CHAPTER I

PRELIMINARIES
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A semiring (S,+,*) with zero 0 is called a skew-semifield if

(i) (5,+) is a commutative semigroup and



(ii) (5,*) is a group with zero 0.

A commutative skew-semifield is called a semifield.
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the semiring SK, is not a skew-field.

The above example shows that skew-semifields are a generalization

of skew-fields and also a generalization of semifields.
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any element of S, Extend the operation in § to 0 in sU{0} by defining
00 = 0 and x0 = Ox = 0 for every x € 5. Then under this operation,

S U {0} is a semigroup with zero 0, Let

5 if S has a zero,
g =
sU{0} if S has no zero.
A semigroup S is said t a ring structure if there exists

an operation + on g suchy £k at | , a ring where * is the
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column dpntains exactly one 1.

For any field F and for any positive integer n, let Gn{F} be
the set of all n X n nonsingular matrices over F, so Gn{F} is a group
under usual matrix multiplication.

By a matrix group over a field F, we mean a subgroup of G_(F)

under usual matrix multiplication for some positive integer n.



The following notation of matrix groups will be used in the
thesis : For any field F and for any positive integer n, let
Un(FJ [Lntr)] = the matrix group of all n X n upper [1nwar-] triangular
nonsingular matrices over F (see [6], page 410),
Pn(l-"} = the matrix group of all n X n permutation matrices

over F (see [7 syhage 37 or fﬁ], page 203),

0 (F) = x n orthogonal matrices
—
V.(F) = of \»\ “#slunimodular matrices
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Let Ax be a set of all almost identical even permutations of X.

Then A, is a subgroup of S, and it is called the alternating group on X.

For any group G, let G' denote the commutator subgroup of G,

that is, the subgroup of G generated by the set [aba."ih-ih, b € Gl.



A system (F,+,*,<) is called an ordered field if (F,+,*) is

a field and < is a partial order on F satisfying the following
properties :
(i) For any %, y € F, exactly one of the relations x < y,
= y or y < x holds where for a, be F, a <bmeans a <b and a # b.
(ii) For x, y € F, x <

if and only if 0 <y - =x.
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The follo @d in the thesis :

Theorem 1.1. ([1]] .5 a cyclic group of order

pn— 1 for some prime p &r n, then G admits a field
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Theorem 1 4, ([9]) If F is a field such that |F| = 3, then G (F) = V,(F).

1
Theorem 1.5. ([10]) If X is a finite set, then Sy = Ay.

1
Theorem 1.6. ([10]) If X is an infinite set, then Sy =
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