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CHAPTER I 

Introduction 

1.1 Two dimensions random systems  

Although there are many two dimensional systems in physics, but our model has 

focused on two dimensional systems with small number of free electrons and dense defect, 

such as at the heterojunction systems which are heavily doped. The heterojunction is an 

interface layers between several different semiconductors (different band gap). We often see 

the heterojunction in semiconductor lasers and transistor devices (high electron mobility 

transistors). Many models treat the electrons moving in the heterojunction as a 2D electron 

gas, for example, the electrons in AlGaAs/GaAs heterojunctions [1].  

   A heterojunction can form the quantum well. The different band gap can confine the 

electrons in the conduction band, so the electron in this region can move nearly free in 2D. 

We can ignore the motion in a direction that is normal to the plane of the interface, so treating 

the problem as the 2 dimensional electron gas is a good approximation [2]. 

 

 

Figure 1.1 The band structure of a heterojunction that forms a quantum well. 

 

In the real systems, the disorder effect is presented by some source of random 

potential. The well known example of the random media in 2 dimensions is the heavily doped 

charge particles randomly distributed in semiconductors. It is important because the electrical 

properties of semiconductor will change by doping.   
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1.2 Fourier transform of the potential in 2 dimensional system 

 

The impurities in the semiconductor system can be many kinds of atoms (such as 

boron or phosphorus). So there are a lot of different models of the impurities’ potential. Most 

of them are spherically symmetric so we can write the potential in terms of r . It is convenient 

to transform into momentum space q  

2( ) ( )e iV d V  
q rq r r .       (1.1) 

In 2D system (x-y plane) the Fourier transform can be written as 

2 ( )
( , ) ( , )e x x y yi q r q r

x yV q q dx dyV x y


 


 

   .     (1.2) 

For an isotropic system, the spherical co-ordinate is very convenient to use because the 

potential in physics is always spherically symmetric 

( ) ( )eiV q d V  
q rr r  

        

2

cos( )

0 0

( , )eiqr

r

rdr d V r






 


 

   .      (1.3) 

Now we are interested in the case that the potential has spherical symmetry (not 

depending on  ). So, ( , ) ( )V r V r  , and we can integrate over   separately to obtain 

0

0

( ) 2 ( ) ( )V q drV r J qr r


  ,       (1.4) 

 When 0J  is a zeroth order Besssel function of the first kind and Eq.(1.4) is called the 

zeroth order Hankel transformation of  ( )V r .  

 

1.3 The potential’s model of an impurity in 2 dimensional system 

The interaction between two point (static) charges in vacuum correspond to the 

Coulomb potential 

0

1
( )

4
Colomb

Q
V r

r
,        (1.5) 

when 0  is vacuum permittivity. If we assume that the Coulomb potential exhibits the 

same behavior in various dimensions, we can simply take the Fourier transform on the 

Coulomb potential to obtain the Coulomb potential in momentum space q  in 2 dimensions, 
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2

0

1
( )

2
Colomb D

Q
V q

q
  ,       (1.6) 

where Q  is a charge of one impurity. However, when an electron moves in a random 

system, there are a lot of charges in the material that can interact with the electron. So the 

effect of impurity charge will be shielded by other atoms or ions surrounding it. The nature of 

charges in the semiconductor will be like a dielectric medium. Hence, the screened Coulomb 

potential can be used, and by considering the screening effect, the model becomes more 

realistic.  

Now, to simplify the model, we assume that all dipoles in the dielectric medium are 

static so we will use the Thomas-Fermi method to approximate the value of  . This method 

works in the case that the temperature of the system is very low. So we get 

2
( )

( )



 



TF

Q
V q

q
.        (1.7) 

when   is the dielectric constant and  is a Thomas-Fermi wave vector . There are 

many 2D model systems studied using the Thomas-Fermi potential. [3,4]  

 

 

 

Figure 1.2 Show coulomb potential (blue thick line), is the, the Thomas-Fermi 

screening potential with dielectric parameter 1.6   and 0.01   in arbitrary units (dashed 

line)and the Gaussian potential with 300C  and 2a   in arbitrary units (green line). 
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 From Figure 1.2 we can see that the Thomas-Fermi potential in the momentum space 

do not have same behavior as the pure Coulomb potential. When 0q   the Coulomb 

potential tends to approach infinity but the Thomas-Fermi potential reach some value. But 

when q , it converges to Coulomb case. We also compared the Coulomb potential and 

the Thomas-Fermi potential with the Gaussian potential. The Gaussian potential is our main 

work that we expected it can be used to represent the screening potential. We can write the 

Gaussian potential as 

  

  2( ) exp( )GaussianV r C ar  ,      (1.9) 

 

where C  is a strength of the potential, a  is the parameter that is related to the shape of the 

potential.  

 

1.4 The general model of semiconductors 

 The semiconductor is separated from the conductor and insulator by electrical 

property. Band gap of the semiconductor is very narrow compared to the insulator. At very 

low temperature, most electrons in semiconductor stay in the valence band. So at very low 

temperature the semiconductor have a poor conductivity. But when the temperature is higher, 

the electrons have more chance to jump into the conduction band. So, the semiconductor can 

conduct more current at high temperature. We will see this argument quantitatively, where the 

chance for electrons to jump into the conduction band can be approximated about 

g

B

E

K Te



. When 

40.8617 10 /BK eV K  , room temperature is about 300K, so 0.026BK T eV . For the 

semiconductor, the energy gap 
gE  is nearly 1eV (For Si, 

gE  is 1.1eV at room temperature 

[5]). So 
1.1

170.026 2 10

g

B

E

K Te e

 

   . This number seems little but one mole of matter has a lot of 

electrons in the order of 2310 . Thus, they can conduct electrical current. On the other hand, the 

band gap of the insulator can be 5-10eV [6]. The fraction of the transition electron is about 

5

840.026 3 10e


   implying that there is no chance for electron transition into the conduction 

band for insulator. 

The properties of semiconductors will change if they are doped by impurities. If we 

add boron to the silicon by 1 boron atom to 510  silicon atoms, the conductivity of pure silicon 
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will be increased by a factor of 310  at room temperature [7]. The impurities can be separated 

into 2 groups. First is called “donor”, where the impurities have valence electrons more than 

valence electron of the semiconductors. So, the donor will fill electrons in the conduction 

band of semiconductor. The second is called “acceptor”, where the impurities have valence 

electrons less than the valence electrons of the semiconductors. We are now going to deal 

with a model that has doped with the donor and the similar argument can be applied with the 

acceptor. 

 Our general model will consider that doping is random and distributed through out the 

material (quite) uniformly. 

 If we have Si (silicon) semiconductors (4 valence electrons), and then dope it with P 

(phosphorus) atoms (5 valence electrons). The P atoms will substitute (replace) the Si atom as 

shown in figure 1.3. For simplicity, we treat the structure of P ion core (nucleus+core 

electrons) same as the Si atom except the positive charge and one outer electron. 

 

      

Figure 1.3 Simple view of doping P in the pure Si semiconductor. 

 

A donor impurity will give one electron which move in the system and one positive 

charge of the ion core. We will focus on these electrons that came from the donors because 

they will affect the electronic properties of the system. 
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 Suppose the outer electrons from donor fill in the conduction band, they can move 

quite freely but they also interact with  

1. impurities  

2. host atoms 

The host semiconductor can be viewed as a dielectric medium which screen the charge 

of the impurity, so the conduction electrons will see the impurity charge reduced by 
q


 . The 

value of   is different in various materials. The conduction electrons will interact with host 

atoms, where this part of interaction can make conduction electrons move easier or harder. 

We can describe conduction electrons with effective mass *m . This will effect to the shape of 

the conduction band as shown in figure1.4. 

 

  

Figure 1.4 A conduction band for free electron (thick line) and conduction band when 

electron interacts with host atoms (dashed lines) in arbitrary units. 

 

 We treat this problem as a nearly free electron system so the shape of the conduction 

band will not differ much from a parabola [8]. If the conduction electron moves harder in the 

semiconductor, we can represent the electron’s mass as the heavy electron. The heavy 

electron is the lower dashed line because if we look at the same momentum (same point in k-

axis), the lower dashed line have lower kinetic energy  
2

*2

p
E

m
  by higher mass. In contrast, 

if the conduction electron moves easier through the medium, the electron’s mass will 

correspond with the light electron (higher dashed line).  
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1.5 The density of states of free electrons in 2 dimensional system 

The density of states defined as the number of states ( )E  per unit volume per 

interval of energy( E E E  ) 

1 ( )
( )

d E
D E

V dE


 .      (1.10) 

Now we consider a periodic system in 2 dimensional systems. We will treat the 

problem as a free electron moving in 2 dimension square well with length L . The equation 

describing a free electron in 2 dimensional systems is the free particle Schrödinger equation 

2 2 2

2 2
( , ) ( , )

2
x y E x y

m x y
 

  
   

  
.   (1.11) 

By the separation of variable method ( , ) ( ) ( )x y X x Y y  . We quickly get the solution   

  ( , ) sin sin
2 2

yx
k yk x

x y A
  

   
   

 .     (1.12) 

This solution satisfying the periodicity condition 

( , ) ( , ) ( , )x y x L y x y L      .     (1.13) 

Where xk and 
yk are

2 2 4
0, , ,...x

x

n
k

L L L

  
     and again with

2 y

y

n
k

L


 . 

By substituting the solution back into the Schrödinger equation, we will get the energy 

eigenvalue  

 
2

2 2

4
k x yE k k

m
  .       (1.14) 

Suppose there are a huge number of particles in order 2310  and they do not interact 

with each other. In ground state (temperature 0 K) the particles will begin filling in lowest 

energy and increase up to the maximum energy at   

 

 
2

2

4
F FE k

m
  .       (1.15) 

which is also called the Fermi energy. This equation defined Fermi energy as the 

maximum energy of occupying electrons at temperature of 0 K. 

In 2 dimensional k -space, two fermion states (including spin states) occupy an area of 

2
2

L

 
 
 

. The number of particle is very large so we can treat states in k -space as continuum 

limit. The occupying area is 24 Fk , so total number of occupy states can be written as 
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2

2

4
2

2

F
total

k

L




 

 
 
 

.       (1.16) 

If we are interested in some energy range E E dE   that correspond to some range 

of momentum k k dk  , the occupying area in k -space is the ring 2 kdk  (figure 1.5). 

 

 

Figure 1.5 Free electron states in 2 dimensional k –space. 

 

The total number of occupy states in that range is 

2

2
( ) 2

2

kdk
d E

L




 

 
 
 

.        (1.17) 

And from equation1.15, we have 2

2

4mE
k  (

2

4

2

mdE
dk

k
 ). So we rewrite the number 

of occupy states in energy range E E dE   as 

2

2
( )

L mdE
d E


  .       (1.18) 

Then we take the derivative to obtain the density of states (DOS) of free particle in 2 

dimensional system (Note that there is no negative energy state for a free particle). So, the 

number of occupy states per interval of energy dE  can be written as 

2

2

( ) ( )d E mL H E

dE 


         (1.19) 

  

where ( )H E  is Heaviside step function. The density of states (DOS) per unit area is 
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2

( )
( )

mH E
DOS E


 .       (1.20) 

 

 

Figure1.6 The DOS (in Rydberg units)for free electron in the conduction band. 

   

1.6 Review of the semiconductor models 

There were several approaches to obtain the density of states (DOS) of the heavily 

doped semiconductor. The problem is to deal with the statistical effects where there were 

various approximation techniques and many models to attack the problem.      

 In 1962, P.A. Wolff began with many electrons treatment and then showed that the 

electron-electron interactions can be neglected [9]. So, the nature of a single electron in the 

semiconductor can be treated as a particle moving in the screened fields of the impurities. 

This is quite the same as the general model of the semiconductor that is widely used in a lot of 

research and found in many text books.  

In 1963, E.O. Kane proposed a theory to obtain the whole DOS in all energy range. 

This method was the semiclassical treatment. The semiclassical approach ignore all small 

fluctuations from the quantum effect if an electron wavelength is large enough compared to 

the changing of potential by charge impurities. The true potential  ( )V r  of the system is very 

complicated but this method assumed that an electron can see only the smooth potential ( )SV r  

without any quantum contributions (Figure 1.7).  
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Figure 1.7 Show the actual potential ( ( )V r )and smooth potential ( ( )SV r ) that does 

not contain quantum fluctuation. Semiclassical approach considers states above ( )SV r  so the 

density of states is well described in the free particle region [10]. 

 When ( )V r  has a high (positive or negative) value, the electron will be highly 

localized in the narrow region so that the kinetic energy of an electron will be large. But when 

( )V r  is close to zero (quite flat) the kinetic energy is small and slowly varying with the 

position r . Kane’s theory ignored the variation of kinetic energy with shape of ( )V r . Thus an 

electron can be treated as “a free electron”. Kane’s method started with this equation 

 

     ,     (1.21) 

 

when 0 ( )E V   is the density of states for a free electron with energy E V  . ( )P E  

is the probability distribution for states at energy E . This method works well when energy is 

high E  . However, this density of states is quite poor to explain the tail. 

In 1966, B.I. Halperin and M. Lax came up with the new approach to describe 

particularly the tail states [11]. They considered the deep tail (limit E  ) and then use the 

0( ) ( ) ( )

E

DOS E E V P E dE


   
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minimum counting method to formulate the theory. They also used the variational condition 

to find the best of f  (trial function) by maximizing the density of states 

 

max( , ) max[ ( , )]DOS E f DOS E f , 

 

   .       (1.22) 

 

   However, the theory is not well satisfied if the energy is not deep enough or in the 

free particle (conduction band) region.   

In 1974, a new way of variational principle was founded by Saito and Edwards [12]. 

They realized that there is no exact variational function that has been applied to the DOS over 

the entire energy range. They noticed the variational condition by maximizing the DOS was 

an inappropriate and tried to make the relationship between the statistical operator (connected 

with thermodynamics potential) and the time development operator. The final result is the 

variantional method by maximizing  ln ( , )DOS E f  instead 

 

    .      (1.23) 

 

In 1975, P. Lloyd and P. R. Best proposed the new variational method by maximizing 

( , )P E   function [13]. We called it the pressure function defined as 

 

 , 

 

( , ) ( , )
FE E

P E dE dE DOS E 


 

    

 ln ( , ) 0DOS E f
f

 
 

 

( , ) 0DOS E f
f

 
 

 
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.       (1.24) 

 In 1980, Sa-yakanit and Glyde improved and applied path integral method to describe 

the disorder system [14]. The main idea was based on Feynman’s polaron theory (1955). This 

method was also applied to describe effective mass in the interaction of charge Plasmon 

system by U.pinsook, V. Sa-yakanit and T. Bovornratanaraks (2003). In 2009, A. Thongnum, 

U. Pinsook, and V. Sa-yakanit extended this path integral method to obtain the density of 

states of the Si/Si(1-x)Ge(x) Quantum wells [15]. The application results fit to the 

experimental data but there are still some points that need more details of discussions. 

 The Fourier transform of Green function of the 2 dimensional random system is very 

complicated so many approximations are very important. There are several ways to estimate 

DOS. We are going to deal with 2 separate cases, taking t   and 0t   to obtain 2 limits 

of Green function. Then perform Fourier transform to get 2 limits of DOS. 1 2( , ; )G r r t   

corresponds with negative density of states ( 0, )DOS E   that described the nature of the 

band tail. On the other hand, 1 2( , ; 0)G r r t   corresponds with positive density of states 

( 0, )DOS E   that described free particle states. The variational principle had applied to 

obtain the best frequency   of the system but DOS is still separated in 2 regions. In the real 

world, DOS must be continuous and smooth. The complete theory should get the whole 

spectrum for DOS or tell the value of the density of states at any given energy.    

 We have developed a new approach of getting the frequency value by using the 

continuous and smooth conditions. The results have been compared with the other main 

variational methods.    

 

( , )
0

P E 



 
 

 



Chapter II 

Review of path integral methods 

 

 Path integral is the alternative way to formulate quantum mechanics. The idea was 

first introduced by P. A. M. Dirac and then developed by Richard Feynman. 

 When we include the relativistic effect, in field theory, the path integral methods have 

a lot of advantages. 

 1. This approach is very closely fit with the scattering problem because we have the 

explicit form of the transition amplitude. Feynman rules can be derived very naturally. 

 2. Path integral quantization is the formal form, provide important descriptions and 

very convenient to study vacuum polarization effect [16]. 

 3. There are a few complex systems with constraints that can only be quantized in the 

path integral formalism. 

 4. The path integral formalism can be linked between the other formalisms such as the 

various covariant approaches. [17] 

 In this research, we used the path integral methods in solid states physics. 

 In 1955, Feynman used variational principle with the path integral method to study the 

polaron problem. In short, the polaron is the hypothetical particle emerged when electrons 

moving in a polar crystal interact with the polarization of the lattice ions. The energy of the 

electrons will be lowered and its effective mass will be increased. Feynman treated the 

problem as that of a free electron interacting with a harmonic interaction. This theory 

provided accurate effective mass of an electron, mobility and optical absorption of the crystal.    

 In the random doping impurities in the semiconductors system, we can also use path 

integral methods as an alternative to calculate propagator of the electron in the doping 

material. Then we find DOS of the system. The DOS is the core of the solid state because we 

can derive a material’s properties such as heat capacity, electron’s mean energy, electron’s 

velocity in the conduction band; by calculating the DOS.     

 

 

 

http://en.wikipedia.org/wiki/P._A._M._Dirac
http://en.wikipedia.org/wiki/Richard_Feynman
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2.1 The propagator by path integral 

 The Wave function that satisfies Schrodinger equation can be written in the form    

 0 0
ˆ( , ) ( ) ( , ) ( )   t t U t t tq q q ,     (2.1) 

where 0
ˆ ( , )U t t  is the well known time evolution operator. q  is the eigenstate of position q . 

By using the completeness relation we can write 

  0 0 0 0
ˆ ˆ( , ) ( ) ( , ) ( )  U t t t U t t d t

0 0 0
q q q q q  

            

                ,    (2.2) 

where  0, ; ,K t t0q q  is called the propagator. The physical meaning of propagator is the 

probability amplitude of a particle that starts at position 0q  at time 0t  and then propagates to 

appear at position q  when the time is t  when the measurement is performed.  For simplicity 

we consider the system with only one degree of freedom. The generalization can be extended 

straightforwardly. So, the propagator can be written as  0 0 0 0
ˆ, ; , ( , )K q q t t q U t t q . If we 

consider the propagator that makes 0q  at time 0t  transition to final state fq  at time 
ft  

  0 0 0 0
ˆ, ; , ( , )f f f fK q q t t q U t t q .      (2.3) 

 We can divide time interval to 1N  parts 
0 1 1 2 1( , ),( , ),...,( , ),...,( , )k k N ft t t t t t t t  and we 

can rewrite time evolution operator as  

 
0 1 0

ˆ ˆ ˆ( , ) ( , )... ( , )f f NU t t U t t U t t  .      (2.4) 

The propagator become 

  0 0 0 0 1 0
0

ˆ ˆ, ; , ( , ) ( , )


  
N

f f f f f k k
k

K q q t t q U t t q q U t t q .   (2.5) 

Now the final state fq  becomes 1Nq . 

We can insert the completeness relation                            between the time evolution operators 

 

1i i idq q q 

1 0 1 1
0

ˆ ˆ ˆ( , ) ( , ) ( , )...
N

f k k f N N N N N N N
k

q U t t q q U t t dq q q U t t  


  
 

3

0 0 0
ˆ ( , ) ( )d q U t t t  0 0q q q

 3

0 0 0, ; , ( )d q K t t t  0 0q q q
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           (2.6) 

where  1 1 1 1
ˆ, ; , ( , )   k k k k k k k kK q q t t q U t t q  is the intermediate propagator. 

 To calculate  0 0, ; ,f fK q q t t , we have to find an explicit form of each intermediate 

propagator by letting  

 .           (2.7) 

 So the intermediate propagator can be written as, 

           (2.8) 

 By separating the Hamiltonian into  ˆ ˆ ˆH T V   

 ,          (2.9) 

 and using the formula* 

1
[ , ]

2e


 
B A

A B A Be e e          (2.10) 

(See appendix 1), 

We get 
2ˆ ˆ ˆ ˆ( ) ( ) ( )

( )k k k
k

i i i
t T V t T t V

O t
e e e e
      


       (2.11) 

 

         

              .     (2.12) 

We consider the first term (kinetic) in the integral 

   

   

ˆ ˆ ˆexp[ ] exp[ ( )]k k

i i
t H t T V     

1
ˆexp( )k k k k k i

i
dp q t T p p q  

 1 1
ˆ ˆexp( ) exp( )k k i k k k k k i

i i
q t T q q t T dp p p q      

1 1 1 1
ˆ... ( , ) ...k k k k k k k kdq q q U t t dq q q   

   
    

1 1 1 1 0 0
ˆ... ( , )dq q q U t t q 

 

 1 1 1 1
0

... , ; ,
N

N N k k k k
k

dq dq dq K q q t t  


 
  

 


 1 1 1
ˆ, ; , exp[ ]k k k k k k k

i
K q q t t q t H q  

 
   

 

2ˆ ˆ( ) ( )
( )

1 1
ˆexp[ ]

k k
k

i i
t T t V

O t

k k k k k

i
q t H q q e e e q

   


 

 
   

 

 
2ˆ ˆ( ) ( )

( )

1

k k
k

i i
t T t V

O t

k i i i kq e dq q q e q e
   



 

2
ˆ ˆ( ) ( )

( )

1

k k
k

i i
t T t V

O t

i k i i kdq q e q q e q e
   



 

1
ˆ ˆ( , ) exp[ ]k k k

i
U t t t H   
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    ,          (2.13) 

And we find that  

     and  

  

.     (2.14) 

We turn to the second term (potential) in the integral 

 

   .           (2.15) 

Then 

 

                 

  

We get ( ) ( ) ( , )k k k kT p V q H p q   

   

.     

(2.16) 

 This is the intermediate propagator and the total propagator can be written in terms of 

it as 

 

            (2.17) 

 1 1 1
ˆ, ; , exp[ ]  

 
   

 
k k k k k k k

i
K q q t t q t H q

1
( )exp ( ( ) ( ))

2
k i i k k k k

i
dp dq q q t T p V q




     


 

20 1

1 0

( )
exp ( , ) ( )

(2 ) 2

N N
k k k k k

k k k kN
k k

k

dp dq dp p q qi
t H p q O t

t 


 

  
           
 

21( )
( )k k i

k

ip q q
O t  

   


21( )1
exp ( , ) ( )

2

k k k
k k k k k

ip q qi
dp t H p q O t


  

      
 



21( )1
exp ( , ) ( )

2

k k k
k k k k k

k

p q qi
dp t H p q O t

t


  
         


1( )1
exp ( ) exp

2

k k i
k k k

ip q qi
dp t T p


   

     
   



11 1
exp ( ) exp exp

2 2

k k k i
k k k

ip q ip qi
dp t T p

 

    
        

     


1
1

1
exp

2

k k
k k

ip q
q p






 
  

 

1
exp

2

k i
k i

ip q
p q



 
  

 

ˆexp( ( )) exp( ( ))i k k k k i k

i i
q t V q t V q q q    

exp( ( )) ( )k k i k

i
t V q q q   

1exp( ( ))k k k k k k i

i
dp t T p q p p q  

   0 0 1 1 1 1
0

, ; , ... , ; ,
N

f f N N k k k k
k

K q q t t dq dq dq K q q t t  


 
  

 

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 Letting N  and 0 kt  we can see that p  and q  are the functions of continuous 

time such that ( )p t  and ( )q t , at some particular time kt , are ( )k kp t p and ( )k kq t q . We 

replace discrete summation in the exponential term by integral. 

 

  ,           

(2.18) 

when N  we introduce the notation 

.             (2.19) 

Now we obtain the total propagator  

.     (2.20) 

 This is the general form of the propagator for any form of the Hamiltonian. However, 

in the real physical system, the Hamiltonian always depends on the square of the momentum                               

.                            .  Nonetheless, we will continue to work on simplifying the general 

propagator (2.20) to get more specific result to be more widely used in physics. For now, let 

us put the Hamiltonian in to the intermediate propagator (2.16).  

 
2

21
1 1

( )1
, ; , exp ( ) ( )

2 2

k k k k
k k k k k k k k

k

p q q pi
K q q t t dp t V q O t

t m


 

  
          
  (2.21) 

We can perform this integral over kp  by using a form of Gaussian integral. 

.            (2.22)

 Then, we substitute this expression into 2.17 and taking N , 0 kt  and using 

this relation 

 

0

2

1

2
0

( )
lim ( ) ( )

2 2

ft
N

k k
k k

N k
k t

m q q mq
V q t dt V q S

t



 

   
        

   
 .    (2.23) 

Finally, we have the total propagator 

  
0 0

( )

0 0

( )

, ; , exp

f fq t q

f f

q t q

iS
K q q t t q





 
  

 
 D  ,      (2.24) 

01
1

1
lim

(2 )

N

k kNN k

p q dp dq dp
  

 
  

 
D D

21

0

( )
lim ( , ) ( )

N
k k k

k k k k
N k

k

p q qi
t H p q O t

t



 

  
         

0

( )
( ) ( ( ), ( ))

ft

t

i dq t
dt p t H p t q t

dt

 
  

 


2

( , ) ( )
2

k
k k k

p
H p q V q

m
 

 
2

21
1 1 2

( )
, ; , exp ( ) ( )

2 2

k k
k k k k k k k

k k

m q qm i
K q q t t t V q O t

i t t


 

  
          

   
0 0

0 0, ; , exp ( , )

f fq t

f f

q t

i
K q q t t p q dt pq H p q

 
  

 
 

 D D
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 with 
1 11

0

1

2 2

k

k
k

dq
q

i m t i m t 



 

 
 

D .      (2.25) 

This is the most important formula that we used through out our research. 

In the discrete limit  

  1 2
0 0, ; , exp exp exp ...exp N

f f

allpath

iSiS iSiS
K q q t t

     
          

       
 ,  (2.26) 

where NS  correspond to one path. This is why we call path integral.  

 

 

2.2 The classical limit of the propagators. 

 How classical path differ from quantum path? The propagator (2.26) can interpret the 

classical behavior of particles and this will fill our point of view of quantum behavior. This 

view comes from R.P. Feynman [18]. In classical mechanics, the explicit form of any 

Lagrangian will lead to the specific equation of motion through the famous Euler-Lagrange 

equation. If we restrict our system by imposing initial conditions 0( )x t , 0( )x t , the system will 

evolve in time by itself and correspond to some particular path. Now we are in a position to 

say that we have clear an explicit path of a particle. 

 In quantum mechanics, when we look at the equation (2.26), the propagator is 

depending on the sum of the quantity                  along all paths in space (The word “all paths” 

was interpreted from                ).  

 Little changing in path may cause a little changing action. In classical limit , S so 

we can say that in this limit 0  [19]. If we look at the quantity                  as sum of sine 

and cosine function, when 0 , this quantity correspond to the very high frequency for 

sinusoidal function..But in high frequency limit, we can see by simple mathematics that the 

summing of sine (or cosine) function will tend to be zero (because the violent changing of 

phase will contain some phase that differs by   radian). Thus, almost every path will have 

destructive interference and cancel out each other. So, when 0  most path will not 

emerge, except when the action is at the minimum value, because 0dS   at minimum point. 

Hence, little changing in path will make no changing in action. Therefore, summing 

exp
iS 

 
 

exp
iS 

 
 

0 0

( )

( )

f fq t q

q t q

q





 D
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neighboring path ( 0dS  ) will make the quantity                 destructive of each other and the 

path that makes 0dS   will appear as a classical path. In figure 2.1, the thick line is the actual 

path that makes action has minimum value and dotted lines around it are the neighboring 

paths.   

 

 

 

 

 

 

Figure 2.1 The solid line is the classic path. The dashed lines are the variation of paths 

that tend to cancel with one another [18].  

In the quantum view, action is very small S  , so the neighboring paths will make a 

significant change in                and there is no cancellation. In other word, the contribution 

comes from all possible paths. At this point we have shown something that joints the classical 

and quantum mechanics.     

In our research, we will use (2.24) and (2.25) to find the electron propagator in two 

dimensional systems.  

 

 

 

 

 

 

exp
iS 

 
 

exp
iS 

 
 



             CHAPTER III 
 

 Review of variational path integral method 
 

We will now deal with the random problem. We first assume the impurities are 

completely random, such as heavily doping a semiconductor. For simplicity, we ignore the 

lattice structure of the semiconductor. The impurities are possibly found in all points in two-

dimensional space. The idea is acceptable because electronics properties are of the 

macroscopic scale. Many electrons in the band contribute to conductivity of the 

semiconductor. Therefore, the structure of atoms in the semiconductor is not quite affected. 

  

3.1 Calculation of an average electron propagator in Gaussian 

random potential 
 

We suppose the impurities are distributed in the semiconductor system with the 

position { }ir . The action of an electron interacting with one configuration impurities is 

({ })iS r . The propagator of the particular configuration of the impurities can be written as 

 

({ }; ) ( )exp { }i i

i
t S

 
  

 
r r rDG ,      (3.1) 

 

where ({ }; )i trG is Green function with particular configuration impurities. So, the 

average Green function ( 1 2( , ; )G r r t ) over all possible configurations is 

 

1 2( , ; ) ({ }) ({ }) ({ }; )i i iG r r t d P t  r r rG  ,     (3.2) 

 

where ({ })iP r  is the probability to find the impurities in the configuration { }ir . Our main 

problem in this chapter is finding the average Green function 1 2( , ; )G r r t . We assume the 

impurities are equally found in two-dimensional space (see appendix D). Then we apply this 

assumption to the average Green function and the result reads [20] 

 

   
2

1 2

0 0

( , ; ) ( )exp ( ) exp ( ( ) ) 1
2

t t
i m i

G r r t d n d d v    
   

       
     

   r r R r RD , 

           (3.3) 
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when n is impurities per unit area. If we are interested in the weak scattering process 

0v  (or 1v  Ry), we can expand the exponential term in the second term 

 

2

0 0 0

1
exp ( ( ) ) 1 ( ( ) ) ( ( ) )

2

t t t
i

d v d d v v     
 
      
 

  r R r R r R . (3.4) 

 

Now the average Green function becomes 

 

2

1 2 2

0 0 0

1
( , ; ) ( )exp ( ) ( ( ) ) ( ( ) )

2 2

t t t
i m

G r r t d n d d d v v      
  

      
   

    r r R r R r RD

     
2

2

2

0 0 0

( )exp ( ) ( ( ) ( ))
2 2

t t t
i m n

d d d W      
 

   
 

   r r r rD , (3.5) 

 

where W  is the correlation function defined as ( ( ) ( )) ( ( ) ) ( ( ) )W v v d      r r r R r R R . 

If we restrict our problem to the Gaussian potential  
2

( ) exp( )GaussianV b a   r R r R , we 

will obtain the Gaussian correlation function as   

 
2

2 2

( ( ) ( ))
( ( ) ( )) exp

C
W

L L

 
 



  
   

 

r r
r r ,    (3.6) 

 

where C  and L  are the parameters we can adjust and C  is the interaction strength and L  is 

the correlation length. We can see the problem is too complicated to be solved because we do 

not know the exact position of vector ( )r . Hence, the harmonic trial is implemented to solve 

the problem. Now, to simplify, we will write the average Green function in a short form 

 

1 2( , ; ) exp
iS

G r r t r
 

  
 

D ,       (3.7) 

 

where  
2

2

0 0 0

( ) ( ( ) ( ))
2 2

t t t
m n i

S d d d W         r r r .   (3.8) 

The first term in (3.8) is the kinetic term and the second term is the interaction term, 

where   is the strength of the scattering potential. 

 

3.2 The harmonic trial action   
 

The average Green function 1 2( , ; )G r r t  of an electron can be written as 
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 0
1 2 0( , ; ) exp exp exp ( )

iSiS i
G r r t r r S S 

     
         

     
 D D , (3.9) 

 

Where         is the simple harmonic action and  is 

the frequency of the system. We use the simple harmonic action as the trial action because we 

know the exact solution of such system. Then we apply the identity [21] 

 

0

0

0

exp

exp
S

iS
r X

X
iS

r

 
 
 
 
 
 





D

D

.       (3.10) 

 

This is the statistical average of quantity X  over 0S , where 0S  is the harmonic 

oscillator action which we use it as the trial action. The variational parameter ( )  is the 

frequency of the oscillators in the system.  

 If we need the average of  0exp ( )
i

S S 
 

 
 

, we can write it as 

 

 
 

0

0
0

0

0

exp exp ( )

exp ( )

expS

iS i
r S S

i
S S

iS
r





   
            

 
 





D

D

.   (3.11) 

 

This is a very important formula because we can use it to find average Green function 

1 2( , ; )G r r t  of an electron. Now we can rewrite (3.9) as 

 

 
0

0
1 2 0( , ; ) exp exp exp ( )

S

iSiS i
G r r t r r S S 

     
         

     
 D D . (3.12) 

To move forward, we quote the Kubo cumulant expansion [22] 

 

    2 2 32 3 21 1
exp 3 ...

2! 3!

Xe X X X X X X X X
           

 

           (3.13) 

 

If we choose the frequency to make the trial action close enough to our interested 

action, we can keep only the first order to obtain the approximate average Green function  

 

0

0
1 2 1 1 2 0( , ; ) ( , ; ) exp exp ( )

S

iS i
G r r t G r r t r S S 

    
       

   
D .  (3.14) 

2
22

0

0 0

( ) ( ) ( )
2 2

t t
m m

S d x d x x
t


    
 

   
 

 
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To obtain the approximate Green function 1 1 2( , ; )G r r t , we separate our problem to find 3 parts 

 

1.  0exp
iS

r
  
  

  
D  

2. 
0

0 ( )
S

S   

3. 
0S

S . 

 

3.3 The propagator of the simple harmonic action for the random 

system 
 

For the first part, what we will find is the propagator of the simple harmonic action 

 

0
0 2 1( , ; , ) exp

iS
K r r t r

  
   

  
D ,      (3.15) 

 

where the action is                . We will now try to obtain 

a more general action in quadratic form and then specify the result to the simple harmonic 

action later.  

The quadratic action can obtain from the Lagragian in this form 

 
2 2( , ; ) ( ) ( ) ( ) ( ) ( ) ( )L x x t a t x b t xx c t x d t x e t x f t      .   (3.16) 

 

In our problem (simple harmonic), the coefficient ( )b t  and ( )e t  is obviously vanished, 

and then we split the particle’s path into two parts 

 

( ) ( ) ( )x t x t y t    ,        (3.17) 

 

  ( ) ( ) ( )x t x t y t  ,        (3.18) 

  

where ( )x t  is the classical path that make 0dS  , and ( )y t  is the disturbed path. Then we 

expand the Lagrangian around the classical path ( )x t  with Taylor series. All higher terms 

after the square term will vanish because the original Lagrangian has only the quadratic term.   

 
2 2 2

2 2

2 2

,

1
( , ; ) ( , ; ) 2

2x x x x

L L L L L
L x x t L x x t y y y yy y

x x x x x x

     
      

      
. (3.19) 

 

We take partial derivative on the Lagrangian to get 

 

2
22

0

0 0

( ) ( ) ( )
2 2

t t
m m

S d x d x x
t


    
 

   
 

 
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2

2
2 ( )

L
a t

x





, 

2

( )
L

b t
x x




 
,

2

2
2 ( )

L
c t

x





.     (3.20) 

 

So the action of this Lagragian can be written as 

 

0 0 0

( , ; ) ( , ; )

t T T

x x

L L
S L x x t d L x x t dt y y dt

x x


  
    

  
    

        2 2

0

( ) ( ) ( )

T

a t y b t yy c t y dt   .  (3.21) 

 

The second term will vanish by using integral by part [23].The action is finally written 

as 

 

 2 2

0

( ) ( ) ( )

T

clS S a t y b t yy c t y dt    .     (3.22) 

So, the propagator reads 

 

 2 20
0 2 1

0

( , ; ,0) exp exp ( ) ( ) ( )
cl

Ti
SiS i

K x T x r e y a t y b t yy c t y dt
   

       
    

  D D

            ( )
cl

i
S

A T e .       (3.23) 

 

Now, we focus on our simple harmonic action. The classical action for simple 

harmonic action is (appendix C) 

 
2

2 1

1
cot( )

4 2
cl

m
S t X X


  .       (3.24) 

 

We will try to find ( )A T  to complete the propagator.  

We consider the propagator 

 

2
22

2 1

0

( , ; ,0; ) exp ( ) ( )
2 2

t
i m m

H x T x y r d r r y


  
    
            
 D . (3.25) 

 

It is the simple harmonic propagator with the parameter y . If 0y  , H  will be 

reduced to the normal simple harmonic propagator. We will now prove the identity 

 

2 1 0 2 12

2
( , ; ,0; ) ( , ; , )H x T x y dy K r r t

im t





 ,     (3.26) 
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 Where             is the simple harmonic propagator in our 

problem. This is proven easily because we can perform the integral over y  to both sides of 

the equation (3.25) 

2
22

2 1

0

( , ; ,0; ) exp ( ) ( )
2 2

t
i m m

H x T x y dy dy r d r r y


  
    
            

   D  

 

2
22

0 0

exp ( ) exp ( )
2 2

t t
i m i m

r d r dy d r y


   
         
                          

   D . 

          (3.27) 

 

Doing nothing with the kinetic term and focus on the potential term 

 

2
2

0

exp ( )
2

t
i m

dy d r y


 
   
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   

 
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0

exp ( ) 2 ( )
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t
m i

dy d r r y y


  
  

      
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   

2 2
2 2

0 0

exp ( ) exp 2 ( )
2 2

t t
m i m i

d r dy d r y ty
 

   
       

                     
   . (3.28) 

The second term is the Gaussian integral over y , 
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 
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The total result becomes 
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2

2 2
02 2

2

0 0

( )
2

exp ( ) ( )
2 2 2

t

t t
d r

i m m m
r d r d r

im t t

 
  

   


                         
       
          


  D  

0
0 2 1( , ; , ) exp

iS
K r r t r

  
   

  
D



 26 

 

        
02

2
K

im t




 .         (3.30) 

    

 If we are interested in two-dimensional system, the equation (3.30) will become 

 

2 1 02

2
( , ; ,0; )H x T x y dy K

im t




 .      (3.31)  

 

Then, we perform integral dr  to both sides of the equation (3.30) 

 
1
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2
( , ; ,0; )K dr dr dyH x T x y

im t







 
  
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   .    (3.32)  

 

We see 
0 0( ) ( ) ( )

cl cl

i i
S S

K dr A T e dr A T e dr A T V     , where 
0

cl

i
S

V e dr   is the term we 

are not interested in. Here, we quote the result 
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[22]. Then we get 
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 .      (3.34)  

The result is 
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. (3.35)  

Since the impurity in our system is spread randomly, we apply the translational invariant to 

our result and get 
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3.4 The average of simple harmonic action 
 

The second part we will find is the average of the simple harmonic action 

 

 
0

0 0

2
22
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t


            . (3.37)  

 

The kinetic term from the simple harmonic action will cancel the kinetic term of the 

Gaussian action. Therefore, we can just find the average on the second term that contributes 
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The problem involves with the average value of ( ) ( )r r  .  

 If S   is the action of harmonic oscillator with the driven force ( )F , and S  is the 

simple harmonic oscillator, we can write  

 

0 ( ) ( )S S d      F r .       (3.38)  

 

We can write the propagator of S   and 0S  as 
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D       (3.40)  

 

It is easy to show that ( )A T  from S   is equal to ( )A T  from 0S . We will, again, use 

this equation 
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 .      (3.41)  

 

We then substitute exp ( ) ( )
i

X d  
 

  
 
 F r  in this average equation (3.41), and then we 

obtain 
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Then, we take the functional derivative with respect to ( )F  on the left hand side of (3.42) by 

using this formula 
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We get  
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We also take the functional derivative with respect to ( )F  on the right hand side too. We 

know that ( )F  is in the ( ( ), ( ))clS   F F  (as we can see in (3.38)), so we get  
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Then we let the LHS=RHS 
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We take the value at ( ) 0 F  on both sides. It is obvious that when ( ) 0 F , we have 

0cl clS S  , and we now obtain the very important formula 
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We can then rewrite (3.46) as 
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Changing the dummy variable in the integral, we take functional derivative with respect to 

( )F  on (3.39) 
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Again, we set the value at ( ) 0 F  on both sides of (3.49), and we have 
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Our particular form of action clS   makes these quantities vanish 
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After performing the integration (3.37), we get [23] 
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If the system is completely random, we can impose the translational symmetry on              

    . The quantity in the translational symmetric system must not depend on  2 1r r . 

So, we simply set  2 1 0r r   and then we get 
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3.5 The average of Gaussian action  
 

The third part that we will find is the average of Gaussian action 
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If we restrict the problem to the Gaussian potential, the correlation function will become 
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It is convenient to work with the correlation function in k-space 
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We will substitute (3.56) in (3.54)  
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Again we quote the Kubo expansion and keep only the second order term  
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Then we integrate over xk  in (3.57) by using this integration formula  
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where     ,                                                                                   . 

In two-dimensional system, we get 
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So, we now have 
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where a  and b  can be calculated by using equation (3.47) and (3.50) [24]. The results are 
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Now, we simply impose the translational symmetric condition  2 1 0r r  . So, we get 

0a   and  
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If we collect all expressions, we can write the total Green function as  
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3.6 The total Green function and the density of states in the 

Gaussian random potential in two-dimensional system 
 

The density of states (DOS) is the Fourier Transform of the Green function [25].  
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This equation is too complicated to be solved analytically and there are many ways to 

approximate the density of states (DOS). We will look back at the equation 
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We will separate the Green function and also the DOS in 2 limits.  

1. When 0t  , it is corresponding to short time interaction. The situation connected 

with the high energy region 0E  [26]. The argument in the exponential reaches zero and 

we can expand it as follows  
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Then we can work out the exponential term to be 
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We then expand the second term and obtain the approximate 0S
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           (3.69) 

Then we perform the integral over   and take limit 0t   
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where       , and     . We have the Green 

function in the form of 
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We take the Fourier transform and we get the DOS for the positive energy region.  
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2. Now consider t   that corresponds to low energy. This limit represents the states 

in the band tail region [26]. The quantum effect is important for the short range potential so 

we can consider the electron to be staying in the system long enough to take long time limit  
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After we perform the integral and collect all terms, we quickly get 
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and we get the density of states for the negative energy region 
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Next chapter we will use the variational methods to obtain the frequency ( ) that 

joins the ( 0, )DOS E    with ( 0, )DOS E   . 



CHAPTER IV 

Results and discussion 

 

 We have obtained the density of states (DOS) by path integral method. First, the 

semiclassical DOS well describes the positive energy region by 
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 When there is no interaction, the semiclassical DOS will reduce to free particle states 
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However, the frequency   needs to be determined. We will use the variational 

methods to find the  . For simplicity and reducing the number in the calculations, we will 

write all variable in the Rydberg unit.  

 

4.1 Density of states from maximized DOS method.  

 

We can assume that the frequency   (variational parameter) depends on energy 

( )  E . At ground state, the system will be in minimum total energy. The minimum total 

energy is the stable states for the electron. The total energy of the electron can be written as  

 

( , )totE DOS E E dE    .            (4.3) 

 

 The total energy of the bound states can be found by summation all number of states 

multiplied by energy in bound states [27]. Since all energy in bound states are negative, if we 

want to get the minimum total energy, the density of states must have maximum positive 

value. So, we have to find function ( ) E  that maximize DOS. 

We use the numerical calculation by plotting the DOS with the frequency at some 

specific energy value. Figure 4.1 is an example of plotting for E=0. We pick the   that 
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maximizes DOS, and in the case of E=0, we obtain 0.043  . We then repeat the process to 

get the ( ) E  that maximizes DOS. 

 

 
 

 Figure 4.1 Show DOS (4.2) in Rydberg unit with 5C , 100L , E=0, and the 

frequency in Rydberg units. 

 

For 5C , 100L , we can find the frequency ( )  E  that maximizes the DOS,  

 
2 30.043 (1.26) (16.64) (73.61)( ) E E EE    .    (4.4) 

 

 We choose the polynomial fit because it is easy to analyze and the results are not different 

from the exponential fit in this energy range. 
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 Figure 4.2 The frequency ( )E  (4.4) in Rydberg units from maximized DOS method 

for various correlation length ( )L , 100L   (dashed line) and 50L   (thick line). 

 

 Considering the DOS, if we plot the DOS by this method, we will see that the tail is 

very close to the semiclassical result as in figure 4.3. However, there remain some problems 

with the whole DOS as we shall see in the figure 4.4. The negative density of states (4.2) with 

the frequency we obtained from maximized DOS method is not connected smoothly with the 

positive region. 

 

 
 

 Figure 4.3 The DOS (4.2) obtained from maximized DOS (blue line), and DOS (4.1) 

from semiclassical approximation (red line) in Rydberg units. 
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 Figure 4.4 The DOS (4.2) with the frequency from maximized DOS method (blue thin 

line) , the DOS (4.1) of semiclassical approximation (red dashed line) and free particle DOS 

(1.19) ( thick line) in Rydberg unit.  

 

 

4.2 Density of states from minimum total energy method.  
 

We are now interested in the total energy of the system and try to find the frequency to 

minimize it directly. We want the system have the minimum total energy. We will then 

compare the result with the maximized DOS method.  

When the system is filled only in bound states, we  can find totE  by  
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E

totE D E E dE
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Taking the derivative and find the frequency that satisfy the condition  

 

( , )
0totE E 







.        (4.7) 
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For specific C  and L , we perform contour plot of E  (x-axis) and   (y-axis). With the 

middle line having the zero value, we map this line with the polynomial function to obtain  

2 3

0 1 2 3( )E a a E a E a E     . We keep only 3

3a E  because in our interested energy range, 

3

3a E  is in the order 410  which is much lesser than the first term. Figure 4.5 is the contour 

plot between the frequency ( )E  (y-axis) and the energy (x-axis). The isolated curve (bottom 

left) in the picture is frequency equation. 

 

  
 

Figure 4.5 Contour plot for 5C , 100L  , where the y-axis is the frequency ( )E  

and the x-axis is the energy E in Rydberg units. 

 

For 5C , 100L   we get  

 
2 3( ) 0.036 (0.451) ( 6.210) ( 190.76)E E E E           (4.8) 

 

and for 5C , 50L   we get  

 
2 3( ) 0.061 (0.391) ( 4.457) ( 60.01)E E E E           (4.9) 

 

as shown in figure 4.6. 
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Figure 4.6 Graph of ( )E  from minimal total energy. The blue line (below) is ( )E  

for 5C , 100L  (4.8) and the red line (above) is ( )E  for 5C , 50L   (4.9) in Rydberg 

units. 

 

We can see that the ( )E  is lower when L  is large. If the correlation length is large, 

the ( )E  will reach 0 for free particle case (no oscillation). 

 

 
 

 Figure 4.7 The DOS (4.2) from minimal total energy (blue line),the DOS (4.1) of 

semiclassical approximation (red dashed line) and the free particle DOS (1.19) (thick line),  

for 5C , 100L in Rydberg units. 

 

Again we can see that the whole results are not connected (Figure 4.7).  So, we need to 

find the variational way to get the   to make the positive and negative DOS joint together. 
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4.3 Density of states from touching slope method.  
 

It is natural to obtain the smooth DOS. Now, we impose the conditions that 

1. The DOS of tail must touch with the DOS from semiclassical. 

2. The touching point must have the same slope. 

For 5C , 100L , we get 0.256  . The frequency is quite large when we compare with 

the others. 

 

 Figure 4.8 For 5C , 100L , the DOS from touching slope method (4.2) (blue line) 

and the DOS from semiclassical approximation (4.1) (red line) in Rydberg units.  

 

 
 

 Figure 4.9 The tail region for density of states in Figure 4.8. 

 

The DOS is very close to semiclassical and in the lower touching point, this method 

gives lower value for the DOS. 
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4.4 Density of states from tuning frequency method.  

 

 We try to find the frequency that makes the highest value of negative DOS touch the 

free particle DOS. This method has some advantages.  

1. The experimental results show that the DOS and its slope are continuous.   

2. The semiclassical DOS have anti-symmetrical shape along y-axis but real DOS do 

not have the anti-symmetrical shape because of the effect of impurities. 

The condition we imposed fit with the experiments and we will see later that the 

frequency ( ) from this method are not much different from other methods in some energy 

range. At high and low energy limit, the result reaches the semiclassical approximation. 

In this model, we simply assume the frequency ( ) does not change much in the 

energy range that we have considered. If we choose 5C , 100L  the frequency we get is 

0.0420845   and the DOS we obtain by tuning frequency is the blue line and the 

semiclassical DOS is the red line (Fig.4.10)  

The negative value is very close to semiclassical DOS. The trap state is continued 

from –  and stops very sharply at 0.008461E  (orange shade in Figure 4.11), with the free 

particle states above (blue shade in Figure 4.11), while the semiclassical DOS do not have 

clear conjunction between trap and free particle states. 

   

 

 
 

 Fig.4.10 Show the semiclassical DOS (4.1) (red dashed line) , the DOS from the 

tuning frequency method (thick line) in Rydberg units.  
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 Figure 4.11 The trap states (4.2) (orange shade) joined with the free states (blue 

shade). 

 

 

 Figure 4.12 The DOS from tuning frequency method for various correlation length 

( )L , 50L  (dashed line), 100L  (thick line), 500L  (thin green line) and x-axis is energy 

in Rydberg unit. 

 

In the case of 5C  and vary L  (Fig 4.12), it means that we change the concentration 

of the impurities. The slope decreases when the correlation length decreases. So, when 

L  the DOS is close to the step function. 

The very important consequence from unsymmetrical DOS is the shifting of Fermi 

level. Suppose our two-dimensional system has N  number of particles that are fixed and the 

temperature is not so high. We simply have found the total number of electrons [28] by 
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( )  N D E dE         (4.10) 

 

The DOS of free electrons is step function. The potential of the impurities will present 

additional bound states for some negative energy range and reduce some free states in positive 

energy range. The number of particles should be conserved, so the particles emerging in 

negative energy range will be equal to the particles disappear from positive energy range. 

We can now conclude that that Fermi-Level will be shifted [29]. 

 

 
 

 Figure 4.13 The number of particles increased in bound states (blue area),  the number 

of particles decreased in bound states from the tuning frequency method (pink area). 

  

For 5C , 100L  the blue region has an area 0.00809038 while the upper pink 

region has an area 0.000161272. So, the Fermi-level will decrease 0.00407004 as shown in 

figure 4.13. 

The result is different from semiclassical model because the semi-classical model has 

symmetric DOS. 

By this method, if we fix 100L  (concentration of doping) and then vary C . It 

means that we change the strength of the interaction by changing the doping substrate. The 

results are shown in table 4.1.  
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C  (strength of the 

interaction) 

N  

 0.00000663 

 0.0000262 

 0.0000890 

 0.000288 

 0.000648 

 0.000917 

 0.00206 

 0.00651 

 

 Table 4.1 The numerical relation between C  (strength of the interaction) and N . 

N   number of particles increasing in negative energy region - number of particles 

decreasing in positive energy region. 

 

From the result we can see that when 0C  , DOS is coming close to semiclassical 

limit because they become more symmetric and closer to the step function too. But when we 

are increasing C , the number of particles in negative energy will be increased, so the Fermi-

level will be more shifted down. 

If we assume that the number of particles in our system is very large. The shifting can 

be shown as 

 

2

f

N
E

m




 

 
 
 

.        (4.11) 
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 Figure 4.14 For 5C , 100L , the blue line is ( )E  from maximized DOS, the red 

line is ( )E  from minimal total energy, the yellow line is ( )E  from touching slope method 

and the green line is ( )E  from tuning frequency method in Rydberg units. 

 

All frequency is shown in figure 4.14 and we can see that the touching slope method 

has very different frequency but the frequency from other methods is quite similar. The DOS 

from touching slope method is similar with the semiclassical method, so this method cannot 

describe the tail states and the frequency from this method is not the frequency of the system.  

The DOS from tuning frequency method is smooth, and do not have the discontinuous 

problem. The shifting of Fermi-level can be predicted from the tuning frequency method and 

the frequency from this method is constant but it does not differ much from other two, so it 

can represent the frequency of the real system. We can analyze the system more easily 

because the frequency from this method is constant and the DOS of tail states (4.2) and free 

states (1.19) are joined.    

  

 

 

 



CHAPTER V 

Conclusions 

 Path integral method provides solutions for two dimensional semiconductor systems. 

In our research, we use the new variational method to join the band tail states with the 

semiclassical DOS smoothly. Our method has removed the discontinuous problem for the 

DOS. We have shown and compared the frequencies from the several variational methods and 

observed that the frequency from maximized DOS method, minimum the total energy method 

and tuning frequency method are not differing much and all frequency values become closer 

together when energy approaches zero. The different frequency leads to the different DOS. 

However, if we consider only the band tail region, they are quite similar. 

 We also calculated the number of particles increasing in the band tail states and the 

number of particle disappearing in the free particle states. This effect can be explained by the 

electrons in conduction band interacting with the impurities being possible to form bound 

states with the impurities. Since the number of electrons in the system is constant, electrons in 

free particle states can move to fill bound states, so the number of electrons in free particle 

states will be decreased and the number of electrons in bound particle states will be increased. 

Our variational method can estimate the Fermi-level shift when the effect of impurities is 

present. Higher strength of Gaussian interaction contributes more particles bound in the tails 

region, so the Fermi-level will be more shifted down.  
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Figure 5.1 The DOS from tuning frequency method for various correlation length 

( )L , 50L  (dashed line), 100L  (thick line), 500L  (thin green line) and x-axis is energy 

in Rydberg unit. 

 

 

 

 

 

 

 

Figure 5.2 The DOS from generalized semiclassical model for various impurities 

concentration [30]. 

Our method makes two DOS joined together. The impurities concentration is a very 

important parameter to our method. When the system has low concentration, the DOS reach 

the step function and the joining point between negative DOS and free DOS gets lower. If the 

impurities are doped with more concentration, we observe more negative DOS in the positive 

energy region (figure 5.1). The important features from our theory is after we calculated the 
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frequency, we can analyze the DOS of the two dimensional semiconductors easily by using 

the negative DOS for negative energy region to the joining point and then switch to the free 

DOS to describe the positive energy states. We can compare our results with the generalized 

semiclassical model that was able to explain the absorption data of doped GaAs quantum 

wells [31].      

The tuning frequency method gives the same DOS values for various correlation 

lengths when energy reaches zero, while the generalized semiclassical model [30] do not. If 

energy reaches zero, the generalized semiclassical model gives high DOS when impurities 

concentration is low. The result of the generalized semiclassical model is more realistic 

because when the impurities are doped, bound states are present. Hence, DOS at zero energy 

will be decreased. However, the whole result do not change much and the important thing we 

have discovered from the tuning frequency method is this method give analytic form of DOS 

that we can move further to find other physical variables (relaxation time, current density of 

electrons and specific heat capacity) more conveniently. 
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APPENDIX A 

Baker–Campbell–Hausdorff formula 

 
We will prove Baker–Campbell–Hausdorff formula  

 
2

3exp( ) exp( ) [ , ] [ ,[ , ] ... ( )
2!


       G A G A G A G G A O ,  (A1) 

 

where G  and A  are any operator and   is any scalar function, 
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Now, we expand and try to group same order of   together 
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The Eq.(A3) is called the Baker–Campbell–Hausdorff formula, we will use it to prove this 

formula  

 
1

[ , ]
2e


 

B A
A B A Be e e .            (A4) 

 

Since G  is an arbitrary operator, we can choose to define G  in the form 

 

( )    A BG e e ,       (A5) 

 

where   is any scalar function .Then we take the derivative on G  
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   
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 A B A BdG

Ae e e Be
d

 

 

            A A A BAG e Be e e  
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By using Baker–Campbell–Hausdorff formula with the second term in the bracket, we obtain 

 
2

3[ , ] [ ,[ , ]] ( )
2!


 



 
     
 

dG
A B A B A A B O G

d
.    (A7) 

 

Then we integrate over G  and  , 
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So we obtain 
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To get the final result, we simply set limit 1   
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APPENDIX B 

         Functional calculus 
 

In the random system, we have to deal with many averaged quantities. It is necessary 

to know the functional calculus. 

 

  
0 0

0 0, ; , exp ( , )

f fq t

f f

q t

i
K q q t t q dtL q q

 
  

 
 

 D      (B1) 

The propagator is the functional integral because this integral has performed over all 

possible function ( )q t . The result we get,  0 0, ; ,f fK q q t t  is the scalar quantity. This is 

mapping between function ( )q t  to the number. It is clearly different from concept of function 

that maps between number to number. When we map function ( )q t  to a number, we use the 

symbol  [ ( )]Q q t . Note that [ ( )]Q q t  is the number for some form of ( )q t . 

Now, we define the functional derivative by analogy with ordinary derivative as 
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Then we introduce the useful relations 
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[ ]yQ q  means this functional also depends on y  coordinate. All relations above can be 

derived from the definition of functional derivative we have recently introduced. 
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APPENDIX C 

The classical action of non-local force  

harmonic oscillator 
 

We will find the classical action of a non-local force harmonic oscillator. There is a 

slight difference at the beginning point because we do not know the exact position of the 

oscillator. Therefore, the potential form (that depends on the position) must be changed. The 

form of the non-local simple harmonic potential is  

 

 
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22

2 1

( ) ( )
2( )

t

t

m
V d x s x

t t
   

  .      (C.1) 

We take the average of the simple harmonic with time interval 2 1( )t t . But for convenience 

sake in calculation, we set 1 0t   and 2t t constant  . The Lagrangian of our non-local 

potential is 
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Now, take the derivative on x  and x  to obtain the equation of motion 
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We will perform the first integral and rearrange this equation  
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We see the extra term 
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( )

t
m

d x
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
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

 
 emerging from our system. Unfortunately, we cannot 

simply add the extra term in our recent solution, because the answer of this differential 

equation is 
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where 
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The solution can be checked directly by substituting it in (C.6). This is not finished because 

the solution is not all explicit. We can see the ( )x s  in the right hand side remaining in the 

integral so this solution is an integral equation. One way to solve this integral equation is “the 

direct computational method”. 

Our problem can be written in the form 
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There are many methods to get the classical action. V. Samathiyakanit derived the 

equivalent result in 2 ways and get the same results [24] 
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(C.11) is the classical action of force in harmonic oscillator of the non-local system. If 

we are interested in the case of no driven force, we simply set 0F   and get 
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the classical action of free harmonic oscillator of the non-local system. 
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APPENDIX D 

The distribution function of random potential 

We assume the impurities are doped randomly in the system. The probability of 

finding one impurity will be constant in all positions. If our system is large, the probability to 

see the impurity will be small. We can simply write this statement as 
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where ( )ip r  is the probability to find the potential V  at point ir , and 0V  is the volume of the 

system. So, we will obtain the total probability by multiplying all together   
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where { }ir  is the average impurity position, N  is number of the impurity. Our total 

potential can be written in the form 
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  . We rewrite Eq.D2 by using the 

identity  
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then we get the total probability as 
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