

CHAPTER IV

SKEW RINGS

In this chapter we shall classify complete ordered skew ring up to isomorphism.

Definition 4.1 A system $(R,+,\cdot,\leqslant)$ is called an <u>ordered skew ring</u> iff $(R,+,\cdot)$ is a skew ring and \leqslant is an order on R satisfying the following properties:

- (i) For any x, y ϵ R, x \leqslant y implies that x+z \leqslant y+z and z+x \leqslant z+y for all z ϵ R,
- (ii) For any x, y \in R, x \leqslant y implies that x•z \leqslant y•z and z•x \leqslant z•y for all z \geqslant 0 in R.

Lemma 4.2 Let f: R → R satisfy the following properties:

- (1) f(x+y) = f(x)+f(y) for all x, $y \in \mathbb{R}$,
- (2) $x \le y$ implies that $f(x) \le f(y)$ for all x, $y \in \mathbb{R}$. Then there exists an a > 0 such that f(x) = ax for all $x \in \mathbb{R}$.

Proof: Let g(x) = f(x)-xf(1) for all $x \in \mathbb{R}$. So we have that $g(1) = f(1)-1 \cdot f(1) = f(1)-f(1) = 0$. Let $x, y \in \mathbb{R}$ be arbitrary. Thus g(x+y) = f(x+y)-(x+y)f(1) = f(x)+f(y)-xf(1)-yf(1) = (f(x)-xf(1))+(f(y)-yf(1)) = g(x)+g(y). Therefore, substituting 1 for y we have that g(x+1) = g(x)+g(1) = g(x) for every $x \in \mathbb{R}$. Hence g is a periodic function of period $x \in \mathbb{R}$. Now, for every $x \in (-1,1)$ f(x) < f(1)

so f is bounded on (-1,1) and f(1) is an upper bound. We get that for every $x \in (-1,1)$, $g(x) = f(x)-xf(1) \leqslant f(1)+f(1) = 2f(1)$ which implies that g is bounded on (-1,1) and 2f(1) is an upper bound. Since (-1,1) contains an interval of length 1, g is a bounded function on \mathbb{R} by periodicity. Clearly, g(0) = 0, therefore 0 = g(0) = g(x-x) = g(x)+g(-x) for all $x \in \mathbb{R}$. Thus g(-x) = -g(x) for all $x \in \mathbb{R}$.

Let B=2f(1). Thus $g(x)\leqslant B$ for all $x\in \mathbb{R}$. So we have that $-B\leqslant g(-x)$ for all $x\in \mathbb{R}$. Therefore $-B\leqslant g(x)$ for all $x\in \mathbb{R}$. It follows that $-B\leqslant g(x)\leqslant B$ for all $x\in \mathbb{R}$.

Case 1. Suppose that B < 0. Thus g(x) = 0 for all $x \in \mathbb{R}$. Therefore f(x) = x f(1) for all $x \in \mathbb{R}$. Let a = f(1). Since 0 = f(0) < f(1), we get that a > 0 and we have the lemma.

Case 2. Suppose that B > 0.

Subcase 2.1. Suppose that g(x) = 0 for all $x \in \mathbb{R}$. Therefore we have that f(x) = xf(1) for all $x \in \mathbb{R}$ and letting a = f(1), we get that $a \ge 0$ as before so we are done.

Subcase 2.2. Suppose that there exists an element x_0 in IR such that $g(x_0) \neq 0$. We can assume that $g(x_0) > 0$. Choose C & IR such that $g(x_0) > C > 0$. Since g is an additive homomorphism, for every $n \in \mathbb{Z}^+$, g(nx) = ng(x). Since for every $x \in IR - B \leqslant g(nx) \leqslant B$, we get that for every $x \in IR - B \leqslant ng(x) \leqslant B$ for all $n \in \mathbb{Z}^+$. But 0 < C and $0 = \inf\{\frac{B}{n} \mid n \in \mathbb{Z}^+\}$. Hence there exists an $N \in \mathbb{Z}^+$ such that $\frac{B}{N} < C$. Thus $g(x_0) = \frac{1}{N} g(Nx_0) \leqslant \frac{B}{N} < C$, a contradiction. So this case cannot occur.

Proposition 4.3 Let m, n $\in \mathbb{Z}^+$ be such that m \neq n. Then $(m\mathbb{Z},+,\cdot)$ is not isomorphic to $(n\mathbb{Z},+,\cdot)$

<u>Proof</u>: Let m, n ϵ \mathbb{Z}^+ be such that m \neq n. $(m\mathbb{Z},+)$ is an infinite cyclic group whose only generators are m and -m and $(n\mathbb{Z},+)$ is an infinite cyclic group whose only generators are n and -n.

Suppose that $(m\mathbb{Z},+,\bullet)$ is isomorphic to $(n\mathbb{Z},+,\bullet)$. Let $f\colon m\mathbb{Z} \to n\mathbb{Z}$ be an isomorphism. Thus $f(m)=\pm n$.

Case 1: f(m) = n. Therefore f(ml) = nl for all $l \in \mathbb{Z}$. Let $x, y \in m\mathbb{Z}$. So there exist unique p and q in \mathbb{Z} such that x = mp and y = mq. Thus f(xy) = f(mp mq) = f(m(mpq)) = n(mpq) and f(x)f(y) = f(mp)f(mq) = (np)(nq). Thus $f(xy) \neq f(x)f(y)$, a contradiction.

Case 2: f(m) = -n. The proof is similar to Case 1.

Theorem 4.4. Let $(R,+,*,\leqslant)$ be a complete ordered skew ring. Then $(R,+,*,\leqslant)$ is isomorphic to exactly one of the following rings:

- (1) (IR,+,•,≤).
- (2) $(\mathbb{R},+,0,\leqslant)$ where $x \circ y = 0$ for all $x, y \in \mathbb{R}$.
- (3) $(n\mathbb{Z},+,\cdot,\leqslant)$ for some $n \in \mathbb{Z}_0^+$.
- (4) $(\mathbb{Z},+,0,\leqslant)$ where $x \circ y = 0$ for all $x, y \in \mathbb{Z}$.

Proof: Since $(R,+,*,\leqslant)$ is complete, by Theorem 1.26 and Theorem 1.31 either $(R,+,\leqslant) \simeq (R,+,\leqslant)$ or $(R,+,\leqslant) \simeq (Z,+,\leqslant)$ or $(R,+,\leqslant) \simeq (\{0\},+,\leqslant)$.

Case 1. Suppose that $(R,+,\leqslant) \cong (IR,+,\leqslant)$. For simplicity, we shall assume that R = IR.

Fix a $\epsilon \, \mathbb{IR}_0^+$. Define $f \colon \mathbb{R} \to \mathbb{R}$ by $f_a(x) = a * x$ for all $x \in \mathbb{R}$. Let x, $y \in \mathbb{R}$ be arbitrary. Thus $f_a(x+y) = a*(x+y) = a*x + a*y$ = $f_a(x) + f_a(y)$. If $x \leqslant y$ then $a*x \leqslant a*y$, it follows that $f(x) \leqslant f(y)$. Therefore f_a satisfies the hypothesis of Lemma 4.2, so there exists an $r_a \in \mathbb{R}_0^+$ such that $f_a(x) = r_a x$ for all $x \in \mathbb{R}$.

Let a ϵ [R]. Then -a ϵ [R]. So by the above, there exists an $r_{-a}\epsilon$ [R] such that $f_{-a}(x)=r_{-a}x$ for all x ϵ [R]. Now for all x ϵ [R], $f_{a}(x)=a*x=-(-a)*x=-(r_{-a}x)=-r_{-a}x$. Let $r_{a}=-r_{-a}$. Then for all x ϵ [R], $f_{a}(x)=a*x=r_{a}x$. Hence for every a ϵ [R], there exists an $r_{a}\epsilon$ [R] such that $f_{a}(x)=r_{a}x$ for all x ϵ [R].

Let $F: \mathbb{R} \to \mathbb{R}$ be defined by $F(a) = r_a$ for all $a \in \mathbb{R}$. Let a, $b \in \mathbb{R}$. We shall show that F is an additive homomorphism. Let $x \in \mathbb{R}$ be arbitrary. Then $r_{a+b}x = (a+b)*x = a*x + b*x = r_ax + r_bx$ $= (r_a + r_b)x$. Putting x = 1, we get that $r_{a+b} = r_a + r_b$. Hence $F(a+b) = r_{a+b} = r_a + r_b = F(a) + F(b)$.

Let a_1 , $a_2 \in \mathbb{R}$ be such that $a_1 \leqslant a_2$. We shall show that $F(a_1) \leqslant F(a_2)$. Now $a_2 - a_1 \geqslant 0$ and 1 > 0. Therefore $0 \leqslant (a_2 - a_1) * 1$ $= a_2 * 1 - a_1 * 1$, it follows that $a_1 * 1 \leqslant a_2 * 1$ so $f_{a_1}(1) \leqslant f_{a_2}(1)$. Therefore $(r_{a_1}) 1 \leqslant (r_{a_2}) 1$. Thus $r_{a_1} \leqslant r_{a_2}$. We get that $F(a_1) \leqslant F(a_2)$.

We showed that F satisfies the hypothesis of Lemma 4.2, hence there exists an s ϵ \mathbb{R}^+_0 such that F(a) = sa for all a ϵ \mathbb{R} . Let a ϵ \mathbb{R} be arbitrary.

Subcase 1.1 s=0. Thus F(a)=0 for all $a \in \mathbb{R}$. Let $u,v \in \mathbb{R}$. Then $u*v=r_uv=F(u)v=0*v=0$. Thus $(R,+,*,\leqslant) \cong (R,+,o,\leqslant)$ where $x \circ y=0$ for all $x, y \in \mathbb{R}$.

Subcase 1.2 s > 0. Clearly F is a bijection in this case since F(a) = sa for all $a \in \mathbb{R}$. We shall show that $F(a*b) = F(a) \cdot F(b)$ for all a, $b \in \mathbb{R}$. To prove this, let a, $b \in \mathbb{R}$. Thus $a*b = f_a(b) = r_ab = (sa)b$ and $r_{a*b} = s(a*b) = s((sa)b) = (sa)(sb) = r_a \cdot r_b$. Hence $F(a*b) = r_a*b = r_a*r_b = F(a) \cdot F(b)$. Therefore F is a ring homomorphism. Hence $(R,+,*,<) \geq (R,+,*,<)$.

Case 2. Suppose that $(R,+,\leqslant) \cong (Z,+,\leqslant)$. Since (Z,+) is an infinite cyclic group, R is an infinite cyclic group. Let $g_0 \in R$ be a generator. Then $-g_0$ is a generator of R. Now either $g_0 > 0$ or $-g_0 > 0$. We can assume that $g_0 > 0$. So $g_0^2 > 0$. Since $g_0^2 \in R$, there exists an m $\in Z$ such that $g_0^2 = mg_0$, which implies that m > 0.

Subcase 2.1 m = 0. Thus $g_0^2 = 0$. Let g_1 , $g_2 \in R$ be arbitrary. Thus $g_1 = n_1 g_0$ for some $n_1 \in \mathbb{Z}$ and $g_2 = n_2 g_0$ for some $n_2 \in \mathbb{Z}$. We get that $g_1 * g_2 = (n_1 g_0) * (n_2 g_0) = (n_1 \cdot n_2) g_0^2 = 0$. Hence $(R,+,*,\leqslant) \geq (\mathbb{Z},+,o,\leqslant)$ where $x \circ y = 0$ for all x, $y \in \mathbb{Z}$.

Subcase 2.2 m > 0. Define h: $R \to mZ$ in the following way:

Let $g_1 \varepsilon R$. So $g_1 = ng_0$ for some $n \varepsilon Z$, define $h(g_1) = h(ng_0) = nm$.

To show that h is an injection. Suppose that $h(ng) = h(n g_0)$.

Thus nm = n m, it follows that n = n l. Hence h is an injection.

To show that h is surjection. Let p ϵ mZ, so p = nm for some n ϵ Z. We see that ng ϵ R. Thus h(ng) = nm = p. Hence h is a surjection.

To show that h is a homomorphism. Let g_1 , $g_2 \in R$. Then there exist n, n \in Z such that $g_1 = ng_0$, $g_2 = ng_0$. Thus

$$h(g_1 + g_2) = h(ng_0 + n'g_0)$$

= $h((n+n')g_0)$

=
$$m(n+n')$$

= $mn + mn'$
= $h(ng_0) + h(n'g_0)$
= $h(g_1) + h(g_2)$

and

$$h(g_1*g_2) = h((ng_0)(n'g_0)) = h((nn')g_0^2)$$

$$= h((nn')mg_0)$$

$$= (nn')m^2$$

$$= (nm)(n'm)$$

$$= h(ng_0)h(n'g_0)$$

$$= h(g_1) h(g_2).$$

Hence we proved that h is an isomorphism. Therefore $(R,+,*,\leqslant) \ \underline{ } \ (m\mathbb{Z},+,*,\leqslant) \ \text{for some m } \epsilon \ \mathbb{Z}^+.$

Case 3.
$$(R,+,\leqslant) \simeq (\{0\},+,\leqslant)$$
. Clearly $(R,+,*,\leqslant) \simeq (\{0\},+,\cdot,\leqslant)$.

Corollary 4.5 A complete ordered skew field is isomorphic to (IR,+,*,<).