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In this thesis, a parallel numerical method for solving two-dimensional shallow
water flow problems is presented. A mathematical model is described. A high-resolution
Godunov’'s method which is based on a second-order approximate Riemann solver is used
to solve the 2-D shallow water equations. The local Riemann problem is solved by using the
Harten, Lax and Van Leer approach (HLL) and by the Roe method. The parallel code
program has been implemented on distributed-shared memory system, by using domain
decomposition technigues. A message passing interface (MPI) is incorporated for inter-
processor data communication. In addition, numerical solutions and performance results are

also presented.
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CHAPTER |

INTRODUCTION

Open-channel flows, flood mitigation, dam break analysis and some
other related free surface flows are generally considered as shallow water problems.
These solutions may include the propagation of shock waves or rarefaction waves.
Mathematical models based on the shallow water equations (SWE) are widely used to
simulate of this shallow water problems (see example [1] - [9]). The SWE can be derived
from mass and momentum conservations (de Saint-Venant 1871). For two dimensions
problem, there are three unknowns: water depth and velocities in X -and Y - directions to
be found. The distinguishing feature of the shallow water equations is that they admit
both discontinuities and smooth solutions. Even the case in which the initial data is
smooth can lead to discontinuous solutions at finite time. The nonlinear character of the
equations suggests that solution to these equations may be limited to only some special
cases. As and alternative, appropriate numerical methods can be used to obtain

solution including discontinuities.

Of all numerical techniques, finite volume methods (FVM) have several
advantages compared to other approaches. It combines the simplicity of finite
difference methods with the geometric flexibility of finite element methods. Since FVM
are based on the integral form of the conservation laws, a numerical scheme in
conservation form_can easily be constructed to capture the discontinuities. The fluid
domain is subdivided into grid-cells. Each cell average is modified in each time step by
the normal flux through the edges of the grid cells. To approximate the numerical fluxes
we must use the solution of local Riemann problem at cell interfaces. This approach was
proposed by Godunov, and the schemes derived from this principle are generally called
Godunov-type-scheme [3,6,10]. In the well known work of Godunov, the exact solution
of the Riemann problem was used. For the linear system, the exact Riemann problems
are mathematically too difficult to solve and the computation is too expensive. Today the

exact solution of the Riemann problem is replaced with the approximate solutions that



are obtained by using approximate Riemann solvers. There have been quite a few
efficient approximate Riemann solvers developed by various researchers, such as Roe
(1981), VanlLeer (1982), Harten (1983), and many others (see example [2],[3],[11]).
Since the original Godunov method is first order-accurate, there are serious numerical
oscillations occurred near the discontinuities. In order to avoid such oscillations, second
order schemes of the high-resolution Godunov's methods are developed. In this work
the high-resolution Godunov’s methods are obtained by using the VanlLeer's Monotonic
Upstream Schemes for Conservation Laws (MUSCL) approach associated with the

minmod and the monotonized-central-difference slope limiters.

In order to reduce the computational time, a parallel computation of the
numerical method is used to solve the problems. The domain decomposition technique
is used to divide the physical domain of the shallow water problems into sub-domain [4].
The MPI (Massage Passing Interface) is implemented to define each sub-domain
associated with each processor and is incorporated for inter-processor data
communication. They also support process topology that is a mapping of processes in a
communicator to an addressing scheme. The parallel program has been tested on the
cluster that consists of eight PCs with 1.7 GHz Pentium 8 processors, 256 Mbytes RAM,

40 Gbytes Hard disk;-and-Fast Ethernet Switch-Interconnection between nodes.

This thesis is organized as follows. Chapter 2 presents the derivation of
the shallow water equations. Details of finite volume method and the sequential
numerical algorithms are given in chapter 3. Chapter 4 introduces the concept of the
parallel system. Numerical results and performance results of the parallel model are

discussed in chapter 5. The conclusion of this thesis:isin Chapter6.



CHAPTER I

DERIVATION OF SHALLOW WATER EQUATIONS

This chapter concerns the derivation of equations governed the flows in
shallow water problem. The usual approach that simplifies the mathematical description
of the problem is to use a depth averaging procedure of the Navier-Stokes equations.
This leads to the Shallow Water Equations (SWE) model. Alternatively, the SWE can be
derived from the basic principles of conservations of mass and momentum together with
a set of constitutive laws related to the driving and resisting forces of fluid properties
and motion (de Saint-Venant 1871). The SWE is mathematical representation of water

movement subject to the following assumptions:

i) The fluid is assumed to be incompressible and inviscid.
i) The pressure distribution is hydrostatic.

iii) Turbulence effect is negligible.

See [12] for a more complete description of the shallow water

assumptions.
2.1 Conservation of Mass

Consider a small rectangular element (dxxdyxh) of water when
h(x,y,t)is water depth as show in figure 2.1. Conservation of mass for this box or
“control volume™ states that:

The rate of volume increase in the column is equal to the net volume flux into

the column from all 4 sides.



y+dy |

_KM/dX7\ . X T X+ dx
\'

Figure 2.1(a) Control volume (b) Normal velocity.

Since dx and dy are fixed, the volume of water in the box can change

only if the depth changes. The corresponding the rate of volume in the column is

oh
dxdy —.
y ot

Along the boundary, the net volume flux along X -direction is
(hu|, —hu .4, )dy (2.1)

Using Taylor series expansion and omitting terms-of higher orders in dx,

equation (2.1) becomes

—dxdy o(hu)
OX

Similarly, the net volume flux along Y -direction is

—dxdy o)
oy



The conservation of mass can then be expressed quantitatively as

dxdy oh = —dxdy ohu _ dxdy ohv (2.2)
ot OX oy

Equation (2.2) can be rewritten

ah_athu) aghv) _
ot ox oy

0 (2.3)
2.2 Conservation of Momentum
Conservation of momentum in the X -direction can be stated as follow:

The rate of change of momentum in the X-direction in the control
volume is equal to the net influx of momentum through vertical wall plus the net force

acting on the control volume in the X-direction.

Figure 2.2 depicts the directions of all forces and momentum fluxes on

the control volume.

y+dy
D o Px+dx
— Fy
Pb >
y
X X + dx

Figure 2.2 The directions of all forces and momentum fluxes in X -direction.

Here
® P and P, are pressure forces on the sides of the box.
® P is the pressure force due to a sloping bed.

® [ isthe friction force at the channel bottom.



The rate of change of momentum is

a(hu)
dxdy 204
pxdy ==

The net influx of momentum through four vertical sides is

ohu? ohv
—pdxd — pdxdy —
paxay o paxay 2y

The net of pressure force on two vertical sides normal to the X -direction

is {j PdA X—I PdA|X+dX}. From the hydrostatic assumption, the pressure P is pgh and

the net hydrostatic pressure forces becomes

" pgdydx oh®
2 OX

The pressure force due to the sloping bed is

P, = pgAXAYhS,,,

where S, is the bed slope in the X -direction. The resisting force on the bottom can be

expressed as shear stresses multiplied by surface area as F, = 7, AXAy .

Equating these terms, the conservation of momentum is obtained

2 2
Py o(hu) ) pgdxdy oh” piixdy ohu
ot 2 OX OX (2.5)
= pdxdy% + pgdxdyhS,, —z,,dxdy
Dividing equation (2.5) by pAXAyY, we have
2 2
o(hu) z_gﬂ_a(hu )—a(huv)JrghSOX—gthx 2.6)
ot 2 OX OX oy

which can be written as



o(hu) N o(hu?) +g6_hz+ o(huv) _

h(S,, —S 2.7
at GX 2 8X ay g ( 0x fx) ( )

z-bx

where S = is the friction slope in X -direction.

Similarly, the Yy -momentum gives

o(hv) N o(huv) +9_6(h2) L o(hv?) _
ot X 2 oy TP

gh(Sey —Sy,) (2.8)
T

where S = —_is the friction slope in the Yy -direction.
pgh

Equations (2.3), (2.7) and (2.8) are called the two-dimensional shallow

water equations. For future references, the SWE are

a_h+M+@:0
ot OX oy
8(hu)+a(hu2)+g5(h2)+5(hUV)Zgh(s ~s.) (2.9)
ot OX 2 oX oy L |
o(hv). jothuv) g o) , oW _ ps g
A x—2 oy ey Y

Here g is the acceleration due to gravity, h is the water depth, u and v
are the flow velocities in‘the X - and' y -directions respectively, S, and S, are the bed
slopes in X- and Y -directions respectively, the bed frictions S, and Sfy can be

estimated by using the Manning resistance law

un?yJu? +v? vnJu? +v?
S, =——— and §, =——+——
fx h4/3 fy h4/3

in which n is the Manning roughness coefficient.



We can rewrite (2.9) in the matrix form as

q,+ f(a),+9(@), =S (2.10)
where
h hul hv
g=|hu|, (@)= hu*+=gh*|, g(@)=| huv (2.11)
hv huv hv? Jrlgh2
L 2"
0
and §= g(SOX_Sfx)
g(SOy _Sfy)
These equations can be written in quasilinear form as
g + f'(@)d, +9'(@)d, =S (2.12)
with the of Jacobian matrices
0 1 ©
f'(q)= —u® +gh 2u O
—uv vV u
(2.13)
0 0 1
g'(@=| -=uv v u
—Vv*+gh 0 2v

Let ¢ =,/gh be the speed of gravity waves. Then the matrix f'(g) has eigenvalues and

eigenvectors

M =u-c, 1*=u, I®=u+c



1 0 1
rt=lu-c|, F?=|0|, F®*=|u+c (2.14)
v 1 v

The Jacobian g'(q) has a similar set of eigenvalues and eigenvectors,

(2.15)

AONUUINYUINNS )
ANRINITUNINE AL



CHAPTER Il

NUMERICAL METHODS

3.1 Conservative Finite Volume Method

Finite volume methods can be obtained on the basis of the integral form
of conservation laws [11]. The fluid domain is subdivided into grid cells. The calculations
are based on an approximation to the integral of certain quantities over each of these
volumes or specifically, the cell average (i.e., this integral divided by the volume of each
grid cell). These values are modified in each time step by the normal flux through the
edges of the grid cells. The fluxes are determined by solving the Riemann problem for
the two constant states at each side of the boundary edges. The Godunov’s method for
hyperbolic systems is generalized to nonlinear systems. The important step now is how

to find solutions to the nonlinear Riemann problem at each cell interface.

Yii2

Yiar

Xi—l/ 2 Xi+l/2

Figure 3.1 Finite volume grid cells in two space dimensions, where Qij represents a cell

average.
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In deriving the two-dimensional conservation law g, + f(q), + g(a), =0,
the numerical domain is subdivided into rectangular grid cells of the form
Ci =Xz Xi021% LY 0020 Yjias2] @s shows in Figure 3.1. Let AX =X, ,;,, — X;_y,, and
AY =Y./ = Yja,- The normal fluxes f(q) and g(q) represent the fluxes along the

left and right edges and along the top and the bottom respectively. Integrating the

conservation law over each grid cell, we obtain

%” adxdy + [[ F(a), dxdy+ [[ a(a), dxdy =0
Ci Gy C;

d - Yisr2 o Yiui2 N
o lfady £ [ R0 g0y, 00y = [ @00y, 0)dy
Gjj Yj12 Yij-112
+ [ 0@ Y D)X= [ 9@y, 1 1)dx =0

(3.1)

Integrating (3.1) from t, to t, ;. yields

[ j q(x, y,t, ;)dxdy — j j G,y t,)dxdy = —t:f :j POz, y. 1) dydt
a j Q0% 12 D) et
—j j 90X, ¥ .12, D)l
ST gt o by

b X2

Dividing (3.2) by the cell area AXAy, we obtain
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ﬁy j j a(x, y.t,.,)dxdy :ﬁy j j 4(x, y.t,)dxdy

1 tha Yjr2 toa Yis/2 :l

T AxAy J. f(q(xiﬂ/z’y't))dydt_]‘ j F(a(X . Y, 1)dydt

Lt Yiwe th Yjare

 AxAy

RREY th X2

1 thi1 Xivas2 i thi1 Xisas2 e
[ ] 9@y, thdxdt- [ [ g(@cx, y,-_l,z,t»dxdt}
t

(3.3)

Equation (3.3) can be written as

ﬁy j j a(x, y.t, ,)dxdy =ﬁy j j q(x, y.t,)dxdy

At 0 1 toy Vi 1 to Yjds2
|y | j (0, . D)yt~ j j CICPRANLY
At i 1 that Xiiag2 Y i 1 Tyt Xisas2 -

_A_y AAX {[ XiJ;Z g(acx, yj+1/21t))dth_M E[ xiJ;z gacx, yjl/Z’t))dth}

(3.4)

or, symbolically,

a ~n Alr= _
Qi? = QS _E[I:i-r:l/z,j - Figllz,j } -

At

A_y[éir,]m/z _Gir,]j—llz] (3.5)

where Q{fj represents a cell average over the (i, j)grid cellattime t,
Qf ~ [[acxy.t,)dxdy
Gy

with Fiﬁllz,j is some approximation to the average flux along X =Xy, ;.

1 th Yidrz

.[ F(q(xi—llz Y t))dydt

th Yjare

n ~
i-1/2,j ~

AtAy
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and Gi”,H,z is some approximation to the average flux along y =Y, 4,

thi1 Xivas2

=n 1 o
Gl zmj J. g(acx, vy, t))dxdt

th X2

A numerical flux at the edge of each grid cell is determined, based on
the data at the beginning of each time step. These fluxes are used to update the cell
average over a time step. This brings us to the discussion of solutions to the Reimann

problem.
3.2 Riemann Problem

The Riemann problem in our context consists of the hyperbolic equations
together with initial data which is piecewise constant with a single jump discontinuity at
some point, say X =0,

’\ q if x<0
q(x,0) =4 " (3.6)
q, if x>0

At each cell-interface X; 4,5 5 there is a discontinuity with @, =Q,, ; to

the left and G, =Q, . to the right. We can obtain information that can be used to

i
compute the numerical flux. Generally, systems solution to the Riemann problem is
written in terms of similarity variable X/t and consists of a finite set of waves that
propagate away . from the origin with constant wave speeds. For linear hyperbolic

systems the Riemann problem is easily solved .in.terms of the ‘eigenvalues and

eigenvectors.

For 2D shallow water equations, a Riemann solution has three states: the
original state to the left @, the original state to the right ¢, , and a middle state between

the two discontinuities. This middle state will be denoted as q*. (see Figure 3.2)
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In solving the 2D shallow water equations we must sweep in each
direction. For example, in the X-direction the Riemann problem consists of
g, + 7(g), =0 together with the initial condition (3.6). Then we solve this Riemann

problem as follows:

1. Determine whether each of the two waves is a shock or a rarefaction wave.
2. Determine the intermediate state § between the two waves.

3. Determine the structure of the solution through any rarefaction waves.

For finite volume methods, this process is often simplified by using the
approximate Riemann solver discussed in Section 3.4. Computing the exact Riemann

solution can be expensive.

t s

v
>

Figure 3.2 Solution of the linear Riemann problem:in the X —t plane.
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3.3 Godunov’s Method

Godunov (1959) suggested the use of characteristic information of a
hyperbolic system within the framework of a conservative method. He proposed that the

numerical flux could be obtained by solving a local Riemann problem at each interface.

Godunov’'s method can be implemented for a general system of

conservation laws described in the following procedure :
Algorithm 1

1. Reconstruct a piecewise polynomial function &”(X, y,t.) defined for all x and
y , from the cell averages Q.T

2. Compute the numerical fluxes.

3. Apply the flux-differencing formula (3.5) then repeat (1) in the next time step.

In step1 : We reconstruct a function ﬁ”(x, y,t,) from the discrete cell averages. In the
simplest case this is a piecewise constant function that takes the value QT in

the ij" grid cell, i.e.,

q(x, y,tn)=Qirj‘ forall X e C; (3.7)

This-reconstruction; gives.only afirst-order accurate - method. To obtain better
accuracy one might consider using a better reconstruction, such as a
piecewise linear function.-This idea forms.the basis for. the-high-resolution

methods considered in Section 3.5.

In step2 : We want to evaluate the flux function using solution from the Riemann
problem at each cell interface. Let us denote the Riemann solution at the
interface (i—1/2, j) by Qf_l/zj =q" (Q"4;.Q5) . The numerical flux at this

edge is determined by
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Ifi—llz,j = F(Qi{uz,j)’
Gi,H/z = g(QAi%H/z)v

where Qii_l,zyj is obtained from the local Riemann problem for g, + f(q)x =0

with data QHJ and Qi'j , While Qﬁjfl,z is obtained from the local Riemann problem for

g, +3(a), =0 with data Q. and Qi,j \

In this thesis, the numerical fluxes are calculated using the

approximate Riemann solvers (e.g., Roe and HLL solvers) described in Section 3.4.

In step3 : We use the numerical value Qf_m’j ,etc. from step2 to update the cell

average by substituting into the Godunov’s scheme.
3.3.1 The Wave-Propagation form of Godunov’s Method

In step 2 we can determine the solution of the local Riemann problem
which  consists of a 'set of waves. For a general mxm linear
system, G, + Ad, =0 ( f(q) = Aq), the solution of Riemann with arbitrary initial data g,
and {,, consists of m discontinuities traveling with speed A*, 1%,...,A™ which are the
eigenvalue of the - mxm matrix A. To solve the Riemann problem we take the initial

data (Q,Qr) and decompose the jump Qr —Q, into eigenvectors of A.

Q -Q=a'r +a’t* +...+a"

m

r

This requires solving the linear system of equations

Ra=0Q,-Q (3.10)

for the vector a = R_l(Qr —Q,) and R is the matrix of eigenvectors. Since a’r® is the
jump in (':) across the pth wave in the solution to the Riemann problem, we introduce

the notation
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WP =qgPFP (3.11)
for these waves.

The solution of this Riemann problem at the cell interface is

QJ’:Q‘F Z WP
p:AP<0
or Q¢=Qr— Z WE (3.12)
p:AP>0

We can compute the numerical flux as

= FrAY ~N'
Fi—l/2,j = f (Qi—llz,j) 5 AQi—l/Z,j

= A(Qij - Z V\_]i—pllz,j)

p:AP>0

= AQij = Z Awifllz,j

p:AP>0

= AQij = Z (2“21/2,1‘ )+V\7i—pl/2,j
Pk

m
Similarly, we obtain F,, ; = AQ; +Z(/l,’frl,2'j)’Wifl,21j }

p=1

The solution of the Riemann problem ¢, +Bdq, =0(g(q) =Bq) is of the

same structure as (3.12). Hence the numerical fluxes in Y -direction are obtained by
— - m =
Gi,j—l/z = AQij _Z(ﬂ’lf)j—llz)JrWi,pj—l/Z
p=1

m
and G 2 = AQ; +Z(ﬂ’|?j+llz)7wi,r}+llz -
p=1
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Substituting those numerical fluxes into the flux differencing (3.5), we

obtain

Qi;Hl = Q: _%{i(ﬂ’lplllj )+ i 1/2] +i(ﬁ’|illz j) |+1/2 j:|
p=1 p=1
Ane ) (3.13)
'A_y|:Z( 11—1/2) Wi,pj-uz"‘Z( Ij+l/2) W, j+1/2j|
p=1 p

The cell average is affected by the right-going waves from X, ;, the
left-going waves from X;,,/,;, the up-going waves from Y, ,,,, and the down-going

waves from Y, ;.,,,+ As a shorthand notation, we introduce the following symbols:

m

xiAQi—llZ,j T 2(1181/2,1 )7 Wifllz,j
p=1

m

x+AQi—1/2,j = Z(ﬂflguz,j )+ Wifllz,j

p=1
and

m

B_AQi,j—l/Z B Z(/’l’u j-1/2 )_Wu j-1/2
p=1

B+A(ji,j—1/2 = Z(ﬂ’l?j—llz )+ Wi,F}—lIZ

p=1
Hence (3.13) can be rewritten in the fluctuation form as

Qn+1 QI] __(7(‘+AQ| -1/2,j +A AQ|+:L/2 j)
(3.14)

_A_y(B+AQi,j71/2 + BiAQi,jJrl/Z)
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7VA(gifl/z,j 7('+AQi—112,j K_AAQM/Z,J- 7£+A9_i+1/2,j

Qs Qinj

Xi112,] X112, ]

Figure 3.3 Fluctuations for the Godunov’s method.

3.3.2 The CFL Condition

The CFL condition was proposed by Courant, Friedrichs and Lewy in

1928. They recognized the following necessary stability condition for any numerical

method:

CFL condition : A numerical method can be convergent only if its numerical
domain of dependence contains the true domain of

dependence of the PDE, at least in the limitas At and Ax go
to zero.

It is important to bear.in mind that the-CFL condition is only a necessary

condition for stability (and hence convergence). It is, of course, not- sufficient to

guarantee stability.

For a hyperbolic system of equations there is generally a set of m wave

speeds A',...,A™. Then we define the Courant number by

v=£max/1"‘

AX p=L2,...m
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For a scheme (3.5) and (3.14) the CFL condition leads to a necessary

condition v <1.
3.4 Approximate Riemann Solver

In Godunov’'s method we only need to determine Qi, the state along
x/t =0 based on the Riemann data Q, and Qr. The process of solving the Riemann
problem is thus often quite expensive for the nonlinear systems of conservation law and
we must use more information to extend to the high-resolution methods. Even so, it is
often true that it is not necessary to compute the exact solution to the Riemann problem

in order to the numerical calculations.

A wide variety of approximate Riemann solvers have been proposed.
Most of them can be applied with much less computational cost than the exact Rimann
solver and yet almost equally good results in many cases when used in the Godunov or

high-resolution methods.
3.4.1 Roe Linearization

To avoid difficultly in solving the nonlinear Riemann problem, we use a
linearized approximate Riemann solver normal to each cell interface. Then this linear

approach is easily extended to the nonlinear case.

From the quasilinear form of shallow water equations (2.12), after
neglecting the source term temporarily, we apply the-Roe linearization to obtain the Roe

matrix in form of
qt+Aqx+éq’y =0 (3.15)

where the matrix A(approximation of F’(q) near the interface) and the Roe averages

h,0 and V are
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1 0

A=|-G"+gh 20 0 (3.16)
R
H:%&Hj+m) (3.17)

o APy Uy b (3.18)
Jhiss s

AP Via + \/ﬁt—ivi,j
NLLEY +\/h_”_

V= (3.19)

The matrix A has eigenvalues and eigenvectors

1 0 i,
r—-Xl_ O—C ' FX2 0 : FX3 l]-i-é
v 1 v

respectively, where C = / gﬁ is the speed of gravity waves.

Similarly, the matrix B (approximation of g'(q) near the interface) and

the Roe averages-h 0 and U-can be written-as

0 0
B=| —Gv G V (3.20)
2 +gh vV 20

ﬁ:%m*ﬁm”) (3:21)
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g+ (3.22)

hi,j—lvi,j—l+\/hi,jvi,j (3.23)

,/hi,H +\/K

0=

V=

The matrix B has eigenvalues and eigenvectors

1 0 1
P =l 4 |, r?=-1|, r2=| 0 (3.24)
v—¢C 0 V+¢C

respectively, where C = 4/ gﬁ is the speed of gravity waves.
3.4.2 Roe Riemann Solvers

Recalling the wave-propagation form of Godunov’s method, to update
the cell average in next time step we need to compute the wave and the wave speed.
They can be achieved by solving the Riemann problem. In the process to solve the
Riemann problem by Roe solver we start by sweeping in the X-direction along each row
of the grid cell. Then we sweep-in the Y -direction along each column.

3.4.2.1 Sweep in the X-direction

First we apply the Roe linearization to @, + f'(q)q, =0, and obtain the
Roe matrix A as described in Section 3.4.1. At the interface we decompose the jump

g, — 0, into eigenvectors ofA:



d, 1 0 1
d, [=a'|{0-C|+a?|0|+a’ 0+C
d, v 1 v
where
d1 i1 hij . hl—l,j’
d2 i alj F Ai—l.j'
d, =\7ij - Ai—l,j a
Solving the linear system (3.25) for & , we obtain
G+¢)d, —d
o (8 -d,
2C
—(G-¢)d, +d
o2 (8-8)0, +0,
2C
and o’ =-d, +d,.
Consequently, the waves W Pare given by
1 0 1
Wl =a|0-C| , W2, =a®| 0| , W, =a°|d+C
v 1 v

and the corresponding wave speeds are Siy,; =0-¢C,s?,,; =¢C,

3 ~ ~
Sty/p; =U+C.

3.4.2.2 Sweepin the 'y -direction

At the interface(i, j—1/2), we decompose the jump @, —(

eigenvectors of B:

4 -G =at’+a’r’?+a’r”

23

(3.25)

and

into
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d, 1 0 1
d, |=a'| G |[+a°|-1|+a®| 0 (3.26)
d, v-C 0 V+C
where
dl N hij 11 hi,j—l,'
d, = Gij - Ai,j-l’
d3 - \7ij 4 Ai,j—l'
Solving the linear system (3.26) for & , we obtain
a+¢)d,—d
PCE
2C
—(G-¢)d, +d
aZ — ( )Al A \
2C
and a®=-Vd, +d,.
The waves W P are given by
1 0 1
Al 1 & NS 2 2 AJ3 3 ~
Wi—1/2,j =a u ’Wi—1/2,j =a”| -1, Wi—l/Zj a u
v-C 0 V+CE
and the corresponding wave speeds are S, =V=-C, s, =C, and
3 ~ ~
Si,j—l/z =V+C.

It should be noted that the Roe Riemann solver works well for many
shallow water flow problems except when there is a dry region. In that case, the Roe
Riemann solver may produce negative depth. In this thesis, the HLL Riemann solver is

used as an alternative to approximate the flux in the dry case.
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3.4.3 HLL Riemann Solver

The HLL Riemann solver was proposed by Harten, Lax and Leer in 1983

[2]. Information at the interface must be determined subject to the wave speed of

propagation.

a
>

for x/t<s,
Q'-n=q'(q,q,)-n=4q-n fors <x/t<s, (3.27)
for s, <x/t

__‘QL O
= B

where N is the outward normal unit vector; the subscripts r and | referred to the right
and left cell interfaces, 'S, and S, are the smallest and largest wave speeds of

propagation, respectively, and the state C‘]* is determined from

¢ i —S.q.l—(':r =K (3.28)
r 7l

We now turn to the determination of the associated numerical flux. We set

‘N when 0<s,

*

- when s, <0<s, (3.29)
-n

T
4
=
[l
T

F-n when s <0.

Here the numerical flux at the star region is determined by

lf*.ﬁ:Srlfl'ﬁ_sllfr'ﬁ—i-slsr(qr_ql)
Sk~ S

(3.30)

where F. =f(q,)or g(q,) and F = f(



26

The wave speeds S, and S, can be estimated via the two expansion

approaches due to Toro:

5, = minu, -1 - Jghy " — g

(3.31)
s, =max(w, -N+./gh, ,u” ++/gh’)
where w = (u,v) and
U=+ w,) N+ gy —g,
2
{ 1 (3.32)
VOh = S(Jgh +ygh)+ 5w ~w)-n
If the cell on the right of the interface is dry, then
S =W -n—,/gh and s =w -n+2,/gh (3.33)
On the contrary, if the cell on the right of the interface is dry, we have
s =W, -n-2/gh and s, =w, -n+,/gh (3.34)

For the homogeneous shallow water equations, if the middle stage q* is
determined from (3.28), using (3.31) for the speeds S, and s, , the depth h™ in the

middle state is always non-negative [2].

3.5 High-resolution Godunov’s Method

In Section 3.3, we introduced the original Godunov’s method that is first
order accurate, giving poor accuracy in smooth region of the flow. Moreover, shocks
tend to be heavily smeared and poorly resolved on the grid. In this section a high-
resolution Godonov’'s method is introduced. It is at least second order accurate on

smooth solution and yet give well resolved result, avoiding the nonphysical oscillations.
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There are various techniques to achieve the high-resolution scheme, for
example MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws). The
MUSCL procedure applied to the Godunov's method consists of a linear extrapolation of
the corresponding variables at the cell interfaces. In doing this, we introduce a

piecewise linear function of the form.
q" (x t)—Q”+1‘”Ax
q (X Yt)=45 Zo'ij :

where 6{; is the slope in ijth grid cell. This replaces the first step of the original

Godunov’s method (see Figure 3.4).

In using the slope 5'5 on a piecewise linear function, we must consider
how to limit the slope for second-order accuracy while guaranteeing that no nonphysical

oscillations will arise.

= Qi+2,j
Qi+l,j .
ini Qir+1/2 j i !
! 1 ! ! )
i—1 i i+1 i+2

Figure 3.4 Sketch of the linear variable extrapolation at the cell interface.



28

3.5.1 Slope -Limiter

There are many choices of slope that give second-order accuracy for
smooth solutions while still satisfying the TVD property. For examples, the minmod slope
limiter, the superbee slope limiter, the van leer slope limiter, the monotonized-central-
difference limiter (MC limiter), etc. In this work we use the minmod slope limiter and the

MC slope limiter.

3.5.1.1 Minmod Slope Limiter

6'”- —minmod Qi—l,j _Qi—Z,j ’Qi,j _Qi—l,j (3.35)
AX AX
where the minmod function of two arguments is defined by
a if [aj< b/ and ab>0
minmod(a,b) = b if |b|<|al and ab >0 (3.36)

0if ab<O

The minmod technique compares the two slopes with the choice of a
smaller one. If the two slopes have different sign then Qi'j must take on a local
maximum or minimum value. It is‘eéasy to check in this case and we must set 6; =0 in
order to satisfy TVD property. In this work, the minmod method is used to reduce the
oscillation of dry bed case.

3.5.1.2 MC Limiter

mmd[(Q Q) J Z(Q QJ Z[Q —Q, D 837
2AX AX AX
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The MC limiter increases the slopes in these two cells to twice the value
of the minmod slopes and still have TVD property satisfied. This reconstruction will lead
to sharper resolution of the discontinuity in the next time step than we would obtain with

the minmod slopes.
3.5.2 Wave limiter

The wave limiter version of Wifllz,j is determined by

Vvifllz,j 7 ¢(‘9£1/2,j )Wi—pllz,j (3.38)

where Qﬁl,zvj should be some measure of the smoothness of the p" characteristic

component of solution defined by

Of1y; = "W' £ “ (3.39)

The index | here is used to represent the interface on the upwind side of X; 4, ;, that is

i—1 if 7, >0
| = v (3.40)

p———— < U

The function @(8) isthe flux-limiter function.

minmod: - ¢(€) = minmod(l, &)

MC ©max(0, min((lze)

, 2,20))

3.5.3 High-resolution Method with Roe Approximate Riemann Solver

Recall the fluctuation form of Godunov’'s method (3.14)



30

N+ n At +A Q) A

Qij = Qij _R(K AQi—l/Z,j +A AQi+1/2,j)
At B B (3.41)
_A_y(B+AQi,j—1/2 +B_AQi,j+l/2)

To improve the Godonov’s method we introduce the correction terms F

and G into (3.41). This gives

n+! \n At +A A e
Qj ' =Q; _&(7{' AQ. 15 +4 AQia2;)

W) o
_E(B AQ iy +BAQ, j.42) (3.42)
At = e AT B ~
_—A_;(Fiﬂ/z,j = Fi—l/Z,j)_A_y(Gi,Hl/Z +G; j12)

n+l

In the first-order accurate method (3.41) the update value of Qij
depends on only the three values Qij,Q‘HJ and QLH shown in Figure 3.5(a). This is not
quite a good representation, since the flow of information is at an angle to the grid, (see
Figure 3.5(b)). The value QH,H should also affect Qi?“. This is the principle idea of the

Corner-Transport Upwind method (CTU method) [11]

(a) (b)

Figure 3.5 (a) Waves moving normal to the cell interfaces. (b) The true velocity (U,V) is
at an angle to the grid, and information from cell (i —1, j —1) should also affect the new

value in cell (I, J).
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To compute the correction fluxes needed for the CTU method, we view
the flow of information as a transversely propagating wave into each of the neighboring
cells (see Figure (3.6)). Instead of giving a single expression for each correction flux, we

will build up these fluxes by adding in any transverse terms arising from each Riemann

problem.

At the beginning of each time step we set K, =0 and G,;,,=0
for all 1 and . After solving each Riemann problem in the X-direction, we set

XiAQi_l,Z’j at the interface as in (3.41) and then update the nearby correction fluxes by

At

6 L6 =1, B A,

Gid > = Gy gears —%B*KAQH,Z J. .
Gl 4= G i, —ZAT:XB-WAQH,Z J. |
éi,m,z = G:i,j+1/2 —%B%*AQ_MJ.

We then sweep in the Y -direction, after solving the Riemann problem at

interface (i, j —1/2) . The fluxes are updated by

= = At o o
Fi—llZ,j,l = i*1/2,j—1_mx B AQi,j—l/Z
= E At .-
Fi+l/2'j,1 = i+l/2,j—l_mx B AQi,j—l/Z
(3.44)
= = AL, A
Fapy = Pz _mx BAQ 42

[N

E

iv1/2,) — Fivre,j =

At TRTAO
m?& B AQ i1/

This is the process of CTU method for computing the transverse
propagations to update the correction fluxes. Although CTU method is first-order
accurate it has better stability than those that exclude the correction fluxes. To achieve

second-order accuracy, we use the correction fluxes as follows:
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Fi—l/z,j -

= 1& At ot
=F.; +E;|Sipl/2,j|(l_§|sip1/2,j|}/vip1/2,j

~ ~ 1&
- p

G i12=6Gi +EZ|Si,j—1/2|
p=1

At =

1_A_|Si?j—1/2|}Ni,pj—1/2

y (3.45)
A

P p P
Sivu2,j ‘ (l > Siv2, |}Ni+1/2,j

Sir,)j+1/2’{l_ %lsi?j+1/2|}/\7i,pj+llz

i P
Wi—l/z,j

~ ([
iv1/2,j T EZ
p=1

T

Fi+1/2,j =

e LA
=G "‘_Z
r =

Gi,j+1/2 g

represents a limited version of the wave

B'AAQ._y, ; B'A'AQ,
==

\ |
B2 AQ,,,; B R"AQ i,

Xi—l/2,i

Figure 3.6 Transverse propagations at the interface (i —1/2, j).
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To calculate the transverse propagations in X-direction, we split the
fluctuation K*AQH,ZJ into up-going and down-going fluctuations B*?L*AQH,ZJ and
B"A'AQ,,; that modify the fluxes G, ;,;,, and G, ;_,, above and below the cell (i, j)

respectively. To compute B*A'AQ,,,, ;. we decompose the vector X'AQ_,,; into

eigenvectors of B ,

K*AQi—lIZ,j ~ :Bli;yl + ﬂz?yz s ﬂs%ys

- —
(x AQi—l/Z,j) 1 0 1
. 2 /. .
(F'AQ ;) |=4 0 |+p°|-1|+4 @ (3.46)
. 3 v—C 0 V+C
(7& AQi—l/Z,j)
Solving the linear system (3.46) for ,3 , we obtain
* 3 ~ ~ *
Bl = _(7L AQi—l/Z,j) + (V"‘C)(7L AQi—l/Z,j)l
2¢
* 2 ~ *
p? = _(7(' AQH/Z,J‘) +U(X AQi—l/Z,j)l
~ S * 1 * 3
. ~(1=8)(X'AQ 2, ) +(X'AQ )
2¢
The transverse waves are given by
1 0 1
AL A 3 e A
Wb:il—lIZ,j =ﬁl u yWhicaz,j= 8% -1, Wbi3—1/2,j =pB u
v-C 0 V+C
and the transverse waves speeds are shi,,; =V-¢,sb?,,,; =V , and

sbf_l,z,j =V +C. The transverse fluctuations are given by
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_ 3 -
B77K,*AQi_l,2'j = Z(Sb&,z‘j) Wb? 12,
p=1
_ 3 o
B+7L*AQi_l,21j = Z(Sbigllz,j) Wbip—llz,j

p=1

where K*AQH,ZJ- represent K*AQH,“ or K’AQH,“.

To calculate the transverse propagations in y-direction, we split the
fluctuation B'AQ, ., into right-going and left-going fluctuations A"B"AQ, ;,,, and
K’B*AQLH,Z that modify the fluxes Ifm,zvj and F_y,; right and left the cell (i, j),

respectively. To compute XiB*AQi,H,Z, we decompose the vector B*AQ'H,2 into
eigenvectors ofA,
B*AQi,j—llZ :ﬂl%xl+ﬂ2%x2 +ﬁ3|;x3

(B*AQi,le )1

1 0 1
(B'AQ,4.) |24 G- |+ 42| 0|+ p°| G+¢ (3.47)
0 1 0

(B*AQi,j—llz )3

Solving the linear system (3.47) for ,B , We obtain

- —(B*AQLH,Z )3 +(0+¢) (B*AQi,j—:L/Z )1
2¢

ﬂz = _(B*AQi,j—llz )2 +\7(B*AQi,j-1/2 )1

3 _ —(l-©) (B*AQi,j—llz )l + (B*AQi,j—llz )3
2¢

The transverse waves are given by
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1 0
V%il,yl/z:,b’1 a-¢ ,V%iz,j&/z:ﬂz 0|, V%?J =p°
v 1

and the transverse waves speeds are sby,,,=0-¢,sh’ , =0, and
sb’

12 =U+C. The transverse fluctuations are given by

3

K_B*AQ”_M = Z(Sbi?j—llz )_V\Tbi’?j—lm
PEL
- 3 T
7L+B*AQLJ-_1,2 = Z(Sbi?yl/z) bej—l/z
p=1

where B*AQH,Zj represents B*AQH,ZJ- or B’AQH,Z’JA.

Implementation of the above method is described in an algorithm as
follows.

Algorithm 2

1. Initialize F_y,;=0and G, =0 ateach interface.
2. Solve each Riemann problem in the x-direction by sweeping through

the. grid. At interface (i~1/2, j) between C;,; and C;,, we use

Qifl,j and Qi]j to compute the waves Wifl/z,j and the speeds

$°412,;- Calculate fluctuations K*AQ_M] and K’AQH,ZY].

— 3 -
7VAQifl/z,j = Z(si’illz,j) Wifllz,j
p=1
3

7‘4+AQ-1/2,1 = Z (Si[il/z,j )+ Wifllz,j

p=1
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3. Determine Wifllz,j and use this to update the correction fluxes at the
interface (The Godunov's method is improved to second-order

accurate)

T

~ ~ 1S At ~
12 = Fia +E;‘Si‘il/2,j‘[1_E‘Si’il/2,j‘jwifll2,j

4. Use right-going fluctuation K*AQH,M to compute an up-going
transverse fluctuation B*K*A(ji_l,zvj and a down-going transverse
fluctuation BA'AQ,;,,; by solving the transverse Reimann
problem. These are computed by decomposing the fluctuation

A'AQ,_y ; into eigenvectors of B,

b 3
7(‘+AQi—1/2,j . Zﬂpryp
pSl

and then setting

Bi?UAQH/z,j < i(lyp )i BPEP

p=1

5. Update the correction fluxes above and below the cell Ci,j by using

the fluctuations B*A"AQ, ,, ;-

At <

Gi,j+1/2 = Gi,j+l/2 _EB+K+AQH/2J
€ = ATy O 0. P
Gi,j—l/z = Gi,j—l/z _EB 78 AQi-l/z,j
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6. In a similar manner, the left-going fluctuation K’AQH,“ is

separated into transverse fluctuations B*A"AQ which are then

i-1/2,]

used to update the fluxes above and below cell C;, ; :

=~ ~ At . =
Gi—l,j+1/2 = Gi—l,j+1/2 _EB 8 AQi—l/Z,j
. 4 At =
Gi—l,j—l/z = Gi—l,j—l/z _EB x AQi—llz,j

7. Steps 2-6 are repeated for each Reimann problem in the y-direction,
at interfaces between cell Ciyj_land Ci,j- The resulting waves
Wi"}fl,zare limited by comparisons in the Y -direction and used to
update éi'j_m. In‘solving these Reimann problems we also compute
fluctuations BiAQiYH,2 which are then separated transversely into

KiB+AQi’H,2and KIB‘AQLH,Z. These four transverse fluctuations

are used to modify the nearby F fluxes.

8. Finally, the updating formula (3.42).

n+ N At +A A “AA
Q; ' =Qy _E(x AQ, 4] +R AQHl/Z,j)

At < ~ =
_A_y(B AQi,H/z +B AQi,j+l/2)

At = = At =
E(Fiﬂ/z,j - i—1/2,j)_A_y(Gi,j+l/2 -

n

i,j—1/2)

3.5.4 High-resolution Method with HLL Approximate Riemann Solver

The HLL method can easily be improved to the second-order accuracy
by using the MUSCL procedure. In this thesis, the reconstruction of Q, and Qr are

given by



At the interface (i—-1/2, j)

(3.48)

(3.49)

38

After the reconstruction of Q, and Qr, these values are used to update

the numerical fluxes in (3.8). The high-resolution HLL approximate Riemann solver can

be described by the following algorithm.

Algorithm 3

AP

(i-1/2, j), we compute a piecewise linear function

- - ~ 1
Q= Qil—1/2,j = Qi—l,j +E§| LjAX

Qr EQir—llzj :Qi,j - Si,jAX

N | =

2. Compute the numerical fluxes

F(Q) when 0<s,
Fil/Z,j(le(jr): ﬁ*((j,,(-:)r) when s <0<s,
F(Q,) when s <0.

Sweep through grids in the x-direction. At the cell interface



39

Here 'f*(QI’Qr): er(Q')_S'F(Sf)_':"’SISr Q -Q)

The wave speeds S, and s, can be determined by

s, =min(u; ,,, ; —+/9h u” _Vgh*)
S, = max(U;_,, ; ++/9h, U +4/gh”)

where

=L o w0
Vot == (o, 4fah) + 5w =w)-n

3. Use similar procedure to compute the numerical fluxes at the

interface (i +1/2, j)-

4. Sweep through grids in the y-direction and use similar processes 1-2
to compute the numerical fluxes at the interfaces (i, j —1/2) and

(i,j+1/2).

5. Finally, update the cell average at (i, J)

Qir,]}rl = Qir,]j —%[ﬁizuz,j (QI’Qr)— |f£1/2’j (Qer ):|

_2_;[/[@5141/2 (Q' Q ) 1 Gir']j‘llz (Q' Q )]



Flowchart of the Numerical Method
START

READ parameter data file

!

Set initial conditions

(Call subroutine initial (mx.mv....))

!

Write solutions at 1,

(Call subroutine output (mx,my,...))
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n < Ntime

Update boundary condition

(Call subroutine BC (mx.mv....))

!

Update source term
(Call subroutine SCT (mx,my,...), Bedslope (mx,my,...)

and'Friction (mx,my,...))

.

Sweep in x-direction

!

Compute numerical fluxes

(Call subroutine HLL (mx,my,...) or ROE (mx,my,...))




Update all cell averages

A\ 4

Sweep in y-direction

A 4

Compute numerical fluxes

(Call subroutine HLL (mx.mv....) or ROE (mx.mv....))

|

Update all cell averages

'

No

CFL <1

Yes

Update source term
(Call subroutine SCT (mx,my,...), Bedslope (mx,mym,...)

and Friction (mx,my,...))

!

Write solutions at this time

(Call subroutine output (mx,my,...))

n=n+1

iw
A

Figure 3.7 Flowchart of numerical method.




CHAPTER IV

PARALLEL COMPUTATION

The computational domain of the shallow water problem tends to be
quite large, with complex geometries. On a single processor the calculation of its
solution would take several hundreds of computational time and would have not enough
a buffer zone for stored data variables. The development of parallel computer can
overcome the limitations of the problem size and space resolution for shallow water
problem simulation. To implement the parallel computation, the domain decomposition
techniques are used to divide the physical domain into a number of smaller domains,
each of which corresponds to a processor. A message passing interface (MPI) is

incorporated for inter-processor data communication.
4.1 Parallel Performance Measurements

We define the execution time of a parallel program as the time that
elapses from when the first processor starts execution. On each processor, the

execution time is spent on computing, communication and idling.

The performance parameters that are commonly used for measuring the
gain of using a parallel code are the speedup (S ) and efficiency (E ). The speedup S
of a parallel system is defined as the ratio of the execution time T, of a given application
run on a single processor to the time T, taken to solve the same problem on P

pprocessors.

1

S:T—l (4.1)
P

The efficiency is a measure of the time the processor spent in the
computational phase. It is defined as the ratio of speedup S to the number of

Processors:
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In principle, we would expect S =P and E =1. In practice, a parallel
system containing P processors does not usually achieve a speedup of P, because
part of time required by the processors is spent on communication or idling. That is
usually 0<S <P and O0<E <1. Figure 4.1 shows a typical relationship between

speedup and the number of processors used.

|deal

Actual
Speedup

v
Y]

Number of processors

Figure 4.1 Plot of speedup S versus number of processors P for a fixed problem size.

Figure 4.1 shows that the speedup does not increase linearly with the
number of processors, instead, it tends to saturate. In other words, the efficiency drops

as the number of processors increase. This is often referred to as Amdahl’s law.

4.2 Domain Decomposition

A domain decomposition scheme is applied for the shallow water
domain that is divided into smaller sub-domains. Each sub-domain is defined as the

local domain of an individual processor which is addressed to as domain
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decomposition. Several strategies exist within the domain decomposition paradigm for

dividing the physical domain into sub-domains.

Figure 4.2 shows a 1D and 2D decompositions for a two-dimensional
domain. The 1D decomposition can be achieved by dividing the computational domain
in one direction only, while in the 2D decomposition, the computational domain is

decomposed both in x and y coordinate directions.

(a) (b)

Figure 4.2 Domain decomposition topologies for 1D (a) 2D (b) decompositions.

In this thesis, the 2D decomposition is chosen in the parallel solver for
the shallow water equations. In‘the 2D decomposition, the physical 'domain is divided
into rectangular sub-domains that are distributed across the available processors. Let
m, and m, be the number of grid cells in theX and Y directions of the physical

where P,and P, are the

domain. The total number of processors is P =P, xP v

y

numbers of processors assigned to the X and Yy directions respectively. So the number

: ; s mx my : mx mx ;
of grid cells in each sub-domain is — - —. In this work F and F are integers.

X y X X
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Table 4.1 Text of serial code for 2D decomposition

Serial code

do i=1, mx
do j=1my
-- code segment --
end do

end do

Table 4.2 Text of parallel code for 2D decomposition

Parallel code

= m
doi=l,—
P

X

- m,
do=j-=1—
Py
-- code segment --
end do

end-do

Consider a loop in the serial code that performs a chunk of computations
for all the interior nodes as shown in Table 4.1. In the parallel code, this loop is
decomposed into blocks divided by the number of processors (see Table 4.2), with one
block assigned to each processor. Hence the loops in the parallel code are smaller than
the loops in the serial code and the computational in the parallel code is less than in the

serial code.
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Thus at the end of each time step, each processor must update the
boundaries of the sub-domains because of the spatial discretization by copying the
appropriate values from adjacent processors. The copying procedure will be in the form

of messages exchanged among processors by using MPI.

4.3 Message Passing Interface (MPI)

MPI was developed in 1993-1994 by a group of researchers from
industry, government, and academia. As such, it is one of the first standards for
programming parallel processors, and it is the first that is based on a message passing.
MPI's goal is to provide a standard for writing message-passing programs. This
standard defines the syntax and semantics of a core of library routines useful for writing
parallel programs. The standard includes descriptions of various types of
communication including processor to processor or point to point message passing and
global calls for collective communication. The standard also allows process groups and
communication contexts to be defined by the user. This enables a single program to
control several groups of processors, each working on different tasks. There is also
supported for process topologies that is a mapping of processes in a communicator to
an addressing scheme. The addressing scheme is usually chosen for convenience.

More details of MPI can be found in [13].



Flow chart of the parallel solver

START

Master reads the parameters

!

Master broadcasts values

of parameters to slaves

|

Using a domain decomposition technique

Set mxp = ? and myp = g

X y

!

Specify initial conditions for each sub-domain

(Each processor calls subroutine initial (mxp,myp,...))

No
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1< n < Ntime

Update boundary condition

(Each processor calls subroutine BC (mxp,myp,...))

!

Each processor does finite volume process. in x-direction
do i=1,mxp
- code segment -

end do

STOP
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Each processor does finite volume process in y-direction
do j=1,myp
- code segment -

end do

A 4

Slaves send a maximal of CFL

(CFL to master

local )

A

Master computes a maximum CFL(CFL ;)

48

Slaves send the local solution to master

A 4

Master writes the global solution

n=n+1

iw
A

Figure 4.3 Flowchart of parallel solver

STOP



CHAPTER V

RESULTS

In this chapter, the numerical solution and the performance results of the
parallel computation of the circular dam break and the rectangular dam break are

reported in the following sections.
5.1 Circular Dam Break

The space of the circular dam break is a 200m long square with a
cylindrical dam with radius 50m and centered in the square, as shown in Figure 5.1. In
this thesis, we consider two cases: the wet bed and the dry bed. For both cases, the
computational domain is divided into 200x 200 square cells and the numerical solution

is computed at time t =55 using At =0.025s .

200m

A
v

200m

Figure 5.1 Geometry of circular dam break problem.

5.1.1 Wet bed

In wet bed case, the initial water height is 10minside the dam and 5m

outside the dam. Both components of the velocities U and Vv are set to zero everywhere.
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Typical profiles of surface elevation of Roe solver are shown in Figure 5.6 and the

performances of the parallel computation are shown in Table 5.1.

Table 5.1 Performance results of circular dam break with wet bed.

Number of Unknowns per Elapsed time(s) Speedup Efficiency(%)
processors processor

1 120000 120.502 1.000 100.000

2 60000 64.883 1.857 92.861

4 30000 37.952 3.175 79.378

8 15000 24.594 4.900 61.246

Figure 5.2 shows a relationship between the speedup and the number of
processors. Figure 5.3 shows a relationship between the efficiency and the number of

processors. We can see that they drop when increasing the number of processors.

10p ====: Numerical( Roe)

— Theory

Speedup
&
T

0 1 L 1 L 1 1

0 1 2 3 4 5 6 i 8 9 10
Number of processors

Figure 5.2 Relationship between the speedup and the number of processors in the

cluster.
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150 .
===« Numerical( Roe)
— Theory
100 v
."‘"-..“'
g .-.‘I-'"‘H
z =l
& e
2 Ll
] e
E e
[im] ~~e
50
0 1 L 1 L L L L 1 L J
0 " 2 3 4 5 6 i 8 9 10
Number of processors

Figure 5.3 Relationship between the efficiency and the number of processors in the

cluster.

5.1.2 Dry bed

In dry-bed- case; the-initial-water height is-10m inside the dam and Om
outside the dam. Both components of the velocities Uand V are set to zero everywhere.
We use only the HLL solver to solve this case. Typical profiles of surface elevation of
HLL solver are shown in Figure 5.7-and the performances of the parallel computation are

shown in Table 5.2.

Table 5.2 Performance results of circular dam break with dry bed.

Number of Unknowns per Elapsed time(s) Speedup Efficiency(%)
processors processor

1 120000 49.070 1.000 100.000

2 60000 29.565 1.660 82.987

4 30000 20.388 2.407 60.170

8 15000 16.472 2.979 37.237
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Figure 5.4 shows a relationship between the speedup and the number of
processors. Figure 5.5 shows a relationship between the efficiency and the number of

processors. We can see that they drop when increasing the number of processors.

10 ««+«e Numerical( HLL)

— Theory

Speedup
o
L

0 1 2 3 4 5 6 i 8 9 10
Number of processors

Figure 5.4 Relationship between the speedup and the number of processors in the

cluster.
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Figure 5.5 Relationship between the efficiency and the number of processors in the

cluster.
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(a4) t=1.5
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55

40

60

100

120

140

160

180

40

60

100

120

140

160

180

40

60

100

120

140

160

180



o 0 2 40 60 &0 100 120 140 160 180 200

20 40 60 &0 100 120 140 160 180 200

(a8) t=3.5

—
b
/%
e

= \ a‘i,%‘ i
I
5 \H_ ) ,,/’/ I

e

20 40 60 &0 100 120 140 160 180 200

(a9) t=4



57

180 //-'_ ‘%\\\\

160 ,// - S \\\

140 é \\ 4
120 f’ ,‘f @?‘;m” \l. |
W <))
a0 \\ .. % N j; |
T\ e /

4 N /./

2 \‘*».\ﬁ_‘___f/

20 40 60 &0 100 120 140 160 180 200

(a10) t=4.5

20 40 60 &0 100 120 140 160 180 200
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Figure 5.6 (a1)-(a11) show the circular dam break results in the case of wet bed, the left

of figure shows water profile and-the right of figure shows a-contour plot of the depth.
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20 40 60

(b10) t=4.5

&0 100 120 140 160 180 200

20 40 60

(b11) t=5

&0 100 120 140 160 180 200

Figure 5.7 (b1)-(b11) show the circular dam break results in the case of dry bed, the left

of figure shows water profile and the right of figure shows a contour plot of the depth.
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5.2 Rectangular Dam Break

We consider the dam-break problem in a square domain 200mx200m.
The domain is separated into two zones by an infinitesimally thin wall. The breach is
75m wide, as shown in Figure 5.8. Again we consider two cases: the wet bed and the
dry bed. For both cases, the computational domain is divided into 200x 200 square
cells and the numerical solution is computed at time t=5susing At=0.025s. The
rectangular dam break is a special problem and it has more complex computation than
a circular dam break or other problems. We present the appropriate domain

decomposition technique for using 2,4,6 and 8 processors as shown in Figure 5.9.

A
:E 30m
Upstream E Downstream
"
200m
95m
4 v
200m

Figure 5.8 Geometry of rectangular dam break problem
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Figure 5.9 Appropriate domain decomposition technique of the rectangular dam break
problem, (a) for using 2 processors, (b) for using 4 processors, (c) for using 6

processors and (d) for using 8 processors.
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For this domain decomposition technique, we obtained a regular sub-
domain. Hence, solving on a sub-domain can reduce a complexly computational.
Moreover, there is no sending and no receive across the boundaries on dam region

because of the dam wall is a boundary of sub-domain.

5.2.1 Wet bed

Initially, the water depth upstream of the dam is 10m and the
downstream water depth is assumed to be5m, both components of the velocity U and
Vv are set to zero everywhere. Typical profiles of surface elevation of Roe solvers are

shown in Figure 5.14. The performances of the parallel computation are shown in Table

5.3.
Table 5.3 Performance results of rectangular dam break with wet bed.
Number of Unknowns per Elapsed time(s) Speedup Efficiency(%)
processors processor
1 120000 165.890 1.000 100.000
2 60000 82.085 2.021 101.048
4 30000 54.945 3.019 75.480
8 15000 36.567 4.537 56.708

We see that the speedup and the ‘efficiency drop when increasing the
number of processors, except when running on 2 jprocessors due to using different
code when running on 1 and 2 processors (see Figure 5.10 and Figure 5.11). The code
that is used to run on 2. processors doesn't have complex computation and
intercommunicating at dam wall because of the optimal domain decomposition. Table
5.4 shows the comparison of performance results between the optimal domain
decomposition and the other. We can see that the first domain decomposition is more

efficient that the other.
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Table 5.4 Comparison of performance results between 2 differencing domain

decomposition.

Number of processors Unknowns per Elapsed Speedup Efficiency(%)
processor time(s)
1 120000 165.890 1.000 100.000
2 with appropriate domain decomposed 60000 82.085 2.021 101.048
2 with the other domain decomposed 60000 98.611 1.682 84.113
10

«=== Numerical( Roe)

ar — Theory

Speedup
o
L

9

0 1 L 1 L 1 L
0 1 2 3 4 5 6 7 8 9 10
Number of processors

Figure 5.10 Relationship between the speedup and the number of processors in

the cluster.
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Figure 5.11 Relationship between the efficiency and the number of processors in the

cluster.

5.2:2 Dry bed

In dry bed case, the initial water depth upstream of the dam is 10m and
the downstream water depth is assumed to be0m and both components of the velocity
Uand Vv are set to zero everywhere. Typical profiles of surface elevation of HLL solvers
are shown in Figure 5.15 and the performances of the parallel computation are shown in
Table 5.5. Figure 5.12 shows the relationship between the speedup and the number of
processors and Figure 5.13 shows the relationship between the efficiency and the

number of processors.



67

Table 5.5 Performance results of rectangular dam break with dry bed.

Number of Unknowns per Elapsed time(s) Speedup Efficiency(%)
processors processor
1 120000 54.931 1.000 100.000
2 60000 29.633 1.854 92.686
4 30000 20.627 2.663 66.577
8 15000 16.589 3.311 41.391
10 seese Numerical( HLL)

Speedup
o

— Theory

1 2 3 4 5 [ g 8 9 10
Number of processors

Figure 5.12 Relationship between the speedup and the number of processors in the

cluster.
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Figure 5.13 Relationship between the efficiency and the number of processors in the

cluster.
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Figure 5.14 (c1)-(c11) show the rectangular dam break results in the case of wet bed,

the left of figure shows water profile and the right of figure shows contour plot of the

depth.
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Figure 5.15 (d1)-(d11) show the rectangular dam break results in the case of dry bed,

the left of figure shows water profile and the right of figure shows contour plot of the
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5.3 Comparison of the Performance Results Between Roe and HLL Solvers

From Tables 5.6 and 5.7 we see that the HLL solver requires less

computational time than the Roe solver. This is mainly due to the fact that Roe solver has

to first calculate the wave propagation in both directions before evaluating the fluxes.

Hence the Roe solver has more operations as compared with the HLL solver.

Surprisingly, the Roe solver can achieved better performance results than the HLL

solver (see Figure 5.15).

Table 5.6 Comparison of performance results between the Roe and the HLL solver for

salving the circular dam break.

Number of | Unknowns per Elapsed time(s) Speedup Efficiency(%)
processors processor HLL Roe HLL Roe HLL Roe
1 120000 49.070 120.502 1.000 1.000 100.000 100.000
2 60000 29.565 64.883 1.660 1.857 82.987 92.861
4 30000 20.388 37.952 2.407 3.175 60.170 79.378
8 15000 16.472 24.594 2.979 4.900 37.237 61.246

Table 5.7 Comparison of performance results between the Roe and the HLL solver for

solving the rectangular dam break.

Number of

Unknowns per Elapsed time(s) Speedup Efficiency(%)
processors processor HLL Roe HLL Roe HLL Roe
1 120000 54.931 165.890 1.000 1.000 100.000 100.000
2 60000 29.633 82.085 1.854 2.021 92.686 101.048
4 30000 20.627 54.945 2.663 3.019 66.577 75.480
8 15000 16.589 36.567 3.3M1 4.587 41.391 56.708




78

S
S
-—._______--
e

\

\

y

' :
//

llllllllllllllllllll

A@ W .

ssssssssssssssss

Figure 5.16 C omp wee the Roe and the HLL

-
-
solvers for solvi 'D"_ b eak (b) Rectangular dam

[l oreak. I

AOUUINBUINT )
RN ININENAY



CHAPTER VI

CONCLUSION

In this thesis, we use the shallow water equations to simulate the shallow
water flow problems for the rectangular and the circular dam break problems. We use
the finite volume methods to approximate the solution. A high-resolution Godunov’s
method is used to compute the numerical fluxes by using solution of the local Riemann
problem at each cell interface. The Roe and the HLL approximate Riemann solvers are
used to approximate the solution of this local Riemann problem. Our numerical results of

dam break problems are in good agreement with the previous works [1,3,7,9].

We also present a parallel algorithm for solving the dam break problems.
The domain decompasition technique is used to divide a physical domain into a number
of smaller sub-domains. MPI is incorporated for inter-processor data communication.
We find that a parallel computer can reduce the computational time. However, the
efficiency decreases when there are too many processors in the cluster due to the
imbalanced usage of resources. We analyze the performance results between Roe and
HLL solvers and present the appropriate domain decomposed for the rectangular dam

break.
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