CHAPTER I

PRELIMINARIES

Let S be a semigroup. An element e of S is called an <u>identity</u> of S if xe = ex = x for all $x \in S$. An element z of S is called a <u>zero</u> of S if xz = zx = z for all $x \in S$. Note that S can have at most one identity and at most one zero. The symbols 1 and 0 usually denote the identity of S (if it exists) and the zero of S (if it exists), respectively.

A subset H of a semigroup S is called a <u>subgroup</u> of S if H is a group under the operation of S.

If S is a semigroup with zero 0 such that S~{0} is a subgroup of S, then S is called a group with zero.

A triple (S,+,·) is called a semiring if

- (i) (S,+) and (S,.) are semigroups and
- (ii) $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ and $(y + z) \cdot x = (y \cdot x) + (z \cdot x)$ for all x, y, $z \in S$, and the operations + and \cdot are called the addition and multiplication of the semiring, respectively.

An element 1 of the semiring $S = (S, +, \cdot)$ is called an <u>identity</u> of the semiring S if 1 is the identity of the semigroup (S, \cdot) and an element 0 of the semiring S is called a <u>zero</u> of the semiring S if 0 is the zero of (S, \cdot) and the identity of (S, +).

A semiring (S,+,·) with zero 0 is called a skew-semifield if

(i) (S,+) is a commutative semigroup and

(ii) (S,.) is a group with zero 0.

A commutative skew-semifield is called a <u>semifield</u>.

Then every skew-field and every semifield is a skew-semifield.

Example. For each positive integer $n \ge 2$, let SK_n be the set of all matrices in the form

$$\begin{bmatrix} a_1 & 0 & 0 & 0 & \cdot & \cdot & \cdot & b \\ 0 & a_2 & 0 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & a_3 & 0 & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & a_n \end{bmatrix}$$

where a_1, a_2, \ldots, a_n , be R and $a_1, a_2, \ldots, a_n > 0$, including the n × n zero matrix over R. Then for every positive integer $n \geq 2$, SK_n is a skew-semifield which is neither a semifield nor a skew-field. To show this, let n be a positive integer such that $n \geq 2$. Clearly, under usual addition and multiplication of matrices, SK_n is a semiring with zero O_n and identity I_n where O_n is the n × n zero matrix over R and I_n is the n × n identity matrix over R, and it is commutative under addition.

Let

$$A = \begin{bmatrix} a_1 & 0 & 0 & 0 & \cdot & \cdot & \cdot & b \\ 0 & a_2 & 0 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & a_3 & 0 & \cdot & \cdot & \cdot & 0 \\ \cdot & \cdot \\ 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & a_n \end{bmatrix}$$

be a nonzero element of SK_n . Then det $A = a_1 a_2 ... a_n > 0$ since $a_1, a_2, ..., a_n > 0$ Then the matrix

$$\begin{bmatrix} \frac{1}{a_1} & 0 & 0 & 0 & \cdot & \cdot & \frac{-b}{a_1 a_n} \\ 0 & \frac{1}{a_2} & 0 & 0 & \cdot & \cdot & \cdot & 0 \\ 0 & 0 & \frac{1}{a_3} & 0 & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & 0 & 0 & \cdot & \cdot & \frac{1}{a_n} \end{bmatrix}$$

is an element of SK_n and it is the multiplicative inverse of A. Hence under matrix multiplication, SK_n is a group with zero O_n . Therefore the semiring SK_n is a skew-semifield.

are elements of SK_n and

$$\begin{bmatrix} 1 & 0 & 0 & 0 \dots 0 \\ 0 & 1 & 0 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \dots 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \dots 1 \\ 0 & 1 & 0 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \dots \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \dots 1 \\ 0 & 1 & 0 & 0 \dots 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \dots \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \dots 0 \\ 0 & 1 & 0 & 0 \dots 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 \dots \frac{1}{2} \end{bmatrix},$$

it follows that the semiring SK_n is not a semifield. Clearly, every nonzero element of SK_n has no inverse under addition in SK_n . Then the semiring SK_n is not a skew-field.

The above example shows that skew-semifields are a generalization of skew-fields and also a generalization of semifields.

Let S be a semigroup and let 0 be a symbol not representing

any element of S. Extend the operation in S to 0 in SU $\{0\}$ by defining 00 = 0 and x0 = 0x = 0 for every $x \in S$. Then under this operation, $S \cup \{0\}$ is a semigroup with zero 0. Let

$$S^{\circ} = \begin{cases} S & \text{if S has a zero,} \\ S \cup \{0\} & \text{if S has no zero.} \end{cases}$$

A semigroup S is said to admit a ring structure if there exists an operation + on S^{O} such that $(S^{O},+,\cdot)$ is a ring where \cdot is the operation of S^{O} .

By the notation defined above, we have that for any group G, $G^{\circ} = G \cup \{0\}$ if |G| > 1 and $G^{\circ} = G$ if |G| = 1. But for convenience, we shall use G° to denote $G \cup \{0\}$ for every group G.

A group G is said to admit a skew-semifield [semifield, skew-field, field] structure if there exists an operation + on G° such that (G°,+,•) is a skew-semifield [semifield, skew-field, field] where • is the operation of G°.

An $n \times n$ matrix A over a field F is said to be an <u>orthogonal</u> matrix if $AA^{\dagger} = I_n$ where I_n is the $n \times n$ identity matrix over F.

A square matrix A over a field F is said to be a unimodular matrix if det A = 1.

A square matrix A over a field F is said to be a <u>permutation</u>

matrix if every member of A is either 0 or 1 and each row and each

column contains exactly one 1.

For any field F and for any positive integer n, let $G_n(F)$ be the set of all n \times n nonsingular matrices over F, so $G_n(F)$ is a group under usual matrix multiplication.

By a <u>matrix</u> group over a field F, we mean a subgroup of $G_n(F)$ under usual matrix multiplication for some positive integer n.

The following notation of matrix groups will be used in the thesis: For any field F and for any positive integer n, let $U_{n}(F)\left[L_{n}(F)\right] = \text{the matrix group of all n} \times \text{n upper [lower] triangular nonsingular matrices over F (see [6], page 410),}$

- P_n(F) = the matrix group of all n × n permutation matrices over F (see [7], page 37 or [6], page 203),
- On(F) = the matrix group of all n x n orthogonal matrices over F,

and

W (F) = the matrix group of all n × n matrices over F whose determinants are equal to 1 or -1.

Let X be a set and S_X the symmetric group on X. An element of S_X is called a <u>permutation</u> of X, that is, a permutation of X is a 1-1 map of X onto X. By a <u>permutation group</u> on X, we mean a subgroup of S_X .

For $\alpha \in S_X$, let

$$s(\alpha) = \{x \in X | x\alpha \neq x\}$$

which is called the <u>shift</u> of α . For $\alpha \in S_X$, is called an <u>almost</u> identical permutation of X if $s(\alpha)$ is finite. Let K_X be the set of all almost identical permutations of X. Then K_X is a subgroup of S_X .

Let A_X be a set of all almost identical even permutations of X. Then A_X is a subgroup of S_X and it is called the <u>alternating group</u> on X.

For any group G, let G denote the commutator subgroup of G, that is, the subgroup of G generated by the set $\{aba^{-1}b^{-1}|a, b \in G\}$.

A system $(F,+,\cdot,\underline{<})$ is called an <u>ordered field</u> if $(F,+,\cdot)$ is a field and \leq is a partial order on F satisfying the following properties:

- (i) For any x, y ϵ F, exactly one of the relations x < y, x = y or y < x holds where for a, b ϵ F, a < b means a < b and a \neq b.
 - (ii) For x, $y \in F$, x < y if and only if $0 \le y x$.
 - (iii) For x, y ε F, $0 \le x$ and $0 \le y$ imply $0 \le x + y$ and $0 \le xy$.

Note that if we replace the field of real numbers, R, by any ordered field in the example given before, it is still an example of skew-semifields which are neither semifields nor skew-fields.

The following known results will be used in the thesis :

Theorem 1.1. ([1]) Let G be a group. If G is a cyclic group of order pⁿ- 1 for some prime p and positive integer n, then G admits a field structure.

Theorem 1.2. ([7]) If F is a field and n is a positive integer such that $n \ge 3$, then $G'_n(F) = V_n(F)$.

Theorem 1.3. ([9]) For any field F and for any positive integer n, $V_n'(F) = V_n(F)$ except the following two cases: (i) n = 2 and |F| = 2 and (ii) n = 2 and |F| = 3.

Theorem 1.4. ([9]) If F is a field such that |F| = 3, then $G_2'(F) = V_2(F)$.

Theorem 1.5. ([10]) If X is a finite set, then $S_X' = A_X$.

Theorem 1.6. ([10]) If X is an infinite set, then $S_X' = S_X$.