

CHAPTER IV

RESULTS AND DISCUSSION

The 1.2 kg of dried, ground roots bark of Micromelum minutum Wight \& Ar n were refluxed with 4 liters of hexane thrice to obtain 18 g of gummy residue. A 10.0 g of gummy reside has chromatographed on'silica gel by fractional column chromatography, then eluting with hexane : ethyl acetate (6) 1). Each individual fraction that was eluted from the column chromatography was monitored by TLC Compound I was isolated and purified.

The chloroform 解trate that were refluxed with 4 liters of chloroform free times obtained a brown oily residue $(31 \mathrm{gg})$. Ten grams of the residue were chromatographed over column chromatography. Compound II was isolated and recrystallized.

liters of methanol three times obtained 95 g gummy residue. 500 g af gummitresidue were Chromatographed by column chromatography, then eluting with hexane : ethyl acetate (1 : 10). Each individual fraction that was eluted from the column chromatography was monitored by TLC. The appropriate fraction were combined and rechromatographed over silica by suitable solvent system. Compound III was isolated and purified. The identification
of three compounds were performed by physical and chemical method as following.

1. Compound I : 324 mg (3.24% yield) of crystal was obtained from $F_{22}-F_{30}$. This compound was identified on the basis of the following data.

Color and form of crystal : This compound was crystallized from diethyl ether as a colorless prism.

Rf value
0.64 on TLC solvent system 1
0.57 on DLC sofvent system 2
0.90 on TLC solyent system 3
0.83 on TLe solvent system 4
0.77 on H14 S61yent system 5

Molecular weistht, 244 (EIMs)

Melfing point: $80-81^{\circ}$ (uncorrected)
TLC TECHNIQUE : The compound was spotted on silica gelfor 254 piate cand developed in solvent system 1 , 2, 3, 4, 5. After drying the plate, the detection was
 spot on TLC in five solvent systems and fluoresced under 254 nm (short wavelength) and 365 nm (long wavelength)

Benzidine reagent : This compound gave negative color with benzidine reagent. It is indicated that there is no phenolic group in the structure.

SPECTRAL DATA :
Ultraviolet absorption spectrum (in Methanol) (see figure 38 appendix)

HeOH

Infraped Spectrum (potassium bromide disc)
(see Figure 39 Appendix)

$2880-3010 \mathrm{~cm}^{-1}$
max (266 CH streching)

NUCLEAR MAGNETIC RESONANCE SPECTRUM
${ }^{1}$ H-NMR SPECTRUM : 25% w/v of sample of deuteriochloroform, using TMS as reference compound. The spectrum was obtained from 500 MHz and analysed in δ value (ppm) (see Figure 41 Appendix).

${ }^{13} \mathrm{C}$ NR SPECTRUM: 25% w/v of sample in deuteriochiorotorm dusing deuteriochloforn as reference compound at 76.9 ppm . The speetrum was analysed in o value (ppm) 0 (see Figure 42 appendix). ह1 6 bas an

DEPT-135 SPECTRUM : Same as Dept-90 except there is a ${ }^{1} \mathrm{H} 135^{\circ}$ pulse. (see Figure 42 appendix).

Carbon

Position
Positive ($\delta 143.5$)
Positive ($\delta 126.0$)
Pasjtive (© 120.9)
eositive ($\delta 112.4$)
Positive ($\delta 107.0$)
Positive ($\delta 55.6$)
Positive ($\delta \mathbf{2 5} .4$)
Butene $1 \mathrm{CH} / 2 \quad$ Negative $\left(\begin{array}{ll}\delta & 21.5)\end{array}\right.$
Butene $\mathrm{E} \mathrm{CH}_{3}$ MAPositive ($\delta 17.5$)
$\mathrm{H}-\mathrm{H}$ COSY SPRCTRUM $25 \% \mathrm{w} / \mathrm{v}$ of sample in deuteriochloroform. Phe spectrum was obtained from $\mathrm{H}-\mathrm{H}$ COSY pulse seguence and analysed in row and column projections plotted. (see Figure 43 appendix)

NOESY SPECTRUM : Samle as $\mathrm{H}-\mathrm{H}$ COSY. The spectrum was obtaired from NOESY pulse sequence. (see

C-H COSY SPECTRUM : The spectrum was obtained from $C-H$ COSY pulse sequence and analysed in term of the correlation between carbon and proton. (see Figure 45 appendix)

LONG RANGE C-H COSY SPECTRUM : same as one bond C-H COSY. But the spectrum was analysed in term of the two or three bond (long range coupling) correlation between carbon and proton. (see Figure 46, 47 appendix) All these information, suggest that compound I is osthol [7-methoxy-8-(3-metheylbut-2-enyl) coumarin].

From ${ }^{1}$ H-NMR spootrum of osthol, the protons of coumarin nucleus $(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6)$ were assign by comparing with/ the chemical shift of coumarin nucleus, that was reported by T.R. Seshadri (8) as in Figure 48.

coumarin nucleus
osthol
Figure 48 structure of coumarin nucleus and osthol.

The coupling constant $\left(J_{3,4}=9.4 \mathrm{~Hz}\right)$ confirms that the protons at the 3 and 4 positions were cis to each other as at the 5 and 6 positions. It indicated that there were two substituted group at the 7 and 8 positions. The assignments are confirmed by $H-H$ cosy that displays the correlation between $\mathrm{H}_{-}-4$ and $\mathrm{H}-3$ and between $\mathrm{H}-5$ and H-6. For the assignment of the methine of butene side chain is confirmed by the gorrelation with the methylene and two methyl group of butene from $H-H$ COSY spectrum.

The signal at/ 1.84 and 1.88 were assigned as methyl group at B -butene and Z -butene position respectively by the intempretation from NOESY spectrum. The position of the sobstituents was most easily demonstrated by the NOSSI spectrum. This showed the close approach of proton pais, $\mathrm{H}_{4}, \mathrm{H}_{5}$ and H_{6} to the methoxy group. This confirmed the two substigents must be on carbon 7 and 8 with the methoxy group on carbon 7.

From ${ }^{13}$ C-spectrum, themultipicity of signal could be identified, by the off resonance experiment that was possible to discriminate between methyle methylene, methine, 1 and quanternaby carbons These Wिere actually determined from DEPT-90 and DEPT-135 spectra. The DEPT-90 spectrum showed only the methine carbon signal at the negative position. The DEPT-135 spectrum displayed the methine and methyl carbon signal at the positive position and the methylene carbon signal at the negative position.

The carbonyl carbon could be identified by its chemical shift charteristic. The lactone carbonyl carbon appeared at 160.9 ppm .

The quarternary carbons in the benzene ring could be separated into two groups. The quarternary carbons that attached to the oxygen atoms (C-8a, C-7) were downfield more than the othe group which have no oxygen (C-4a, $C-8$).

The assignment of $C-4 a$ and $C-8$ could be separated by observing the environment of $\mathrm{C}-8$ which was nearly the oxygen atom. So the chemical shift of $C-8$ was down field to 117.3 ppm while $\mathrm{C}-4 \mathrm{a}$ signal appeared at 112.5 ppm . These confirmed by the long range C-H COSY spectra (Figure 46, 47). The C-8 correlated to H-6 with three bond coupling and gorrelated to methylene of butene with two bond coupling. The $\mathrm{C}-4$ a correlated to. $\mathrm{H}-3$ and $\mathrm{H}-6$ with long range coupling.
 attached. The C-7 (159.8 ppm) which was identified by the long crange cef cosp spectral \&qrrelated to nethyt proton of 7 -methoxy and $\mathrm{H}-5$ with three bond coupling. The upfield signal was assigned to be C-8a (152.4 ppm) because there are the three bond correlation between $\mathrm{C}-8 \mathrm{a}$ and $\mathrm{H}-4$ \& $\mathrm{H}-5$. The last quarternary carbon signal which appeared at 132.1 ppm was the C-3 butene which was confirmed by the long range $\mathrm{C}-\mathrm{H} \operatorname{COSY}$.

The assignment of the methine carbons in coumarin nucleus could be separated by observing the environment of C-3 and C-6 which had the ortho effect of the oxygen neighbours. $C-3$ and $C-6$ resonated high field at 112.4 ppm and 107.0 ppm . These were confirmed by the one bond $\mathrm{C}-\mathrm{H}$ COSY spectrum. $C_{4}(143.5 \mathrm{ppm})$ and $C_{5}(126.0 \mathrm{ppm})$ which were identified by the oneloond $\mathrm{C}-\mathrm{H} \operatorname{COSY}$ and the long range C-H COSY spectra corfelated to $\mathrm{H}-5$ and to $\mathrm{H}-4$ with three bond coupling. $\quad 2 h 9$ methine carbon at the side chain which appeared at 120.9 ppn मas confirmed by the long range $C-H$ COSY. The $C-2$ butene correlated to methylene with two bond and to two methyl groups with three bond coupling.

The signal ast 25,4 and 17.5 were assigned as methyl carbon at Z-butero and E-butene respectively by the interpretation from the one bond $\mathrm{C}-1 \mathrm{COSY}$ and the long range $\mathrm{C}-\mathrm{H} \operatorname{COSY}$ spectra.

From EI mass spectral fragmentation pattern which showed the expected moleculaf ion peak atdm/e 244. The carcking pattern was characterizec by the 18ss of methyl radical ($\mathrm{m} / \mathrm{e}^{9} 229$). Seshadri and Vishwapaul (8) have demonstrated that C-prenylated coumarins lose methyl radical from the prenyl substituent rather than from the methoxy group. So osthol eliminated methyl radical from prenyl substituent to highly conjugated ion (II) (Figure 49).

The data obtained indicated that this compound was osthol agreeing with the data from literature (44).

Figure 49 The oragking pattern of osthol.
2. Compound It (G: 183 mg (1.83% yield) of crystal was obtained from F $41-\mathrm{F}_{50}$. This compound was identified with the following data

Color and fogn of crystal : This compound was crystallized ty diethy ether and metdanol as colorless needle crystals:

$$
\begin{aligned}
& R f \text { value: } \\
& 0.60 \text { on TLC solvent system } 5 \\
& 0.41 \text { on TLC solvent system } 6 \\
& \text { Molecular weight : } 288 \text { (EIMs) } \\
& \text { Melting point : } 212-214^{\circ} \mathrm{C} \text { (uncorrected) }
\end{aligned}
$$

TLC TECHNIQUE : The compound was spotted on silica gel GF 254 plate and developed in solvent system 1 , 2 , $3,5,6$. After drying the plate, the detections were performed under UV, I_{2} vapor and sprayed with benzidine reagent.

UV DETECTION : This compound gave only one spot on TLC in five solvents systern and fluoresced under 254 nm (short wavelength) and 365 nm (long wavelength) and gave a brown spot in I_{2} vapor.

Benzidine reagent: This compound gave negative color with benzidine reagent. It is indicated that there is no phenolic group in the structure.

SPECTRAL DACA

 (see Figure 51 appendix)

NUCLEAR MAGNETIO RESONANOE SPECTRUM

${ }^{1} \mathrm{H}$-NMR SPECTRUM : This sample was run as a

 saturated solution in 0.7 ml of deuteriochloroform, using TMS as reference compound. The spectrun was obtained from 900 MHz and analyseq in in vadue (ppm) (see Figure 53 appendix)จุหาลงกรณ์มหาวิทยาลัย

DEPT-135 SPECTRUM : Same as Dept-90 except there is a ${ }^{1} \mathrm{H} 135^{\circ}$ pulse. (see Figure 54 appendix)
 saturated solution in spectrum was obtained analysed in pow and column projections plotted. (see Figure 55 appenवix)

NOESY SRECTRUM Sameas $\mathrm{H}-\mathrm{H}$ COSY the spectrum was
d erom NOESY puise sequence! (see Figure 56 ,

C-H COSY SPECTRUM : The spectrum was obtained from $\mathrm{C}-\mathrm{H}$ COSY pulse sequence and analysed in term of the correlation between carbon and proton. (see Figure 57 appendix)

All these information, suggest that compound II is micromelin [7-methoxy-6-(3,4-epoxy-4-methyl-5-oxotetrahydrofuran-2-y1) coumarin]

From IR spectruin of micromelin, a band at 173.5
cm^{-1} was showed the toplical of coumarin lactone and a second strong carbony1 band at $1770 \mathrm{~cm}^{-1}$ was attributed to the γ-lactone system (44).

From $={ }^{1} H-N M R$, the aromatic ${ }^{1}{ }_{H-N M R}$ resonance patterns $(7.38, \mathrm{ppm}, \mathrm{s}, 1 \mathrm{H} ; 6.88 \mathrm{ppm}, \mathrm{s}, 1 \mathrm{H} ; 7.67 \mathrm{ppm}, \mathrm{d}$,
 coumarin was disubstituted. This was confirmed by $\mathrm{H}-\mathrm{H}$ $\operatorname{cosy}, 0$ NGESF End Prfone Bond, cosy spectrum 6 the methoxy group ${ }^{9}$ (3.96 ppm) correlated to $\mathrm{H}-8$ (6.88 ppm) which was displayed in $\mathrm{H}-\mathrm{H} \operatorname{COSY}$ and NOESY spectrum. It indicated that the methoxy group substituted at $C-7$. From H-H COSY and NOESY spectrum, the furanyl H2 correlated to H5 (7.38 $\mathrm{ppm})$. This indicated that there was a γ-lactone ring substituted at $C-6$. The chemical shift of methyl group
(1.68 ppm) was closed to the range observed ($1.3-1.5 \mathrm{ppm}$) for a methyl group attached to a carbon bearing an epoxide ring (44), the additional downfield shift being consistent with the proximity of the C-methyl group to the lactone carbonyl group. This was confirmed by $H-H$ COSY spectrum, the methyl group correlated to furanyl $H-2$ and furanyl $H-3$. It indicated that the methyl group substituted at the γ-lactone ring. The lack of coupling between two aliphatio bethine proton (furanyl H-2, furanyl $\mathrm{H}-3$) was consistent whth a trans relationship between these protons which resulted in an approximate 90° dihedral angle (4)

From ${ }^{13} \mathrm{C}-\mathrm{NMR} \frac{\text { spectrum, the carbonyl carbon }}{}$ could be identified by Lts chemical shift characteristic. The γ-lactone carbonyln at furanyl $C-5$ downfield to 172.3 ppm. while the coumarin lactone carbonyl carbon appeared at 160.4 ppm .

The quanternary carbons in the coumarin nucleus could be speparated intoltwo groups.? The quarternary carbon that attached to the oxygem atoms (C-2, C-8a) were downfield nore thandtheo ather group which bad no oxygen (C-4a, C-6). The last quarternary carbon signal which appeared at 57.3 ppm . was the $\mathrm{C}-4$ furanyl.

The assignment of the methine carbons in coumarin nucleus which was identified by Dept-90, DEPT-135 could be discriminated by observing the environment of $C-3$
and $C-8$ which had the ortho effect of the oxygen neighbours. $C-3$ and $C-8$ resonated high field at 114.2 ppm and 99.9 ppm respectively. These were confirmed by the one bond $\mathrm{C}-\mathrm{H}$ COSY spectrum. $\mathrm{C}-4(142.9 \mathrm{ppm})$ and $\mathrm{C}-5$ (127.6 ppm) were identified by the one bond $\mathrm{C}-\mathrm{H} \quad \operatorname{COSY}$ spectrum.

The assignment of the methine carbons in γ-lactone side chain were identified by the one bond $\mathrm{C}-\mathrm{H}$ cosy spectrum. The $6-2$ ffaranyl peak which was overlapped in chloroform peak appeared at 77.4 ppm . The other methine (C-3 furanyl) appeared highfield at 63.5 ppm .

The signal at 56,5 and 11.3 were assigned as methoxy carbon at $\mathrm{C}-7$ andids methyl carbon at C-4 furanyl respectively by the finterpretation from the one bond $C-H$ cosy.

For the stereochemistry of the epoxide group, the methyl group and the neighbouring proton in both
 to the restlof the molecule. So the reliable evidence in any of githe specerasto \$howifne sterebchemisty of the epoxide group was slightly clear.

The data obtained indicated that this compound was micromelin and were agree with the data from literature ($4,44,45$). was obtained from methanol fraction which were chromatographed by column chromatography eluting with chloroform : methanol (98. : 1). This compound was identified with the following data.

Rf value :
0.31 on TLC solvent system 3
0.21 on TLC solvent system 4
0.21 on TLC/ solvent system 5
0.45 on TLG solvent system 7
0.64 on TLC solvent system 8

Molecular weight ? 276 (BIMs)

TLC TECHNLQU害 The compound was spotted on silica gel GF 254 plate and developed in solvent system 3, 4, 5, 7, 8. Fiter drying the plate, the detection was performed under $U V, I_{2}$ vapor and spraỹed with benzidine and ferric chloride reagent.

Pav DETECTION : This compound gave only one spot on TLe inc five solyent systemspand faporesced under 254 nm (shortqwavelength) and 365 nm (long wavelength) and gave a brown spot in I_{2} vapor.

Benzidine reagent : This compound gave negative color with benzidine reagent. It is indicated that there is no phenolic group in the structure.

Ferric chloride reagent : This compound gave red color. It is indicated that there was hydroxamic acid in the structure.

SPECTRAL DATA
INFRARED SPECTRUM (potassium bromide demountable cell) (see Figure 58 appendix)

${ }^{1} \mathrm{H}$-NMR SPECTRUM : 10 mg of sample was dissolved in deuteriochloroform, using TMS as reference compound. The spectrum was obtained from 90 MHz and analysed in δ value (ppm). (see Figure 60 appendix)

From IR spectrum of compound 3 , a band at $1720 \mathrm{~cm}^{-1}$ was showed the typical of coumarin lactone, a broad band at $3450 \mathrm{~cm}^{-1}$ was displayed two hydroxy groups and $1610 \mathrm{~cm}^{-1}$ was attributed to conjugated double bond at C-3, C-4.

From ${ }^{1} \mathrm{H}-\mathrm{NMR}$, thel/aromatic ${ }^{1} \mathrm{H}$-NMR resonance patterns $[6.20 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz}, \mathrm{H}-3), 7.65 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=$ $10.6 \mathrm{~Hz}, \mathrm{H}-4), 7.40 \mathrm{ppII}(\mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{H}-5), 6.87 \mathrm{ppm}(\mathrm{d}$, $J=9.5 \mathrm{~Hz}, \mathrm{H}-6) \mathrm{J}$ indicated that the coumarin was disubstituted at $C-7, C-8(46)$. This was comfirmed by ${ }^{13}$ C-NMR. Two substituted groups, the one was methoxy group (a sharp $3 H$ singlett at 3.94 ppm) which could be subsituted at $\mathrm{C}-7$. The ρ other group that could be substituted at C-8 may be butene side chain which had one methyl group and two hydroxyl groups substituted. Because there were a methyl signal at 1.76 ppm , a broad 1 H signal (5.32 ppm) of $\mathrm{H}-\mathrm{I}^{\prime}$ which was sharpened in $\mathrm{D}_{2} \mathrm{O}$ to a clear doublet and a doublet signal (4.64 pen) of $\mathrm{H}-2^{\circ}$ which partially hidden under a broad 2 H singlet at 4.60 ppm $\left(\mathrm{CH}_{2}-4^{\prime}\right)$. The signdl of hydroxylid-proton could be hidden under agsinglet of $0 \mathrm{CH}_{3}$ at 3 g 94. That was approved by obtaining a spectrum in deuterium oxide(Figure 61). The integrated area of signal at 3.94 decreased from 5 H to 3 H . It indicated that the hydroxyl peak disappeared on deuteration (46).

From ${ }^{13}$ C-spectrum, the multiplicity of signal could be identified by the off resonance experiment.

The lactone carbonyl carbon appeared at 160.5 ppm . The assignment of quarternary carbons in the bezene ring was same as in the assignment of osthol (C-7, 159.9; C-8a, 152.4; C-8, 115.8; C-4a, 112.5). The last quarternary carbon signal which appeared at 143.7 was the $C-3^{\circ}$ butene.

The assignment of the methine carbons in coumarin nucleus was same as in the assignment of osthol (C-4, 143.9; $C-5,128.4 ; C-8,113.1 ; C-6 ; 112.3)$. The methine carbons at the side chafh could be separated by observing the environment. C-1 tesonated down field at 75.6 and C $2^{\text {. resonated high field at 68.9. There was a singlet }}$ signal at 107.7 which could be methylene carbon of the side chain. The signal at 55.9 and 17.0 were assigned as methoxy carbon and methyl oarbon of the side chain.

From EI mass spectrum, fragmentation pattern showed the peak at $m / e 258$ which could be characterized by the loss of water. The distinct $M-18$ peak which is given by loss of water basonoticed in spectran of alcohols (47). So the expected molecular ion peak could be showed at m / e 276. T Then fission of thequ'q? bond/has gimererise to a stable ion(a) which appeared as the base peak at m/e 205 (46).

