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Chapter 1

Introduction

The Segal-Bargmann transform is a transform which is widely studied by physicists.
It is used for describing the wave-particle phenomena in quantum field theory. The
Segal-Bargmann transform for R? is a unitary map C; : L?(RY) — HL?(C% v)
defined by

Cif(z) = / (2nt) 5o G2 Pp(2) de, zeCY,
Rd

where (z — )% = (21 —21)% + (22 — @3)* + -+ + (24 — 24)? and HL%(C?, 1) denotes
the space of holomorphic functions that are square integrable with respect to the

measure

U(2) = (QWt)_ge_'Imz|2/2t.

There are a lot of generalizations of the Segal-Bargmann transform on R¢ to more
general settings. In 1993, Hall ([3]) has obtained a generalization of the Segal-
Bargmann transform on a compact Lie group which is geometric in nature and
keeps more of a structure of the original Segal-Bargmann transform. In his work,

the space R? is replaced by a connected compact Lie group K and C? is replaced



by the complexification K¢ of K. Later, the Segal-Bargmann transform was also
extended by Stenzel ([7]) to the case of compact symmetric spaces . His proof relies
on heavy machinery in theory of symmetric spaces. In this thesis we study the Segal-
Bargmann transform on the d-dimensional sphere S? which is a special case of a
compact symmetric space. However, we define and prove everything explicitly using
only elementary methods. Indeed, we follow the outline already given by Hall and
Mitchell ([4]). We provide necessary backgrounds and give the proofs in complete

detail.



Chapter 2

Complex sphere

The d-dimensional sphere is the subset of R4t! given by
S% = {g eRIE | w2 p . 422, =13,
We naturally define the complexified sphere S@ to be
SE={7eTi! |21 +22, =1}

Then S{é is a d-dimensional complex manifold. We will show that we can identify

S¢ with the cotangent bundle T*(S?) of S%, which is defined by
T*(S?) = {(x,p) e R™Y xR | |x[ = 1,x p= 0}

Notice that 7*(S?) is a 2d-dimensional real manifold. If we view S& as a 2d-
dimensional real manifold, then we can identify these two manifolds together via
the following map

inh
a(x,p) = (coshp)x + s pp




inh
where (x,p) € T*(S%) and p = |p|. Since hH(l] SP 1, it is well-defined when
p— p
p = 0. First note that
! P2 2prx
a(x,p)-a(x,p) = Z (x% cosh? p — —g sinh? p) +1 ( PkLk sinh p coshp>
1 p p

= cosh? p — sinh?p
=1.
This shows that a maps 77%(S%) into S%. To prove that it is injective, let (x,p),
(y,q) € T*(S%) be such that
a(x,p) =a(y, q).

Then

sinh . sinh
D)z Yy cosh g + iqy. . q’

xy, cosh p + ipy

7

ie.,

sinhp  sinhg

x, coshp = yp cosh g and Pk qk
p q
for k=1,...,d+ 1. This implies that
x2 cosh? p = y? cosh? ¢ and sinh? p = sinh?q.

Consequently sinh p. = 4sinhg. Since p,q.> 0, it follows that sinhp = sinh ¢ and
that p = q. Hence x; =y, and pr = qi for every k.
Next, weshow that a is surjective. et z € Sfé and write z = r+is, wherer,s € R4+,
Choose

sinh ™! |s| r

= ———5s and X = .
P |s] cosh p

(2.1)

Then



. h . h . h_l
o pP -2 .(sm_l s)) sinh™ |s| S _s and coshp x =r.
P sinh™" |s] Is|

Hence a(x,p) = z. From (2.1), we can see that

el
1 L r sinh |s|>
a (r+is)= (coshp’ Is| 5)

It is clear that a and a~! are smooth functions. Hence a is a diffeomorphism.
Next we will show that the smooth manifold S% is diffeomorphic to the homogeneous
manifold SO(d + 1)/SO(d). Let us recall some definitions and theorems about ho-

mogeneous manifolds first.

Definition 2.1. Let n: G X M — M be an action of G on M on the left. As usual,

we write
n(g,m) =g-m.

The action is called transitive if whenever m and n belong to M there exists a g in

G such that g - m = n. For zqg € M, the set
Goy ={9€Glyg- 20 =10}

forms a closed subgroup of G called the isotropy group at xg.

If G is a Lie group and H is-a closed subgroup of GG, then we can define a
differentiable structure on the quotient space G/H so that it is a smooth manifold,
called a homogeneous manifold. Moreover, there is a natural transtive left-action
of G on G/H. Conversely, if M is a smooth manifold and there is a transitive left-
action by a Lie group G on M, then M can be identified with the quotient manifold

G /Gy, where xg is a point in M. This is summarized in the following theorem.



Theorem 2.2 ([9], Theorem 3.62). Let n : G x M — M be a transitive left-
action of the Lie group G on the manifold M. Let xo € M, and let H be the isotropy
group at xg. Define a mapping B : G/H — M by 8(gH) = g - xo. Then (3 is a

diffeomorphism.

Let F be the field R and C. For d > 1, we define the special orthogonal group
SO(d,F) to be the set of d x d matrices A such that A - A® = I and detA = 1.
Equivalently, SO(d,F) is the set of d x d matrices A such that detA = 1 and
[Az, Ay] = [z,y] for all z,y € F, where [z,y] = Zle zyy; for x,y € Fe.

In case F = R, we may simply write SO(d,R) as SO(d).
Proposition 2.3. The manifold S® is diffeomorphic to SO(d +1)/SO(d).

Proof. Let {e;| i = 1,...,d + 1} be the canonical basis of R¥! where e; is the
d + 1-tuple consisting of all zeroes except for a 1 in the i-th spot. Define an action

n:S0(d+1) x S — 59 by multiplying A € SO(d + 1) to a vector in S? :
n(A,z) =Ax.

It is obvious that this action is transitive and the isotropy group at egy1 is the set

of matrices in SO(d + 1) of the form

DU™ . 1
The matrix B occuring in this subgroup is precisely the matrix in SO(d). Hence,
we identify this isotropy group with SO(d). It follows from Theorem 2.2 that the

homogeneous manifold SO(d + 1)/SO(d) is diffeomorphic to S, O



Similarly, we can show that S¢ is diffeomorphic to SO(d + 1,C)/SO(d,C) as

complex manifolds.

AOUUINBUINT )
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Chapter 3

Spherical harmonics

We would like to represent a function defined on the surface of the unit sphere by
an expansion similar to a Fourier series by a class of functions called the spherical
harmonics. For more details, a reader is referred to [1] and [8].

A function f defined on R? is said to be homogeneous of degree k if
f(az) = a® f(z) for any z € R? and any a > 0.

Let P(R?%) be the set of all homogeneous polynomials of degree k on R?. If P €
Pr(RY), then it can be written in the form
P(z) = Z caz?,
laf=k
where « denotes a d-tuple (aq; ag;+. ¢, aq) of nonnegative integers, o] = a1 + ag +
coFog, x® =2 ay? and ¢, € C.
It is clear that the set of monomials {z® : |a| = k} is a basis for this space. Then

dim Pj(R%) equals the number of distinct multi-indices o = (v, o, .. ., aq) with



|a| = k. Hence
d+k—1
dim Py, (R%) :< + )

d—1

We introduce an inner product (P, Q) on P, by letting (P, Q) = P(D)Q for all P,

Q in Py, where P(D) is the differential operator in which we replace z{"'25? ... z3*

oot taa
by —&
1 a2 Qg
0z{'0xy? ... 0wy

degree, (P, () is scalar-valued. It is clearly linear in the first variable, conjugate

Since P and @ are homogeneous polynomials of the same

linear in the second variable and hermitian symmetric. To verify that it is an inner
product, it is enough to show that (P, P) > 0, with equality only if P = 0. If a # (3,

then

( o Ff Lo Jafiag . a0,

A\ BN =
457 GY F Y 4

When a = g, this derivative equals aqlan!...ay! = al. Consequently, if P(z) =

ZIOtI:k cqx®, then (P, P) = Z|a|:k leo|? al. But this last expression vanishes if and

only if all the coefficients ¢, are 0.
Theorem 3.1. If P € Py, then
P(z) = Fo(z) + [e*Pr(z) + - F [ P(x),
where P; is a homogeneous harmonic polynomial of degree k—2j, for j =0,1,...,1.

Proof. Any polynomial of degree less than 2 istharmonic. Thus we may assume that
k > 2. Consider the linear mapping ¢ : Px — Pk_o defined by letting p(P) = AP
for P-€ Py, where A is the Laplace operator on R% We first show that ¢ maps
Py onto Pj_o. If this were not the case we could find a nonzero ) € Pi_o that is

orthogonal to Range(y). That is

(AP, Q) = (Q,AP) =0, for all P € Py,
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In particular, this must be true for P(z) = |z|?Q(z). Thus
0= (Q,AP) = Q(D)AP = AQ(D)P = P(D)P = (P, P).

But this is impossible since P # 0.
Let A; C Pj,j > 2, be the class of all harmonic polynomials in P; and B; =
|2 [*Pj—2.

We claim that P; is the orthogonal direct sum of 4, and B;.

(lz]*Q, P) forall Q € Pj_» & Q(D)AP =0 for all Q € Pj—»
& (Q,AP)=0forall Q € Pj_

=S IR =0

In particular, for j = k and P € P, we have P(x) = Py(z) + |2>Q(z) with Py
harmonic and @) € Pi_». It is clear that the desired statement follows by induction.

O]

Corollary 3.2. The restriction to the unit sphere S of any polynomial of d-

variables is a sum of restrictions to S of harmonic polynomials.

The restriction to the unit sphere S?~! of a homogeneous harmonic polynomial
of degree k is called a spherical harmonic of degree k. We let Hj denote the space
of spherical harmonics of degree k.

Let ¢ : A — Hy be defined by
P(P)= P|ga-1-

It is evident that this map has a trivial kernel. If Y € Hy, we can choose P(z) =

2FY (x/|z]) for  # 0. Then ¢ is an isomorphism of A, onto Hy. Hence,

dim Hj, = dim Ay, = dim Pj, — dim Py_y = WM(‘H b= 3). (3.1)

k k-1



11

To prove the next proposition, let us recall Green’s theorem.

Theorem 3.3 (Green’s theorem). Let u,v € C%(U), where U is bounded subset
of R%. Then

/ (uAv — vAu) dV = / (uOpv — VO, u) ds
U JoU

where 0, denotes differentiation with respect to the outward unit normal vector.

Proposition 3.4. If Y, and Y are spherical harmonics of degree k and l, with k # 1,

then

/ Yi(2)Yi(z) dz = 0.
Jgd-1

Proof. By Green’s theorem,

Yy 0aY, =Y, 8, ds = / (YxAY; — V;AY;) dz = 0.

Sd—1 lz|<1

But then for each z € S91,

(0¥ = X lem)—1

dr
d
= J(Tkyk(x))h:l
2 /CY]C(.QJ)
Similarly, 0,,Y; = 1Y;. Thus
(—'k) Yi(2)Y;(x) dv = 0.
Sd—1
Since'l # k, the last integral vanishes, as desired. O

Define L?(S%!) to be the Hilbert space of square-integrable functions on the
(d — 1)-dimensional sphere S9~! with respect to surface measure dz. Then each Hj

is a subspace of L?(S9~1). Moreover, we have
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Theorem 3.5. L*(S1) = @ H,.
k=0

oo
Proof. L?(S% 1) = @ H,, is true when the following three conditions are satisfied:
k=0

1. Hy is a closed subspace of L?(S~1) for each k;
2. Hy is orthogonal to H; for k # (;

3. For every f € L?(S% 1), there exists a sequence (f,,), where f,, € H,, for

each m, such that
f:f0+fl+~-7

where the sum converges in the norm of L?(S%1).

Condition 1 above holds because each H;. is finite dimensional and hence is closed
in L?(S%1). Condition 2 follows from the Proposition 3.4.

To prove condition 3, we only need to show that the linear span of U2 Hy is
dense in L2(S91). As we have already noted from the Corollary 3.2 that if P is a
polynomial on RY, then P|gs—1 can be written as a finite sum of elements of U H.
By the Stone-Weierstrass theorem, the set of restrictions P|ga—1, as P ranges over
all polynomials on R?, is dense in C’(Sd_l) with respect to the supremum norm.
Because C(S%1) is dense in L?(S%!) and the L?-norm is less than or equal to the
supremum norm on S9! “this implies that the linear span of UZ2 yHy is dense in

L%(S971) as desired. O

If{Yik, ..., YN, i} is an orthonormal basis of Hy, then it follows from Theorem
3.5 that the collection U ({Yi k,...,Yn, r} is an orthonormal basis of L?(8%1),

Thus, if f € L?(S%!) then there exists a unique representation,

oo Ng

F=Y 0 Yuk)Yak

k=0n=1
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where the series on the right converges to f in the L? norm. Let us fix a point
in S(‘é_l and consider the linear functional L on Hj that assigns to each Y in Hy
the value Y (z). By Riesz representation theorem, there exists a unique spherical

harmonic Z;,(;k) such that
LY) = ¥ () = / V() 20 (1) dt
gd—1

for any Y € Hj. This function Zg(;k) is called the zonal harmonic of degree k with

pole x.
Lemma 3.6. Let {Y1,¥5,..., YN, } be an orthonormal basis of Hy. Then
(D 287(6) = ok, V(@) ¥ou(0);

(ii) If p is a rotation ,then Z,()]fc) (pt) = 7 (t);

(i) SN |V (2)2 = C’];[fl where Cy_y = [ga_y da is the total volume of S*;

iv) IfY € Hy, then |Y(2)|> < N 1Y 2, where Ny, = dim Hy,.
C 2

d—1

Proof. Since {Y1,Ys, ..., Yn, } is an orthonormal basis of Hy,
N
Z# =3 "z, V) Y.
m=1

But by the defining property of zonal harmonics,

(2D Vo) = | V()2 (tydt = V().
Sd—1

Then Z¥ (t) = SN 1 Yo (2)Y(t). To verify (ii), let w = pt. We have

m=

[ 28eovd= [ 2@yt =i m) =Y (@)
gd—1 gd—1
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By the uniqueness of zonal harmonic, we have ng’;) (pt) = ZM (t). To verify (iii),
suppose 1 and z9 are in $971. We can find a rotation p in SO(d) such that px1 = 5.
Then

ZW (@3) = 20 ().

Consequently, Zg(ck)(a:) is a constant, say c. From (i), we have ¢ = Zg(ck)(a:) =

SVE Yo (2) 2. Since [[Yonllz = 1 for all m,

Nk_Z/ |2d1:—/d 1Z|Y |2d33—/ 7lcd33:cC’d_1.

Hence N’“: Y, ()2 = ¢ = Ni/Cy_1, so (iii) follows. From (i) it implies that
m=1

Ny,

N
Z(k)2:/ W2t — SOV ()2 =
122712 & ZP@Pdt =) V(@) ol

ni=1

Let Y € Hy. Then Y (z) = [qa1 Y ( )Zggk)(t) dt. By Schwarz’s inequality,

Ni

Y (@) < 1ZP13 Y15 < o ||YH2

This establishes (iv). O



Chapter 4

Laplacian on a sphere

We define the spherical Laplacian on S? to be an operator defined on S? given by

the formula:

Agas = Z (xk% — xl%)?

k<l

0
Notice that expressions like — do not make sense when applied to a function that

aLL’k
is defined only on the sphere S¢. For a smooth function f on S¢, extend f smoothly
0 0
to a neighborhood of S?, then apply #;—— — & ——, and then restrict again to S¢.
oxy, oxy
Note that

0 0 9
(a:l%; 7 xk%> |z|* = 2z — 2252 = 0.

Thus these derivatives are all in directions tangent to S¢. Therefore the values of
the operator on S? is independent of the choice of extension.

We choose the domain of Ags to be the space H of linear combinations of spherical
harmonics on S¢. Since this space is dense in L?(S?), it follows that Aga is a densely-
defined operator on L?(S%). Moreover, Aga is essentially self-adjoint, which we prove

it later.
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Proposition 4.1. Let Y be a spherical harmonic of degree k. Then

AgtY = —k(k+d—1)Y.

Proof.
0 0 \2
—Aga = — x;
;( Ox; ]8172)
1 0 0 \2
_22,#( "9z, _””faxz)
1 5 0 5 0? 0 0 9 0 0 0
1 5 07 A 0 0 0 0
== — g2 2 ; QLT
2i#j< xl@m? x36x3+x38 +$0xi+ xm]@%@:@)
0? 0 0 1 0 0
2
=Y —wio st Sigem—te ) (To—twis—).
vy Ox5 iZk Oz; dz; 2 = ( dx; 3331)
For fixed j,
d+1 2 2
0 0 5 02
2 e 2
;_xzatx?:_($l+$2++xd+l)6?+ 8
(i#37)
d+1 d+1 02 d+1 82 d+1 62
Z Z _ﬁW —|x] A+ija 2, where A = Z
=g T i =7
i#]
Therefore

d+1 1 9 9
o= Db L b T (3 )
i i#j ¢
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Since Y is homogeneous, it is enough to prove the statement for only a harmonic

monomial P = z]' .. .:Usfll where ni + - +ngy1 = k.
d+1 1
—Asdp = (Zn](n] — 1) + Zanj + 5 Z(nz + nj))P
J=1 i<j i#]
d+1 d+1 d+1
= (Zn? + Qanj ) an + dZni)P
j=1 i<j j=1 i=1
d+1 9
= (X m) —k+rd)P
j=1
= (k2= L4 kd)P
=k(k+d-1)P.

O

To prove essential self-adjointness of Agq, we recall the following theorem. For

the definition of self-adjointness, a reader can refer to [6], p 256.

Theorem 4.2 ([6], p 257 ). Let T be a densely defined symmetric operator on a

Hilbert space H. Then the following statements are equivalent:
a T is essentially self-adjoint;

b Ker(T* £1i) = 0;

¢ Range(T +4) are dense in H.

Now we are ready to verify the following proposition.
Proposition 4.3. The Laplacian Aga s essentially self-adjoint.
Proof. Firstly we verify that Ags is symmetric. Let

0 0

Xi' =i — Tj—.
J al‘j jal‘i
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Let so(d) be defined by {A € M,(R) | A' = —A}. From the definition of Lie

derivative we can write

d
Xijf () = — fleHig)| =g, for some A;; € so(d + 1).

If f, g are smooth functions on S¢, then

Kuto) = [ [ )] lasto) d

jt [ Lok~ ’jy)g(y) dy] lt=o (by compactness of Sd)

d
== [ f)g(eiy) dy} lt—0 (since dy is rotationally invariant)

= —(f, Xi;9).

In particular, (Agaf, g) = (f, Agag), for any spherical harmonics f, g. Thus Aga is
symmetric on H. Now to show that Ags is essentially self-adjoint, it is enough to

show that

Range(Aga + 1) = L*(S?, dx).

Recall that if Y} is a spherical harmonic of degree k, then
(Aga + 1)Y= (—k(k+d—1) +i)Y}.

Let {Y14,...,Yn, 1} be an orthonormal basis for Hj,. and f € L?(S%). We write

oo Ng

F=Y2 0 You) Yok

k=0n=1
F Nk Asd+l)Y

=22 (1Y) k(k+d—1)+4)

k=0n=1

Hence f € Range(Aga + 7). This shows that Aga is essentially self-adjoint. O
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Now we turn to the Laplacian on a complex sphere. Let J2 and J2 denote the

differential operators on Sg given by

In the same way as Aga, J2 and .J; e interpreted as operators on Sé.

AOUUINBUINT )
ANRINTUNINEAE



Chapter 5

Segal-Bargmann transform

For each point x € S§% and t > 0, there is the heat kernel based at x denoted by

pt(x, ) with the property that

d 1
P (x,¥) = 58500 (x,¥), and

lim | et (%, 3)FL5) dy7 =) for any f € c(s).

t—0t+

Given any function f in L%(S%) we define the Segal-Bargmann transform C;f of f
by

Cif(a) = /Sd pi(a,x)f(x)dx, aec SZ (5.1)

where p; is the heat kernel on S with py(-,x) extended by analytic continuation
from S¢ to S{é.

It is easy to see that C'f is a holomorphic function on Sfcl. Analogous to the Segal-
Bargmann transform on R?, we expect that C; maps onto a space of holomorphic
functions which are square-integrable with respect to a certain measure on S{é. We

can describe this measure explicitly using the identification S(% >~ T*(S%) via the
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map

sinh

a(x,p) = (coshp)x + 1 pp for any (x,p) € T*(S%).

Let v; be the function satisfying the following differential equation:

0 0?2 Jo1 coshR 0

1
al/t(R) =5 [8R2 + (d — )m@ vi(R) (5.2)

with the initial condition

lirél+ cd/ Ff(R)v¢(R)(sinh R)*"'dR = f(0)
t— 0
for all continuous functions f on [0, c0|. Here ¢4 is the volume of the unit sphere in

R9. The existence of v; is guaranteeed by [2], Section 5.7. Then the desired measure

can be written as

d—1
sinh 2
var(2p) ( % p) 2/ dp dx

where dp is Lebesgue measure on a d-dimensional real vecter space, p = |p| and dx
is the surface measure on S

In fact,

. d-1
(sm p) 2% dp dx
2p

is the (complex) rotationally invariant measure on S& = 7*(S%) and vo(2p) is the

density with respect to this measure. We state it in.the following proposition.

Proposition 5.1. The measure

inh 2p)
<sm p) 24 dp dx
2p

is invariant under the action of SO(d+1,C) on S& = T*(59).
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To prove this proposition, we need to use the next lemma. Let R = 2p and let

a=|al?> =3 |ax|?. Then
o := |a]? = cosh? p + sinh? p = cosh 2p.

Since p > 0, we have R = 2p = cosh™! a. Hence p can be considered as a function

of a.

Lemma 5.2. Let ¢ be a smooth, even, real-valued function on R and consider the
function on S{é given by p — ¢(2p) where p is regarded as a function of a. Then

Fo 220 cosh R 0¢
2 e g = — T N ap

Proof. By Chain Rule, we have

06 (1 d0dR 0a

Oay, ~ dR do day,
d.R _ 1 L il
do,~—(1—-a®2 y (1-|a]):
o =
aak = Q-
Then
0 0 do 1 » do 1 _
v .Y R) = ) S —— | e
(alaak “’“aal) P(R) aldR( (1- |a|4)§>ak ade< (1- ’a’4)§)al
V), _ _ . do 1
Consider

0 | I _ . do 1
aTLk(akal - alak)zlﬁ(’—*(l L ]a]4)§>

Y N VN ) ! ! 0. do
- i () oo g () + (o peim
. O S S A

A R S
() o o (G




Then

(aza(zk — ay (;;) 2¢(R)

=i (G

”k(j}z((llal)

1—lal!)z

HRARl b
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— — 2
- (1 _72‘4)3 ;lqu;))

e do ar a A%
* el 7 ot et )

(lal + lau*)(Ja* = 1) +[a*(ar@ — wiar)® 9¢

B <akaz— az%) »Po
la* =1 ) OR? (lajt=1)3 OR’
Note that
1
> (lagl? +adl?) = - > (lagl? + Jail?)
k<l y
it
s > (1 = o) (axl® + la)
el
1 3 P
= S At )l = JaP)
= d|al?.
1
> (@ — )’ = 5 > (1= o) (agar + afag” — 2|ag|?|ax|?)
k<l k.l
1
= §(|a2!2 +[a®® = 2[a) + O lawl* + lax|* — 2lax|!)
k
= —(la]* = [a*)
= —(la|*|+1):
Then
Z (a ¢ N ) i>2¢(R) — _ﬁ —(d— 1)&@
"Oay, "oy OR? al* — 1R

k<l

Since |a|? = cosh R, y/|a|* — 1 = sinh R, so we obtain the claimed formula.

Let us recall the following theorem about Haar measure on a Lie group.

O
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Theorem 5.3 ([5], Theorem 8.36). Let G be a Lie group, let H be a closed
subgroup, and let N and N g be the respective modular functions. Then a necessary
and sufficient condition for G/H to have a nonzero G-invariant Borel measure is
that the restriction to H of Ag is equal to Ag. In this case such a measure du(gH)

18 unique up to a scalar multiplication.

Proof of Proposition 5.1. We consider S& as the quotient SO(d + 1,C)/SO(d,C).
Since SO(d + 1,C) and SO(d,C) are unimodular, it follows that the modular func-
tions Ago(a+1,c) and Agoq,e) are equal to 1. Hence by Theorem 5.3, there is a
smooth SO(d + 1, C)-invariant measure on S& and it is unique up to a constant.
Especially, this measure must be SO(d+1)-invariant. Since dp dx is also SO(d+1)-

invariant, this measure must be of the form ~(p)dp dx for some smooth function +.

Let
N od(Sinh2pyd=1
ploy=2" (55T
and g(p) = ggg. Therefore g is an SO(d + 1)-invariant function. We will consider

J2 only on the space of SO(d + 1)-invariant functions.  We already know that

a
J2 must be self-adjoint with respect to the SO(d + 1,C)-invariant measure. In
particular, J2 must be self-adjoint when restricted to the space of SO(d+1)-invariant
functions, which we can write in the form f(a) = ¢(2p) for some smooth function
# on R. By Lemma 5.2, on the space of SO(d -+ 1)-invariant functions, JZ2 is equal
to the hyperbolic Laplacian ([2], page 177). Since the measure 3(p)dp dx is just the

hyperbolic volume measure, J2 is self-adjoint with respect to the measure 3(p)dp dx.

We can conclude that on SO(d+1)-invariant functions, J2 is self-adjoint with respect
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to both the measure v(p) dp dx and ((p) dp dx. Then

o). o))y = [ [ @) e)sw) dpax
_ 2(72(g a(p) «
—/mesd/mzoj 20D G0 dpa
[ [ R dpdx

zeS? Jp-x=0
2/ p))JZ(1)a(p) dp dx
z€Sd Jpx= 0

Thus J2g(p) = 0. By Lemma 5.2,

g cosh R Jg
[8R2 =D R Rl R = 0

Since g is a smooth SO(d + 1)-invariant function on ng, g is an even function. Then
9y

3 R| r—0 = 0. Solving the equation gives

99 —(d=1) [heoth SdS

Then

a 1
J ——=|g=0 =c¢ lim e —(d—1) [ coth S dS

8R e—0T
=0.

0
Therefore ¢ = 0,-and sois 5% Hence g is ‘constant, which implies that v is a

constant multiple of (. O

Let HL?(S, 1) be the space of holomorphic functions F' on S = 7%(S9) for

d—1
sinh 2
/ / |F(a(x, p))[*va:(2p) SIN 2P 2% dp dx < 0.
ze 8¢ Jp-x=0 2p

Here is the main theorem of this work.

which
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Theorem 5.4. The Segal-Bargmann transform Cy defined by (5.1) is a unitary map

from L?(S%, dx) onto HL?*(S&,vy).
We divide the proof into two parts : isometry and surjectivity.
Proposition 5.5. C; is an isometry.
Proof. Since the map a — p;(a,x) is holomorphic for each x € S we have
J2 pi(a,x) = 0 for each x € §9.
By definition of the heat kernel, we have

§Ja pr(a, x) = Ept(aa X).

Let f,g € L*(S%). Then

J2Cyf(a) = / (J2 pil@s)) f (x) dx = 0;

Sd
0
3R Cl@) = [ (G260 dx = SCuf ).

Therefore

L2 + ) Cufa)Cag(@) = 3 {(J2 Cuf (2)) Cugl@) +Cif () (2 Crgla) +

(J2Cif(a))Crgla) + Cuf(a)(Ja Crg(a))}

= 0 f(aClafa) + Cifla) & Crgla)
0

= a(C’tf(a)Ctg(a)).
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We know that da = 3(p) dp dx is SO(d + 1, C)-invariant. Hence

§i |y, CuT @) i

= /a s (ft(ctf(a)cw@ut(a)) da

-/ i L2+ )G @@ () + Cif(a)Og(a) ) g
= [ G Ty (2 + 22t Cuf () Cog@) 22 g

acsg

= [ GO + ) + o ulayda

aGSg

=0.

From Lemma 5.2 and the differential equation (5.2) satisfied by 1, we see that the

last integral is zero. Then 1 Crf(a)Cig(a)r(a) da is independent of t. By the
acSg

initial condition for v and since pi(a, -) = p¢(%, ) when p = 0 and PII(I) pe(x, ) = bx,

lim Cif(a)Cig(a)(a)da = . f(x)g(x) dx.

t—0 aesd

Since the value of the first integral is independent of ¢, this shows that C; is isometric.

O

Next, we we turn to the proof of surjectivity of C;. As we already know that if

Y}, is spherical harmonic of degree k,
AgaY) = —k(k+d—1)Y;.

Since Cy f(a(x:P)) = (fgape(%:¥)f(y) dy)cs

tA

CY,, = (eTSd Yk)(C

:(e

— ¢ (Vi)e, where Ay = —k(k +d —1).

AL
2

Yi)c
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Thus the image of C; contains analytic continuation of all spherical harmonics. Since
C} is an isometry, its image is a closed subspace of L2(Sfcl, v¢). Thus it suffices to
show that every holomorphic L? function on S(‘é can be approximated by spherical
harmonics of holomorphic representations.

Let F' be any holomorphic function on S(f:l. Then F|ga is a smooth function. F|ga

can be written as a spherical harmonic expansion as follows:

OONk

F(x) =33 (F, Y, )Yr(x) (x € 5%.

k=0n=1
From Chapter 3, we know that this series converges in L?(S¢, dx). We will verify

that this series converges uniformly:.

Proposition 5.6. If F is a smooth function on S¢, then the spherical harmonic

expansion converges uniformly to F.
Proof.

(Ade, Yn7k> = <F, Aden7k>
=(F,—k(k+d—-1)Y,1)

=—k(k+d—1)(F, Y.
This implies that

(AgldF; Yn,k> = (_1>m(k(k +d— 1>)m<F’ Yn,k>'



Then we can estimates the series by

oo Ng
DD UE Y p) Ynk(x)]
k=0n=1
oo N N
<D D KRVl o I,
k=0n=1
oo Ng
}jEjJMJFKM
C>OOnNkl
rZz(w,ﬁd Tl ASEY0)
(S ) (3 (ryar)’
< - (AF, Yy k)
\ﬁ 2O 5 k=0 n=1 *

(ZWM ) Az,

By (3.1), we know that

Nk:(d+2k—m<d+k—2>

k k=

Hence,

EZka+d—n

TR o 1+ 4o ) M )

=0
If m > d, then

(k+d—2)! (d+E—2).. (k)

(k—Dl(k+d—1)"2 (k+d—1)m2 <1

Since
(d+2k—1)
k(d+k—1)2

— 0 when k£ — oo,

const

the k' term in the series is bounded by 12m

converges uniformly on S¢.

29

. By Comparison test, this series

O]
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Since F' is assumed holomorphic, and each term in the Fourier series above has
an analytic continuation to Sfcl, it is natural to suggest the following series expansion

for F(a)

OONk

= Z Z(F, Yn7k>Yn,k(a)'

k=0n=1

We will refer to this series as the holomorphic Fourier series of F, abbreviated HFS.

Proposition 5.7. For any holomorphic function I on Sg the holomorphic Fourier

series of F' converges to F uniformly on compact sets.

Proof. For each a € S&, define the function F,(x) = F(Ax), where a = Aegyq =
A SO(d,C). F, is a smooth function on S%. We will consider the Fourier series of F,
at point x and HFS of F at point Ax. Since Laplacian on R? is invariant under the
action of orthogonal matrix, ¥, (Ax) is a spherical harmonic of the same degree.

Then
Ny,
Ax) = Z C’Jfb,lYl,k(X)
=

and
Zanlaml—/ Y 1 (AX) Yy, 1 (Ax) dx

= / Yo k(%) Yo 1 (%) dx
Sd

=9.M.

Thus (aﬁ 1)1<n,i<N, is an-orthogonal matrix. We can write Y}, 1(x) in the form

Ny
X) = Z aﬁlel,k(A*lx).
=1

Since (af )71 = (a ), Y u(A71x) = ZlN:kl a¥ Y, x(x). Consider the coefficients of
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the Fourier series of F, at point x. We have

<Faa Yn,k> = F(AX)Yn,k(X) dx
Sd

= F(x)Y, 1 (A7 %) dx
Sd

N
SO / F(X)Y) 1 (x) dx
XY 54

This implies that

oo Ni oo Ni Ng
SN T Fu Y)Yk () = D00 (F Vi) Yak(x)
k=0n=1 P =1 Ve
oo Ng
=> ) (F YY) Yik(Ax).
k=0 =1

We can see that the holomorphic Fourier series of F' at the point Ax is the same as
the ordinary Fourier series of F, at the point x.

Let x = eg441. Then
F(a) = Fy(eq+1) = HES of F at Aeyy; = HFS of F at a.

This shows that the HES converges pointwise. We will verify that HFS converges
uniformly on compact sets in Sg. Let K be any compact set in Sg. Since K is
compact, there exists M > 0 such that |[A™F(a)| < M for all a € K. Because HFS
of F' at a is equal to the Fourier series of F, at;egr,it suffices to show that the

series 37 SNk Fo., Y1) Yar(eqr1) as a function of a, converges uniformly on
k=0 2um=1 » In, ; + ) g y



oo Ng
Z Z ‘ <Fa7 Yn,k> Yn,k(edJrl)‘
k=0n=1
oo N N
Vi
<ZZ| FaaYnk ’ HYnkHQ
k=0n=1
(o) Nk
Z Z | (A" Fo, Yo i) |
VCa = 2 k—l—d—l)
oo N oo Ng

IN

> > Gt g —)) Qo (A" Fa o) !

( k=0n=1
( k;2m k:—{—d )2m>5 [A™ Fally
(>

¥
g ). A7 Eull

IN

ﬁﬁﬁﬁ\

k2m k+d

iy
)QM.

IN

(Z k2m k:+d—1)2m

uniformly on any compact subset K of S(%.

converges to F in LQ(S(%, vt).

is SO(d + 1)-invariant,

Vi) B iV @erla)de=! (Vi Aga¥i)
S(C

= (AgaYs, V)

= AgaYi(a)Yi(a)v(a) da.

S¢
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By proving in a similar way, we have holomorphic Fourier series of F' converges

O]

Proposition 5.8. If F' € HLQ(Sg,Vt), then the holomorphic Fourier series of F

Proof. At first, we claim that this series is an orthogonal series. Let Y3 and Y; be

spherical harmonic polynomials of degree k and [ respectively, k # [. Since v,(p) da
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Since Ags commutes with analytic continuation,
Aga (Yn,k)C = (ASdYnJg)C =—k(k+d— 1)(Yn7k)(c.

Then

—l(l+d-1) | Yi(a)Yi(a)v(a)da=—k(k+d—1) [ Yi(a)Yi(a)v(a)da.

sé 54
Since [ # k, fsg Yi(a)Yi(a)vi(a)da = 0. Since the series is orthogonal, it will
converge provided that the sum of the squares of the norms is finite.
Let E, = {a(x,p) €52 | |p| <n}. Claim that E, is SO(d + 1)-invariant. Let
A e SO(d+1). Then

inh
A(a(x,p)) = Acoshpx + AP

p

inh
= cosh p(Ax) + e

(Ap).

Since A € SO(d + 1), it follows that |Ap| = |p| < n, |Ax| = |x| =1 and Ax - Ap =
x-p=0. Thus A(a(x,p)) = a(Ax, Ap) € E,,.
Hence E,, is an increasing sequence of compact SO(d+1)-invariant sets, with U, E,, =

Sg:. Since F' =) 4Y; on E,,, where Y}, = ZgiﬂF, W NG
(o.]
2 2
1P|z 1" =D Yals, 12
k=0

Note that ||Y|g, |[[* increases with 7.

We may apply Monotone Convergence  Theorem so.that

[0.9]
DY =11F)® < oo
k=0

Hence this series converges in L2(S%, ;). O

This completes the proof of surjectivity.
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