CHAPTER II

GENERAL PROPERTIES

either § is a skew-field

1nverse.

0
Proof : Sup af thérd s lement x € 50} such that x
has an additive inversg ; | every element in S has
an additive inverse, z = 0, _wt.'l(:-r. +2) = 0. Then
y + yrx'iz. = 0, so :,r:-r.'iz is gverse of y. Therefore we have
that S is an abe 1: . group unde tion. Hente) 5 is a skew-field.
y_— Y| #
The fr::-llumg nnmlla.ry fullows ﬂir-act@y from Theorem 2.1.
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Corollary 2.2.4) a ﬁkaw—snmifi § is nm: a skew-field,
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Theorem 2.3. Let 5 be a skew-semifield. If S contains more than two

elements, then S has no additive zero.

Proof : Suppose that S has an additive zero, say a. Then
X +a=a for all x€ S, Sinnajs|:-1,a;!{.‘r. Thuna_1x+1=:|.

for all x € S, Iffallmmthatfﬂreanhxss,x+1=u-1{ax}+1=1.
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If x € SN0}, then 1 + x = 1 =1+x—1andhencex=xi=x(1'+x_1} =
x +1 =1. Thus s~M0} = {1} which implies that |S| = 2. This proves
that if |S| > 2, then S has no additive zero, as required.

#
Theorem 2.4. Let S be a finite skew-semifield. Then 5 is not

a skew-field if and only if X + @33 ® for all x € 5.

a”“keW-field. By Corollary 2.2,
d

(s~0},+) is a finite"SEMIZZoup. Th%ﬂists an element a € S~{0}

=% ala +a)s=

such that a + a gEE 'R a:\\'\i‘, ’ hen. 1 = a "a
i 5 )
== W NN

X € S, Then (S,+)

Conversely, 3 st
is not a group since ot a skew-field.
Theorem 2.5. A finite ining more than two elements

is a field.

Proof : _;.:m—m,

semifield and |8| > 2.

= T ab )
Euppnaathatsisnﬂa or%?.u,x+x=xfor-au
x € S8, It follows thp nx = X :Eor x £ S and for all positive integer

s O AN RSN o0, s

(sN0},+) is a.q'lfmita group, (2 + g,r) Lfor some pu itive integer m.

s QRN B LNVHOY R B

it fuJ.lows that

1e@ey®=1+ My s @yP o QLYY

But (7) gt =yt for all 1=1,2,...,n1, 50 we have that 1= 1 +y +y°

“aw +Fm. Thuﬂ.
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l+y = (A +y+ A R

2
1+{y+y}+y+¢..+rm

2 m
1+y+y*t eeety
1.

e 5~{0,1}, Let t € 5~{0,1}. Then

This proves that 1 + y = 1 for all

“ , =
1+t=1,aot1+1= 3~{0,1}, 1 + t "= 1. Then

+=1 = 1, Therefore t = 4Ofi_ Hence S is a skew-field.

.I ‘ at |s| = 2 and S is

\\-- x pence S is the Boolean

Theorem 2.6, Let S = el fifield. Then the following

Since S is finite, S i

Note that
not a field, then 1

algebra of 2 ala'lmants

statements hold :
(i) 1f exinis ol slemsue a = h that a # 1 and

-':'l.2 = 1, then 1 + a, 2 - -eld.
i

(ii) There a."s.ga at most oge, element a € S such that a # 1

oo AUHINENTNYINT
4n j?f’l eI

(ii) Suppose that a,b € S are such that a # 1, a i

b #1andb?=1. By (i), (S,4) is an abelian group and a and b are

inverses of 1 in (S5,+). Then a = b.
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In the last part of this chapter, we characterize cyclic groups
admitting skew-semifield structure (that is, cyclic groups admitting

semifield structure).

¥

Let G be an infinite cyclic group with a generator a. Then
G = {a [ngﬁr}mda #ajif ‘ here Z is the set of all integers.
Let - denote the operatic b %tha operation + on G by

at ﬂ;ﬁ.’i-i}

and

for all i,j¢ 7. Thaff st/ [ ¢ for\all's G . Claim that
(G°,+,*) is a semifie Shew shat A is associative and « is
distributive over + in : G x = O, y=0o0rz=0,

it is easy to see that ¥ + z and x+(y + z) = (x-y) +

(x+2). Assume that x # n.,__ = Then x = ni, y = aj and
n=akfnraumi _ f+aj}+ak=

v Y _
amx[i,j,k} = al + II C 'ﬂ y+z)= al. (ad+ &) =
Jitmax{j k) _ Mx{1+} ik}l | i+] 13t = o, ad) & (at. o) =

Gy + tx-=>ﬂ oo @]%ﬂﬁiﬂ%ﬂ )
- wmmmmmm RYY e

Theorem 2.7 and the next theorem show that amn infinite cyclic
group is an example of a group which admits a semifield structure but

does not admit a field structure.
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Theorem 2.8, An infinite cyclic group does not admit a field

structure.

Proof : Let G be an infinite cyclic group with a generator a.
Then G = {a®|n € 7} and a® # al if i # j. Suppose that G admits a field

i o
structure under an addition +. Then a + x = 0 for some x € G . Since

af# o0, x#0. Thanx=ak Thamfor\ea+a.k=ﬂ.

Case 1 : k# 1. Then

which implies that
a=a+ (a+d -3 a .

It is a contradicti

1 -1

Case 2 :+ k = 1. that 1 +1=a"a+a a-=

a'ita. + a) = 0, Hence Ga. Therefore we have

{x+y]2=x+ = a is a generator of G, a # 1.
nce x + x = 0 for every

xi:G,1+am=a. —Fron
\‘I

EMHININANGADS .. o B
““wmwnﬁ:ﬁﬁmwmtm’m

'H bllows that m # 0 and
|
m#F 1.

suhcasezzzmisada Thern--i-— e Tand a® = a(d +a™) = a + a™F
m+1 m+l
since 1 + a" = a, Thusa=n2+am+i'{a+a ] # 0. Thana+a.2=ar

for some r €E 2, Then a = a2:" a contradiction.

Hence G does not admit a field structure.
#
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In the last theorem of this chapter, we give a characterization

of finite cyclic groups admitting semifield structure.

Theorem 2.9, A finite cyclic group of order n admits a semifield
structure if and only if n = pm— 1 for some prime p and positive

integer m.

Proof : Let G b up of order n. It follows

from Theorem 1.1 that pon | me prime p and positive
integer m, then G agdmd¥®t a0/ -‘ \ andehence G admits a semifield
structure, . |
Conversely, ield structure. Let -
be the operation on G". an, operation + on 6° such
that (G°,+,*) is a senf n-1-2-1,snweara
done. Assume that n > By Theorem 2.5, (G°,+,'} is
a field. Let p be the c _.5--} the field {GG,+,'}. Then p is

a prime and n + L-246"| = p~ for some positiye.integer m. Hence

3

s, - 3
Corollary E.ﬁuﬂﬂ Ww mﬂ ?ita a field atruutm

if and only ifijn = 1 for some prime p and pnsit:l.va integer m.

Qﬂﬁﬁﬁﬁlﬁﬂdﬂﬁﬂﬁma&hm 25,

The "J.f" part follows from Theorem 1.1,

#
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