1 + a \ne 0$, so $1 + a = a^m$ for some $m \in \mathbb{Z}$. Since x + x = 0 for every $x \in G$, $1 + a^m = a$. From $a \ne 0$ and $1 \ne 0$, it follows that $m \ne 0$ and $m \ne 1$.

Subcase 2.1: m is even. Then $\frac{m}{2} \in \mathbb{Z}$ and $a = 1 + a^m = (1 + a^{\frac{m}{2}})^2 \neq 0$. Let $j \in \mathbb{Z}$ be such that $1 + a^{\frac{m}{2}} = a^j$. Then $a = a^{2j}$, a contradiction.

Subcase 2.2: m is odd. Then $\frac{m+1}{2}$ ϵ Z and $a^2 = a(1+a^m) = a+a^{m+1}$ since $1+a^m=a$. Thus $a=a^2+a^{m+1}=(a+a^{m+1})^2\neq 0$. Then $a+a^{m+1}=a^m$ for some $r\in \mathbb{Z}$. Then $a=a^{2r}$, a contradiction.

Hence G does not admit a field structure.

In the last theorem of this chapter, we give a characterization of finite cyclic groups admitting semifield structure.

Theorem 2.9. A finite cyclic group of order n admits a semifield structure if and only if $n = p^m - 1$ for some prime p and positive integer m.

 \underline{Proof} : Let G be a finite cyclic group of order n. It follows from Theorem 1.1 that if $n = p^m - 1$ for some prime p and positive integer m, then G admits a field structure and hence G admits a semifield structure.

Conversely, assume that G admits a semifield structure. Let \cdot be the operation on G° . Then there exists an operation + on G° such that $(G^{\circ},+,\cdot)$ is a semifield. If n=1, then $n=1=2^{1}-1$, so we are done. Assume that n>1. Then $|G^{\circ}|>2$. By Theorem 2.5, $(G^{\circ},+,\cdot)$ is a field. Let p be the characteristic of the field $(G^{\circ},+,\cdot)$. Then p is a prime and $n+1=|G^{\circ}|=p^{m}$ for some positive integer m. Hence $n=p^{m}-1$.

Corollary 2.10. A finite cyclic group of order n admits a field structure if and only if $n = p^m - 1$ for some prime p and positive integer m.

Proof : The "only if" part follows directly from Theorem 2.9.
The "if" part follows from Theorem 1.1.
"