CHAPTER III

SEMIFIELDS

In this chapter, w hal 3 1fy all O-skew semifields up

to isomorphism in Se x we shall give partial

classifications of
R
Definition 3.1.1. led an ordered O-skew
semifield iff (K,+, d and < is an order on K
satisfying the follo
(i) For any ?5{ ies that x+z < y+z for all
z e K, L~ i . s d
(ii) For ﬁy sm:at xz £ yz and zx £ zy
' for all z > 0 in K end

<mﬂuﬂaﬂﬂwﬁwawnﬁ
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X 5yte K\{O} such that x+y = 0, then K is a skew field.

Proof: Assume that x, y € K~{0} are such that x+y = 0,
let z € K be arbitra}y. since x € K~1{0}, x| exists. Therefore
“ w4 g -1 21
zx (x+y) = (zx )0 = 0, it follows that z+zx y = 0. Thus zx Yy

L4 i1s an additive inverse of z. Since z € K is arbitrary,- b has an
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additive inverse for every b € K. Hence K is a skew field.#

Notation : Let K be an ordered O-skew semifield. Then we will

denote D;'= {xe K|x > 0} and D; = {x e K|x < 0}. Note that 1¢ D;,

so D+ is never the empty set.

K ] L’
The followi n foll ately from Definition
X1
Remarks : 1) Xy € D
2)
Proposition 3.1.3. | é'a complet. ered O-skew semifield
which is not a skew {=“Then D a complete ordered skew ratio

semiring and D%;Sf

addition if D v )

3
Proof: ;1rst, we shall show that D is a complete ordered

““°FT“1§J‘E}'J’W NenNg =

y > 0, whichlimplies that x+y . Suppose that x+y 0, by

RN IRIMA TN A e

Thus k- We see that xy > . Suppose that xy = 0. Then

% (xy) = xf1-0, therefore y = 0, a contradiction. So xy € DK’ To

show that x| > 0, suppose that w i By Definition 3.1.1,

x-x_1 ix07=0, so T X 0, a’eontradiction.: .Thus x-'1 > 0. This shows

that D, is an ordered skew ratio semiring.

&
K
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Next, we shall show that D+

A +
k 18 complete. Suppose that A € DK

is a nonempty set having an upper bound in D;, it follows that A € K.
Since K is complete, A has a least upper bound in K. Let z = sup(RA) .
So for every a € A, a< z. Fixbe A. We get that 0 <b < z.

Therefore z € D;. Thus D; is complete, as required.

“i y/ To show that D is a complete
ordered semigroup mgg > & let x, y € DK’ Then x < 0

" and y < 0. ThusV
an ordered semigr 5 ’

Finally, suppose

\i X+y € DK' Thus DK is
' DK i lete, suppose that A C D;
! '.\ Y, .

, it follows that A C K.

'tl'fe irlme -skew semifield of

HINA. .
TR imm (10 T

induction we get that 0 < 1 <2 < ... <p in P. Thus G<i1<2
0<3<¢2«<.:.¢p=10, acontradiction.’ Therefore P 2 Zp for all
prime p. This shows that (P,+,%) ™ (Q+,+,'). Using the same

o

arguement as before (P,+,*,<) (Q:,+,‘:\<) "
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Theorem 3.1.5. Let (K,+,*,<) be a complete ordered O-skew semifield

such that 141 # 1. Suppose that (K,+,¢) is not a skew field. Then

(Kyts*0€) & (R, 4,,8).

Proof: By Proposition 3.1.3 and Proposition 3.1.4, (D;,+,',\<)

is isomorphic to (IR+,+,',$).

N Dwe shall show that D = @. Suppose

, @Jmce (kv {0},*) is a group,

UDK’ it follows that

that D;~# g. Let x € D

x(K~ {0}) = kv {0}.

+ - +
- >
xDKU XDy 2 Dy for all
X € DK'
Case: 1: Suppose t < U/ £9 all , for all y € K. Let

y € Dl_< and z € D;. Thus we get that

(y+z)D;(=_> DE, so there (y+z)t € D;. Now, we

have that zt e D.

K K

, yt+zt € D_. Therefore

l-j. ,-"i‘l t.r

(y+z)t # yt+zt. :lThJ.s shows tfmf ibutive, a contradiction,

so this case ¢

|

Case 2: Suppose that a+b > 0 for some ace D and for some b g K.
o - o PN WA AT e
atb > 0. L8 c = {c e k|a+ o > 0}. Clearly, A#g 51nce b e A. Thus

o %W‘} ReOF 94 31749 9 WEI"’%@"E!‘ § 3y

Kin'sac mplete, C has a greatest lower bound,say z . Therefore z ; 0.
* *
We shall show that a+z = 0. To prove this, suppose that a+z # 0.
* *
Then either a+z < 0 or a+z > 0.
* * *
Subcase 2.1: atz > 0. If z = 0; then a+z = a+0 = a < 0,
* ; * + :

a contradiction. Thus z > 0, it follows that z € DK' Since

+ : .
(D;,+,',\<) ia isomorphic to (RT+,',\<), (DK"() is densely ordered, which
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; . *
implies that there exists an r € D; such that 0 < r < a+z . Let

3 :
0 <u <min{r,z }. BAgain, using the fact that (D;,+,',$) is
isomorphic to (R+,+,°,$),'there are s,t,w € D; such that r = usw,
* * i
a+z =7r+s and z = u+t. Thus a+z = r+s = u+w+s. Therefore,
“ * i
substiting u+t for z we have that a+u+t = u+w+s which implies that

“a+t = w+s > 0. :fg_t"‘ z". Since 2" = u+t where u,
+ % : ‘!?ﬁg\. .42223'
"‘J e —

t e DK’

Step 1 N 2*} for all x € D

Let x € D; be arbi :;" .«‘x' € 2'}. Then B hés 0 as
an upper bound. i ' v: Y]q7._ te, B has a leasf upper
bound.‘ Let y = s 0. Ass ‘no that y < 0. Then
(n2)f1x < “hbx s y for all

n e 2% which implies that-n x < } -’ *. Therefore 2y is
an upper bound gﬁ 3?380 at y < 0, this implies

Then 0 = sup(B).Iﬂ

step 2. ﬂ 5H ﬂs@wﬂﬂﬁﬁ wﬁq ﬂ%' 16 prove this,

let z > z arbltrary. Tq?n there ex1sts an r'e C such that

= Qﬁﬁﬁ%ﬂﬁﬂkﬂﬁﬂ NYIRE

Step 3. We shall show that there is g > 0 such that (a+z*)+q < 0.

To prove this, suppose not. Then (a+z*)+d > 0 for all d > 0. We claim
that c+d > 0 for all ¢ < 0 and for all 4 > 0. To prove the claim,

let ¢ < 0 be arbitrary. If c 2 a+z*, then c+d 2.(a+z*)+d > 20 for 7all

a>0.7 1f e < a+z*, then by the fact that 0 = sup{n-1c]n € Z+},
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. * - - *
there exists an n € 2 such that a+z < n 1c . Thus n 1c+d >la+z )+d >0

for all 4 > 0. It follows that n_1(c+nd) >0 for all 4 > 0. Since

+ -

np* = %, n~'(c+d) > 0 for all d.> 0 which implies that c+d > 0 for

all @ > 0, so we have the claim. Let t < 0 and s > 0. By the claim

t+s > 0. Since e 0, (t~+s)t-‘I < 0. But we have that tt.1 =1>0

-1 % e

and st”' < 0. Again, by ﬁ + st” > 0. Thus K is not
——

distributive, a con
*

that (a+z )+g < 0,

*
By Step hat (a+z )+r £ 0. But
* 3 *

we have that z +r 0. Thus (a+z )+r > 0,

a contradiction.
Thus we hav a4z, = y Proposition 3.1.2, K is

a skew field, a contr g. This shows that

(Ky#,0,€) & (RY,+,°

Hence, 507 = \_,"‘
Notation: Let K bé,an ordered O-skew semifield and z € K. Then we
w11 demﬂu Tl ‘Vlﬂ Wﬁ Rtk b pog ane
s B (z) =T

W?ﬂ\"lﬂim URIAINYIAY

Assume that (K,+,°*,<) is a complete ordered 0O-skew semi field
which is not a skew field such that 1+1 = 1. Then by Proposition 3.1.3,
(D;:,+,',\<)_ is a complete ordered skew ratio semiring. By Theorem 2.5
and Theorem 2.8, (D;,+,',\<) is isomorphic to exactly one of the

following ratio semirings:



50

(1) ®, min, +, Q.
(2) ({2°|n € 2}, min, -, €.

(3) (R+, max, °*, <)-.

(9)  ({2%n ¢ 2}, max, ¢, £).

5 (IR )

Theorem 3.1.6. There does 1 oxi st an ordered 0O-skew semifield

(K,+,°*,<) such that (Df'~‘b ‘ s d phic to either of the

ordered 0O-skew semifield

(K,+,*,<) such tha LI iei & to (R,+,°,<) or
rality, suppose that

> such that x = 0, y =

K~ :
and z = 24. Then x < y.. By ién 3.1.1, x+z £ y+z. But we
4} = 23, this implies

have that x+z ‘ r+z = min {1 2

Theorem 3ﬁzu gﬂ(wzj\maWﬁéTﬂdﬁred - sl me e Bl

IE (D 3+ Q) is isomorphic to (lR ,max, <), then (K, +,°,\<) is
Proof: Assume that (D ,+,°,<) is isomorphic to (IR ,max, 3 <)4
Then for every a, b e DK’ a+b = max {a,b}. R (i)

-+
Itlsclearthatl(z)={teD | t+4z = 2z} = {t e Dy t.g2) for

all z'e DK' .....................

Now, we have that K = Dl-( U{O}UD;.Toshow that Dl-( = g§. To prove this,
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suppose not. Then D;; £0.

‘Step 1. We shall show that for évery a, be D;, a < b implies that
zb < za and bz < az for all z € Dl_(' To prove this, let a, b € D; be

arbitrary. Suppose that a < b. From (i), we have that a+b = b. Let

‘z € D; be arbitrary. Then ‘ ' ) = za+zb. Since zb < 0,

‘/}hen e - 2~ 1(zb) which
A —— o
7 dié!iorq)re zb < za. Similarly,

. za+zb £ za. Thus zb

implies that a

bz < az.

Step 2. We sh 1 WY Ly iff x+y =

To prove this, £ y. Then

X = X+X £ X+Yy. o L On the
other hand, suppos then by the first proof
in this step shows that @g‘é—'-’y’, s that x+y # y+x, a

:‘é')‘-—
contradiction. T

By Step 2-—we-se ' G n-in-D- i minimum, therefore it

is clear that 1;9 =1 | s = {ﬂe Dy | w < s} for all
50 5 SR S S Ot S T R g i R e Sy S R (iii)

Sp E.J,lé ek ammm s
w*rmmmmmwm é"}:r;;:;, £

Step 2, x+y

; ; -1 -1 =1 = = -1 _

implieés that v +x =y . By Step 2,y €% ., My =k
- -1

then x = y, a contradiction. Therefore y T < x™'. on the other hand,

suppose that y-1 < x_1. By the first proof in this step, X <'V.-

Step 4. We shall show that x+y = x or x+y =y for all x € D; and

: - + )
for all y ¢ DI':. To prove this, let x € D and y € Dl( be arbitrary.



- Cage 2: x4y > 0. 'Since x+

.Step 5.. We shaJM

1
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Clearly, x+y # 0.

Case 1: x+y < 0. Since x+y = (x+x)+y = x+(x+y), x € I;(x+y).

By Giid ) (x+y) = {s ¢ D | x+y < s}. Then X+y < x. But we have

that 0 < y, this implies that x = x+0 < x+y. Thus x+y =

(y+y) = (x+y)+y, y € I. K (x+y).

By (ii), I;(x+y) = {t e D Since x < 0,

x+y £ 0+y = Theréiy

x+y.

To

prove this, let x
: A i AR \ Q-

Then y+x = X whic - hus x 1y € IK(1), hence

y € xI (1). € ‘the other hand, suppose

that b € xIK(1). ‘ (1), so b+x = xt+x
=x-_(t+1). Since t € VI = X. Thus b € IK(x).
Therefore xI (1)
Step 6. We s ¥ \:d' x # 1 for all
n:e Z+. To proveBhis, arﬁtrary. Suppose that
m 1 for some mt 3 Clearly 1, so m-1 ¢ z Therefore
P ﬂu&l m&wmmm sE vy
m-2, L T e .#x+ 1. Thengx = 1 which is

waﬁ'mn‘szu NRAINYAR Y

Step 7. We shall show that I;(T) # §. To prove this, let z,t € K

be such that z < 0 < t. By Step 4, z+t = z or z+t = t.

- : i1
Case 1: z+t = z. Then z(1+z 1t) = z which implies that 1+z t = 1.

L = e = = -
Since z t ¢ DK, Zz i tae IK(‘I)nDK = IK(1). Thus IK(1) £ g,
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Case 2: z+t = t. Then £(t”'z41) = t which implies that 1241 = 1.

: =9 o - - "
Since t z € DK’ tirz e IK(1)ﬂDK = IK(1). Thus IK(1) # 0.

Step 8. We shall show that I;(1) has a greatest lower bound in D;.

It suffices to show that I;(1) has a lower bound in D,. To prove

K

as no lower bound in D;. Let d ¢ D;

be arbitrary, so d is

an r € Il-((” such @
T4d € 140 = 1. m!!“”‘

have that I;(1)

of I;(1). Then there exists

= 14r £ 1+d. Since 4 < 0,

Ty e
‘\h;kihh;-fhen DK c IK(1). But we

D= I (1). Therefore for

- every a € D;, a+l = ' il \ 't efore a + 1= 1. Since

Then o ¢ I_ (1)) so—a= : - = herefore P - I;(1),

if follows that fj 3 eiﬁ exists an s € I_(1)
o K

o’
such that s < o ‘ 'o prove thls aim, suppose not. Then o < s

sﬂ L) A NS K AR 0, oo e o

a contradlc ion. Hence we have the cl m. Let s € (1) be such

SRR MAIRUNNIINGARE < o o

of thls step, we can show that there exists an r € I (1) such that

phw BT UG ] L e < 1+s‘1. Sitce w ) < 01 147} < 0%1.= 1: . Then
7l 1, 80 14s = s. 'Since s € I;(1), s+1 = 1. Thus's = 1, a
contradiction.

-1 2
Step 10. We shall show that o < o. To prove this, suppose not.

-1 -1 ¢ -1
Then o < ¢« . By Step 9, 1= 140 £ 140 . Since a < 0
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-1

1+Q 140 = 1. Thus 1+<>t_1 = 1 which implies that o+1 = @. Since

N

a+1 = 1, @ = 1, a contradiction.

Step 11. We shall show that there does not exist y € D; such that

u'1 <y < a. To prove this, suppose not. Let y € D; be such that

-1 -1,-1

] 3y i iloe ) = a. Then
+ /// Hence y = 1, a contradiction.

==:. zor all n € 2'. We shall
. > .

AN,
s Let n € 2+.

el y < @. Thus y+1 = y.

v =y~ ! which implies

Step 12. We shall s
prove this by usi)
Ifn=1, then b = 1 for some
n-1 > 1. Then a = a1 = (o 4a)#?

= o 4 (as1) = o +14

Step 13. We shall sh < C ne Z'. We shall prove
thia by using mathematica .du - 51 pr Let n € =i,

then we are do:fa (e > 0, then o = 4 ‘for

1o 1. By Step 1,

a—1< o Ta'< a-1dg ! { s Ste@h Then o< 0. Let

by Step 12@? 3 ﬁsﬁfﬂ Ej:klhné T:::“:: fien
A EIRI0N WU ERY "

Case 1: a‘(“‘zjd1 =a. Then 0 <4, = «® 2 = o™ vhich is a
contradiction.

Case 2: o < u—(n—Z)d,'. Then a < u-(n-z)d1 <62, By Step 2,
am-(n‘Z)d1 =t Thus un—za + d1 = un—za, so L d‘l AR T

By Step 2 again, a_(n-z)d1+ g u'(n_Z)d,l, so a'n+2d1+ 0% -n+2d1.
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Therefore a_1(a-n+2d1+ Ko u-1(a-n+2d1). Thus a—n+1d1+ a = a'n+1d1,
so a_(n-1)d1+ a = u-(n—1)d1. By Step 2, a_(n'1)d1 L0,

Subcase 2.1: a'(“°1)d1 - a. Then d1 i an-1u Sl Jiin
contradiction.

— L= ine 4 _ =(n-1)
y//) d,+ +1 == (PR

................. S e AN

From (iv) and (V)M 0, a contradiction.

Case 3. (=2} 4, < o ® By

Step 2, u—(n-Z) . {- ' " ......... E e S )
We claim that d .+ @ ; rou s claim, suppose not. Then

d1+ a =-d1, so 1 + ad_ g - - { sTat < &t' . Now, we have that 1<:d; %

By Step 1, ud;1 diction. Hence we have the

claim. Now, we: 1 ST ERREgNE L, then by (v),

)

d e e o dh| ﬂ]Slnce 0 < d < 1 and .

AN U121 T S
AR ENTOINTINBIR =

n-3 > 1 Hence n-4 > 1 and ¢” "~ < 0. From (vi), we have that

1 + an-3d;1 = 1. Then a < an—3d;1. By Step 2, & + an_3d;1 = a which
. : n-4 RE
implies that d1+ a = d1. ........... S A SR e R S e o (vii)

If n-4 =1, then d1+ e = d1, a contradiction. Therefore n-4 > 1.

Continue in this way. Since n is finite after a finite number of
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Steps, d1+ a=4d This is a contradiction.

1°

Hence o < 0 for all n € 2+.

Step 14. We shall show that o < un+1 for allne 2°. To prove
_this, Suppose not. Then am+1 < o™ for some m e Z'. By Step 13 and
Step 2, um+1+ o am+1 w that a+1 = a. Then o ¢.I£(1),

a contradiction.

Step 15. We sha ' = : £y <€ 1}: To prove
this, we first t aim that there exists

by Step 4, u+a = u

+ + -1 -
for all u € DK DK’,SO LY B IK(1).
for all u € D; Let L = {u'1u|u € D;},
so @ is a lower bound 8 /= i f{L). Then B g u-1a for all

ue D;. Let:il <'s; "o for all u e D;, so e Bguln
for all u € D , hence s < B.
since s~ '< 1, by S e | . }rétion. Hence we have
the claim. By the clalm, I (a) # ﬂ.

“eﬂ be E QR THNLVRT < 0. o
this, let a 1 (u) Then afa = a. If 1 < a, the = ato = o,

AL L T Sl A e

IK(u) 1.1 {t e D;:|t < 1}. On the other hand, let be {t e D;Z!t &1k

If bta = b, then 14b" e = 1, so b la € I2(1). Thus o < b 'a. Since

T b-1, by Step 1, ab”! < o, a contradiction. Then b+a # b. By

Step 4, b+o.=a. Thus b e I;(a). Therefore {t € Dth < 1} € I;(a).

+ 4
o € G
Hence IK( ) {t DKIt 1}
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Finally, by (iii), I (@) = {se n]’(la < s}. Then

- +
I (@) = IK@) u{o}uxx(u) =

fy.ex vy <ak

{s e D |a < stufoluite Dglt <.1} =

Step 16. We shall show that there does not exist an £ € D_ such -

n+1

" that " <2 <a for a

we have that IK(un+

By Step 5, IK(an+1

| ne 2'}.
A =suplo” | neZ i

A eadlz e K | o<z <1}

K

prove this, let n € z Now,

< dl for some 0 <4 < 1.

7i:a[

{veKk ! < 4, } for some 0 < d,< 1.

ﬂu&lm mﬁiﬂ EJflﬂcﬁtnat alc g < o2t
=Ry YN aIId N e =

By Step 13, 0 is an upper bound of T. Let

Then A £ 0. Suppose that A < 0. Thus

]

‘IK(u) (by Step 16)

uIK(1) (by Step 5)
+ —-—
a(IK(1) U{O}UIKH))

+ -
QIK(H u{olu aIKH).
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Since A # 0, X € aI;(l) or A € aI;(T).

Case 1: A€ 01;(1). Then A = ad for some 0 < dg 1. Ifd=1,
then A = a < az < A, a contradiction. Thus d # 1. Let 0 <d < d'< 12
By Step 1, @ < od < 0od = A. By Step 16, od = o™ for some m e 2~ {1}.

Then o« = d > 0 which contradicts Step 13.

Case ?: A€ uIK(1) ome u € IK(1)7

Subcase 2.1: = 1 which is a

contradiction.

Subcase . By Step 2, ou+u = qu.

1, a contradiction.

Y some m g zT Thus

m+2 o
< A, a contradiction.

Hence 0 From Step 14 and Step 16, we have
that -I.(1) = Step 1, a < ar < 0.
Then or = o™ £0 =1 = r > 0 which

contradicts Step 14. Thus D g

2 3384 %%“EJEW%WEJ na
T O ?’VTEI‘TNH““’“

let pibe a positive integer greater than 1. Bnln e 2} viol}.
Define multiplication on K., by g7.0 = 0.8 = 0 = 00 and g"g"= """

for all m, n € Z. Define addition on K, by 820 = 0+8"= g} 040 = 0

and 8"+ B = Bmln{n,m} for all m, n € Z. Define order < on Kip) bY

as follows: Let m, ne Z.

0 (mod p), then 0 < B .

(1) - Ifom
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(2) Ifn 0 (mod p), then B < 0.

0 (mod p) and m = 0 (mod p), then Y

(3)<-If8n
iff n < m.
(4) Ifn Z 0 (mdp) and m Z 0 (mod p), then 8" < B”

a complete ordered(-skew semifield

W,

y') Wtatl ve semigroup,

iff m €< n. Then (K(p'),-én.s) is

as is shown below.

Proof: Cl

(K(p)',') is an abeli

Also, it is clear

nd the distributive law holds.
set. We must first

emi field.

2 ' Ay WL
that B™+ B~ < B+ BT ETH 0 prove thls, let B™

g% e k be such tha be arbitrary.

(p) (p)

B o .na p"s 8? =Bt

7
W%%Hﬂ‘iﬂﬂ’ﬂlﬂ‘i“‘“”

Subcase 1.2:20% ‘2 0 (mod p). Then B < g™. Thus

B+:«1mmn§zuum'awa'1aa

Subcase 1.2.2: £ Z 0 (mod p). Then B < ™. Thus

Thus B + B

]
=™

Bm+ B,Z < Bn+ Bz.

2
Subcase 1.3: n<m< £. Then Bm+ BJZ = Bm and &n+ Bl =B

Thus Bm+ B‘Q < Bn+ Bz

Case 2: m, nZ 0 (mod p). Then m < n.
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B and B"+ Bl =B".

2
Subcase 2.1: 2 <m< n. Then g™ B
Thus B™+ B‘C < g™+ Bz.

8™ and 8"+ 8% = B

Subcase 2.2: m < £ < n. Then gy Bz

Subcase 2.2.1: £ = 0 (mod p). Then g™ e 82. Thus

g™ 8% < 8" BL. : ’,/
‘Sﬁbcase e &p) . Then B™ < 8%. Thus
"'-Q

g™+ gt < B+ 32.7

Subcase 2.3: g™ and B"+ B i
Thus B+ B
Case 3
Then Bm+ B2 = Bl and
B 87 =
ghoce® o ¥ ang
8"+ 8% = ‘a

FJJ E! roade ﬂﬁﬂﬁ El’]..a j Then 8" < 8%,
Thuw"nmn-mum'mmé’ ¢)

2
Subcase 3.1.2.2: 2 Z0 (mod p). Then BB

2 2
theh B B & 8B,

Subcase 3.1.3: n<m< 2. Then gy 82 =B and

B g% = " s g™ gt 8% B’
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Subcase 3.2: n < m. The proof is similar to the proof of

Subcase 3.1.

Next, we must show that for every Bm, 8" € K(p) > g™ < g"

J 357 2 :
implies that g"8" < BnB'e for all B2 > 0. To prove this, let 8™,

8" € K(p) be such that B" g /t B'e > 0 be arbitrary.

Case 1: n = 0 (mod ‘ = 0/& Then n £ m, so £+n £ £+m.

Now, we have that £ = PR i +2 -§ 0 (mod p) and m+2 = 0
(mod p). Thus g™t < 7 ' L < anl.

Case 2: m Z 0 mo h e i) -. Thus m £ n. Now, we have
that £ = 0 (mod Tt ) Z\ . od 5\}1'.1 n+t?2 Z 0 (mod p) and
m+£ < n+2. There By - -_f"," =2, Henc: 8t < a7st.

Case 3: m#Z 0 (mod nd T Now, we have that

2 =0 (mod p). nd n+2 = 0 (mod p). Hence

Bm-l—!l < Bn+£. This 8

ST P
Lastly, \a mus cﬂlete. To prove this,

c 2
let HE K(p) be a pgmpty set wm@ has an upper bound. Let w be

an upper @uafmm AINBINT
LGN T £ 0nieh (121} N

upper ‘bound ;

n
Case 2: 0 <w. Thenw =28 ! for some n,e pZ. If wis a least
upper bound then we are done. Suppose that w is not a least upper

bound of H. Now, we have that w = B for some k& 7. If glktlp

a least upper bound of H, then we are done. Suppose that B(k+1)p is
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not a least upper bound of H. Continue in this way.

Subcase 2.1: The process stops at B(k+2) for some £ € zt.
Then H has a least upper bound. ‘

Subcase 2.2: The process does not stop. If 0 is a least
upper bound, then we are done. ppose that 0 is not a least upper
bound of H. Then there // which is an upper bound of H.
Using the same proof = ejr se 1, we obtain that H has

a least upper bou

Remark 3.1.9. lete ordered 0O-skew

semi field ({—»/Zm m P84 u'{o} J{2i |l n e Z}, ® ,°*,<) where £,

* are the usual order a 'f' dxe®ey=x iff l I lyl

Let A = & & }u {2"] n e 2}. The

and

¢ =

Augibnimens
2= QRN ST TIN TR e

If (D‘+, ,S) is isomorphic to ({2 n € 2}, max,*,<). Then (K,+, *,<)

is isomorphic to exactly one of the following 0O-semifields:

(1) ({2n| ne zU{0}, max,*,<).

(2) (K(p) ,+,°,<) for some p > 1 as in Remark 3.1.8.

Proof: Assume that (D;,+, *,<) is isomorphic to

({Zn! n € Z}, max,*,<). Now, we have that K = D;U{O}UDK. If DI-( =0,
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then (XK,+,°*,<) is isomorphic to ({2n|n e Z}u {0}, max,*,<). Suppose
that D; # @. For simplicity, we shall assume that D; =327 ne 2t
Step 1 to Step 12 of Theorem 3.1.7 hold with these hypotheses and

the proofs are exactly the same. As in Theorem 3.1.7 o will denote

U%me me 2. To prove this,

all n ng the same proof as in

-.thhat o < un+1 for all

inf(IKH)).

Step 1. We shall show &k :

suppose not. Then

the proof of Step (

ne z~{0}. g W _’ g U AERON B ¢ &

Using the same pro em 3.1.7 we get that

there does not exis o & | y < an+1 for all
ne 7. ' AN ... cee (%%)
We claim that 0 = sup lo ;_’ o ve this claim, let

= {unl ne 2'}. bound of L. Since L &
and K is complete

A < 0. Suppose tﬂt ) ‘ “argument as given in the

proof of Step 15 1n Theorem SRTET we get that I (a) = {yeK‘u y. &),

ﬂUH?WﬂW’ﬁWH’]ﬂi ------------ b

Now, we have that 1.(1) = {zfe K S s 1}. By sggp 5 of

Theoan‘im X1abqa) 1]:1&’]'17] YANE),

=a{st la<w< 1) =nilaeD | o« < stufolulte oy} £ <1t =
afs € D;I a < stufolu efte D;l Ry, ¢ SCalReg T NI e (*%*x)

Einde B kw0, Ae dve -] n &y < 2). From (#r¥e), e Jiave that

xsa{ssD;iass} Ua{teD;l - § 48
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Case 1: Aea {te D] t < 1}. Then X =oad for some 0 < d < 1.
AN A ;

1 1
5-- Then l=a(-2—) .
1 -1 -1 =11
that0<-2-<1andu. < 0. By Step 1, a <a (2)

Clearly, d # 1. Suppose that d = Now, we have

Subcase 1.1: ( ) < a. Then st <a.—1(—1-) <a, a

contradiction. ’,//
Subcase 1.2: ).z a"1(1), then B —;-, a

contradiction. T

Subc od a (

]
orsomed<-1— Let 0 <d <d<1.

5 -

m
a for some

°°““3I"W‘°I’€Nﬂ5m SJWTJWEHE'IEI

Subcase 2.2: A <u. Then au <u < 0. By Step 2 of Theorem

3.1.7, cu+u = qu which implies that a+1 =a. Since a+l =1, 0 =1,

a contradiction.

Subcase 2.3: 1< Ao Then U = a.m for some m € Z+. Thus
A =oau=a" = am+1 < a.m+2 < A, a contradiction.

Hence A= 0, so we have the claim, ;

Let 0 < s < 1. By Step 1 of Theorem 3.1.7, a < as < 0.



65

2 ,
From (**), we have that as = ¢ for some L e z+\ {1} . Therefore
2-1 L
a = s > 0, a contradiction.

This shows that um >0 for some m € Z+.

Let B=1{ne 2| o”.> 0}. By Step1, B # §. Let p = min(B).

!//

Then p > 1.

prove this, suppose not.

Step 2. We shall show

Pog Now, (u)LI{OhEK(a). By Step 5

1
Th =
en o >

of Theorem 3.1.7 Ju (1)
= Pl 4 , .-"‘ A . . " 5 e % +
= al (N u{oluell : (@) UIy(a) = al (DUal(1).

n

Hene_,ﬂﬂﬂ;;f;jmﬁﬁﬁ?"

<A TARIA T UEA REVA B 9

that there does not exist a y € DK such that ok y < & . oakis

proof is the same as the proof of Step 16 in Theorem 3.1.7.

Step 4. We shall show that for every n € Z+, nZ 0 (mod p) and

0 (mod p) implies that there does not exist

n+2 Z 0 (mod p) and n+1

y € D; such that o <y < an+2. To prove this, let n € 2% be such
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that n= 0 (mod p) and n+2 Z 0 (mod p) and n+1 = 0 (mod p). We first

claim that u-ZIK(1) ={ue K ! RN R ¢ SIS R TR (1ii)

Using the same proof given in Step 15 of Theorem 3.1.7 we get that

IK(a)={uex|usu<1}. ................. (iv)
2
We see that o IK(‘I)
5 of Theorem 3.1.7)
4} (by (iv))
—
{ : ‘N\h})
at}
of Theorem 3.1.7)
by (iv)).
Hence, we ha Ae have that
IK(an"'z) ={yekla some r € PZy. ..eeceicncns (v)

(1))
n{ueK|a<u<1}

ﬂ‘”ﬁ]’}'ﬂﬁ]ﬂ‘jﬂngﬂq cug Maio, )

ool e X | o:’\ u g 1M ™™

A7 ﬂﬂﬂ‘ml Nﬂﬂ?’?ﬁ&l"lﬁ B

= I (e )\{un+1,un}

Sy ek } o< v g a®In {a™"}

for some s € ng.

By (v) and (vi), {y e Klun+2 Ly Lo

e s n+1
={veK|u<v\<u}\{a+}f°r
some r, S g pZ’g. Hence there does not exist a y € Dl_( such that

n n+2
a <y <uo .
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Step 5. We shall show that for every n € ZT n-17 0 (mod p) and
(n+1) Z 0 (mod p) and n = 0 (mod p) implies that there does not exist .
aye Dl-< sach kb X% o™, 1o prove this, let n€ Z' be
such that.n-1 7 0 (mod p) and n+1 =0 (mod p) and n = 0 (mod p). Now,

we have that

I ™) ={ye Klun+1

+ =
K Ire pZo. s L Jieelvit)

By Step 6 of Theore

exla < u < 1} (by (iii))

eklagug 1} N e,1})

Pl ndata

iy \{an,an'1}

e veaflyia)
for some s ¢ PRI R P - « - o« oo rocses (viii)

By (vii) and (viﬁ),

for some r@;gﬁﬁfrﬁgvlt%fﬂdﬁs’ioh e‘% st y € D._( such

that un-1

AT BTHUBIENIAGE ~ o

this, let T = {o" | ne z'\pz'}. Clearly T # # since a € T. Since
o < 0 for all ne Z\p2, 0 is an upper bound of T. Since T & K and
K is complete, T has a least upper bound. Let A = sup(T). Then

A £ 0. Suppose that 7\- < 0. We claim that X € IK(ap). To prove the

claim, suppose not. Then A ¢ IK(up). Therefore A+aP = A. Thus
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14X 1up = 1,1t follows that a < A-1up < 0. By Step 2 of Theorem 3.1.7,
3109 asiteP < uiwbich implies that Aed’ = A By Step 2 of
Theorem 3.1.7, X < cP—1, a contradiction. Hence we have the claim.

By the claim, A € IK(GP) = apIK(ﬂ =

Plyex | egys1l=ddse

o g s}u{o}u{teDZI t < 1}

) 1} which implies that
J

e k—.g..‘ oPU for some ue {s ¢ D;' &g ek,

= odPls ¢ D;‘ a g shu

a contradiction.

Case 2: A <u. - @ < 1 and u < 0, by Step 1,

Hence @ Kﬁ) be the complete ordered

O-semifield glven'l Remark 3.1. 8 Define f: (K,+,*,L) — (K( ) » 40 S)

o o Y %mwmnw e

then x = u for some m € Z\pZ. Defln fix) = X € DK’ then

 REARANT BTN e

and f is a bijection.
We shall first show that for every x, y € K, x < y implies

that f(x) < f(y). To prove this, let x, y € K be such that x < y.
Case 1: x £ 0 £y. This case is clear.

m
Case 2: x £y < 0. Thenx=mrl for some neg Z\pZ and y = o for
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some m € Z\ pZ. Suppose that m < n. Then n-m € zt. By assumption

and Step 2 of Theorem 3.1.7, x+y = x. Then o+ o™ = o which implies
n-m : n-m

that o + 1=a . By Step 12 of Theorem 3.1.7 and the fact that

n-m € 2*, o + 1 = 1. Thus ™™ - 1 which contradicts Step 6 of

Theorem 3.1.7. Therefore n £ m. Hence g™ < B™. Thus f(x) < f(y).

me k € Z and y = 22 for some

Case 3: 0 < x< ¥y _v' :
2 € 2. Since 2k<-$. t ﬁﬁhat -p2 < -pk. Thus
aPk ¢ g=PL —

Next we y € K, f(x+y) = f(x)+f(y).
To prove this, 1 ye Hrbi FV, if either x = 0 or y = 0,
then the result i ‘s t) ﬂ_'*_ e k\{o}.

2

Case 1: X € DK for some k € Z and y = 2

for some £ € Z. ne a'ity, suppose that x < y. Then

e !'l_l'- NS
; + — e we have that k £ 2.

X+y =y, it ffﬁﬁows tﬁ&% {x+
| 5 o

Then -pf# < There pPt Rt f(y). Hence

f(x+y) = £(x) + £(y).

Case 2: ﬂ wﬁﬂﬁmﬂmwﬂ‘me n e Z\pZ and

Yllsome m € Z\ pZ. Wlthout loss of generallty, suppose that

QISR e

Since =o', &~ " + 1= 1vhich implies that m-n > 0. Therefore
n < m:u-Thus f(x) + fly)'= 8+ B = Bn = f(x). Hence f(x+y) = £(x)+f(y).

f(x+y) = £(x) + f£(y).

Case 3: X € Di and y € D;. Then x = o for some n € Z\pZ and
V= 2k for some k € Z. By assumption and Step 4 of Theorem 3.1.7,

X+y = X OF X+y = Y.
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Subcase 3.1: x4y = = f(x). By Step 2,
y = R S Ce i Tl T St Ll o, it follows

that a PP, 1 = 1. Then -pk - n >0, so n < -pk. Thus

n

£la) 4 By il PR LB e el Menbe Pl w Ew) e G

Subcase 3.2: x+y = y. Then f(x+4y) = f(y). By Step 2,

’/ us o™+ a % et a-pk, it follows

> < n. Thus f(x) + f(y) =
4""

::::::zz:)-+f(y)

Case 4 x £ D e similar to the proof of
Case 3.

Lastly, w X, yi € K; fixy) = £(x)f(y)
To prove this, let If either x = 0 or y = 0,
then the result is c , ye kx{o}
Case 1: % €4 nd : ' 3G some K € Z and y = 2

for some £ € . Now, we

have that f(x) ;:1 Pk and f(y) = B P°. Therefore we get that

H‘u N Iy
Case 2: e D and y € D K Then x =8 " for some Z\.pz and

%ﬂ’lﬁ}‘i NInBIINENA L

Subcase 2.1: n+m € Z\pZ. Then f(xy) = e o LA f(x)f(y)

= £(x)£(y)

Subcase 2.2: n+m € pZ. Then n+m = pf for some £ € Z.

Thus xy = o0 = = (ap)2 = (2-1Y2 =272, Therefore

Elay) = B RAL P O gl L Bt e G (Y
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Case 3: X € D; and y € D;. Then x = o™ for some m € Z\ pZ and
y = 2K for some k€ 2. Thus y = oahl o F g P v Then
Xy = umapk and m-pk € Z\pZ. Therefore we get that f(xy) = Bm_pk =

g™ PK _ £(x)E(y).

Case 4: X € D; and y is 51m11ar to the proof of

Case 3.

distinct, then K

such that p # g. suppose that p < g.

Then K )~ {0} and Y 5 ‘are , *; te cyclic group. Let 81 and

82 be generators of , respectively. Suppose

that there is an i somorphi ,\{0} s K(q)\ {0}. Then
“ﬂ;fﬂ‘

i =" B e 3 X p p
F(B1) = B : = N : ag 8’ > 0, 82 < 0 and

.1-.“"

2 b

B_p < 0. Then a contradiction.

2

Hence K is not‘a omorphic to

ﬂuﬂ’mﬂﬂ‘ﬁ’WﬂWﬂ‘ﬁ

Remark 3. 1 1. Let C = {z(2M)|n e zu{o}}u{o 1}. Let the order

~AARRTL BHRA 1) G sen o

X if Ix! > [y!

b
4+
<

]

-1

1 afux y

-ixy| if x # y~!  where |x| is the

absolute value of x. Then (C,#,-,s) is a complete orderedO-semifield

as is shown below.



Proof : Cléarly, C is closed under +, °* and (C,<) is an

ordered set.

To show that + is associative, let x, y, z € C.

case 1: |x| < lyl < |z|. Then x+(y+z) = x+z = z and

(x+y)+z = y+z SAS (x+y)+z.

Case 2: lxl = y and

(x+y)+z = y+z

Case 3: ‘yl = z and

(x+y)+2 = X+z

Case 4: ly| = x and

(x+y)+z = X+2

Case 5: !z' = y and =
(x+y)+z = y+z =

Case 6: Izl < = x and

(x+y)+z = x+z = x. Thus x+(y+z) = (x+y)+z.

@%7@uﬂﬂﬂ8ﬂ§W81ﬂi
TN G redy

(x+yﬁ+z = x4z = z. Thus x+(y+z) = (x+y)+

Subcase 7.2: |zl < ly}. Then x+(y+z) = x+y = x and
(x+y)+z = x+z = x. Thus x+(y+z) = (x+y)+z.
Case 8: ly‘ = lz}

Subcase 8.1: lx’ < iyf. Then x+(y+z) = x+y = y and
(x+y)+z = y+z = y. Thus x+(y+z) = (x*y)+z.
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Subcase 8.2: [yl < |x|. Then x+(y+z) = x+y = x and
x+(y+z) = x+y = x. Thus x+(y+z) = (x+y)+z.
Case 9: le = |z|

Subcase 9.1: | I |y| Then x+(y+z) = x+y = y and
(x+y)+2z = y+z = : J

Subcase 7 /&f(y+z) = x+z = x and

(X+y)+z = x+z =

This sh
To show group, fet x € c~{0}.

We shall show

Case 1 X 1%

case 2 xe {-(2")|n &4z~ : -(2™) for some m e Z~{0}.
N w2 s ool

Clearlyy pl iVe and associative and

X1 = 1x = x forgl X € " he: eorem:\{o},') is an abelian

ﬂ‘UEJ?WIEJVﬁWEJ’]ﬂ‘i

To''show that (C,+, és) sat.lsfles the dlstrlbutlve law, let

Qﬁﬁﬂﬂﬂimﬂﬂﬂﬂﬂ’m&l

Case 1: |yl > |z|. Then x(y+z) = xy and |x||y| > |x]|z|. Thus

group.

|xy| > Ile, so xy+xz = xy. Thus x(y+z) = xy+xz. Similarly, -

(y+2)x = yx+zX.
Case 2: |y| < |z|. This proof is similar to the proof of Case 1.

Case 3: Iy' = |z| Then |x||y| = |x||z|, so |xy| = |xz|.
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Therefore x(y+z) = xy+xz. Similarly, (y+z)x = yx+zX.
we shall show that fbr every X, y € C, . x £ y implies that
x+z £ y+z for all ze€ C. To prové,this,-let X, y be such that x < y.

Let z € C be arbitrary. If ze {0,1}, then we are done. Suppose

that z € {-(2")|n € 2~ {0}}.

< |x|, SO X+Z = X.

Thus x+y £ y+2Z.

Subcase \ X V.| The £ jal. w0 %z = 2.
Thus x+y -
Case 3:

RS |x| and |y| < lzl,

SO X+zZ =

g
:i

|z|, so

o am:zr'mﬂmw ﬂ”iﬂ‘ﬁ

Su Subcase 3.3 $ z < 0. Then Izl < I&J le, so

=~ QRIANT ?ﬁ&ﬂ%ﬂ? neNag

To show that for every x, y € C, x £ y implies that xz < yz
for all z # x ! » let x, y € C be such that x < vy.
Let z € C \{x-1}. If z € {0,1}, then we are done. Suppose that

z e {—(2n)|n ez vlol).

Case 1: x =0and y = 0. This case is clear.
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Case 2: x =0and y = 1. This case is clear.
Case 3: x=1andy = 1. This case is clear.
n ] m 2
Case 4: x <y <0. Then x=-(2") and y = -(2) and z = -(2") for
n 2
some m, n, £ € Z~ {0}. Therefore we get that xz = —|—(2 ) (=(2 ))I =
i, BN T ey RO &))I = -|2"‘+£| o 2 Ca™*) . ow;

we have that m < n , it follows that

Lastly, &, « “is con Now, we assume that
H € C be a none ich he -_ﬁ nd. Let w be an upper

least upper bound in C.

Case 1: w > 0. o1 - : : ‘ \ipper bound of H. Then we

are done.

Case 2: w<

c {-2")|n e ﬂ{o

({-2")|n e 2z~ {0} #<). To prove the claim, define

e confl HESANBNIHLIA T o

x e {-(2 )In e 2~ {0}}. Thén x = -(2), for some n €sZ \ {0}, Define

o1 G1AT) SUUBAANIN N e, e

that f is an order map, let x, y € {-(2 )In e Z\ {0}} be such that

Z\@}, <) is isomorphic to

X< 'y. Then x = -(2") and y = -(2™) for some n, m € Z\{0}.
Therefore m £ n, so -n £ -m. Thus f(x) = -n < -m = f(y), so we have
the claim. By the claim ({—(?.n)|n e Z \{0}}, £) is.complete. Hence

H has a least upper bound in C. "
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Theorem 3.1.12. Let (K,+,°*,<) be a complete ordered 0-skew

semifield. If (D;,+,',\<) is isomorphic to ({1},+,+,<), then

(K,+,*,<) is isomorphic to exactly one of the following O-semifield:

(1) ({0,1,+,°,<) as in Boolean semifield.

(2) (C,+,*,<) as in Re ark 30 11

Proof:

Now, we have that Ki='D L }U§+ mﬂ, then (K,+,°*,<) is
isomorphic to (1). | b Step 2 to Step 12 of
Theorem 3.1.7 hol ) e . ‘ s and the proofs are exactly

the same. As in e inf(I (1)),

Step 1. We shall ‘Tf <0 ‘allm e z27{0}. It suffices

to show that o < e this, suppose not.

Then 0 < o™ for some m Q:jgf o then o = u—(m-”O =0, a
1,';‘ #ida 4

contradiction. musk%J%’ “which contradicts Step 6 of

!
Theorem 3.1.7.

-
-

¥ !EI
Step 2. For egy ne z~{0}, o s proof is the same as

‘°r°°fﬁﬁ“EJ“’J‘WErﬂ‘§'WEJ’m‘§

Step 3. e shall show that' for every x, y, z € D <y and z # x

mpama\aﬂwmwmag e

be such that x <y and z # X . By Step 2 of Theorem 3.1.7, x+y =

-1

Therefore zxo= zcty) = ZXtzy. 1w L Lo L c o e - e et (*)

Case 1: 2y € D;:. Then zx+zy £ zy. From (*), we have that zx £ zy..

If zx = zy, then x = y which is a contradiction. Therefore zx < zy.

“ .-

Case 2: zZy € D;(. From (*) and Step 2 of Theorem 3.1.7, we have |
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that zx £ zy. If zx = zy, then x = y, a contradiction. Therefore
zx < zy.

Hence zx < zy. Similarly, xz < yz.

~Step 4. We shall show that for every n € 2 \{0} there does not exist

y € D;.such that o” <y < o

oM < y < am+1 for some

am <y L am+2.

and Step 3, we have that

(a Yo <o ~Fo R R $ile JL2T)
T e A Thus o B! # y'1.
. * ! + -m-1
From (I) and Step ¥ \ : o R I i 5 3 )
From (II) and (III), v X & d 1‘1y < o which contradicts

Step 11 of Theorem 3

Step 5. We To prove this, let

= {anln e 2" und of L. Since L € K

I — iy
and K is complet;l L has a least upper bound Let A = sup(L). Then

uﬂu E‘Tq Wﬂ Wﬁﬂ] ﬂ rﬁwer discrete. To

prove this qyanm, if =« for some n € Z™ {0}, then by Step 4, we

............................

TE u-1k = (a—1)-1, then u-1A = a. It follows that A = a2, a

contradiotion . ek 4" X # (a-1)_1. From (i) and Step 3, we have
that a-1(a-1l) < a(o_1l). Then a_zl < A. We shall show that there

does not exist y € D; such that u—zl <y < X. To prove this, suppose

not. Then there exists ay € D; such that o 2X < e S P O S (ii)
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T e (a—zl)-1, Ghen A T N R e e whioh implies

that @ = 1, a contradiction. Therefore l'1a # (azl)—1. From (ii)
and Step 3, we have that a'zl(x'1u) < y(k—1a), hence

Rt T e o e ek

’ ce y<A,y< o™ < A for some
follows that o™y e umy-1.

o™ £ y, a contradiction.

Gl e y-1

me ZN{0}.

Then o'+ y = o™,

Therefore A 1& £y 1 we have that

e claim. Since A~ < 1,

az, then X~ < u2+1 <G

contradiction. Hence A = 0.

0 lower bound in D;.

To prove this,'éEFpoé- € z]} has lower bound in

D_. Thus {a " |n o 2. *} has a greatest lower bound. Let

o= snctsf4 BN AT R AN Fovonr e - o= ,

for some m e 2". since o" & um+1, by Step 2, (am+1 P

ThuﬂuWPa\%"ﬂﬁ muma Wﬂ?ﬁ«ﬂ ™ for a1t

n e Z By Step 2 again (o e w-1 for all ne Z', so o < w_1

for alln'e 2. Sincé 0= sup{an!n e 2} 0« o hakiar s
contradiction.
From Step 4, Step 5 and Step 6, we have that D G In e 2\{0}}.

Let C be the complete ordered 0O-semifield given in Remark 3.1.11.

Define f: (K,+,*,<) = (C,+,*,<) in the following way: £(0) = 0
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and £(1) = 1. Let x € D be arbitrary. Then x = & for some a
unique n € Z\ {0}. Let f(x) = -2™". Clearly, f is well-defined and
f is a bijection.

To show that f is an order map, let x, y € K be such that

x £ y. We must show that f(x) £ f(y)

Case 1: v e 40;1).

this, let x, y €

Case 1: X =0
Case 2: o xie = £(0+y) = f(y) = 0+£(y) =
f(0)+£f(y) = £{

[
@
O
154
7]
E;
g
ct
-
(1]
‘g
R
(o]
(o]
Hh
o
Hh

Case 3: y

ﬂﬁﬂ’ﬂ'ﬂﬂ"ﬂﬁwmﬂ‘i

Eﬁ_aiwmm‘immn PURLE

Case 6: x = 1and ye D_.

K Then y+1 = y or y+1 = 1.

Subcase 6.1: y+1 = y. Then f(y+1) = £(y). ...connnnn. (*)
Since y € D; and y+1 =y, y <a. Thus y = o™ for some n ¢ 7.

-(=n)

Therefpre f(y) = -(2 §en@™, so fElyl] =i =2 =

[EC1)] . mhen E(p)+E (1) = f(y)o s T i i e (*%)
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From (*) and (**), f(y+1) = £(y)+£f(1).

Subcase 6.2: y+1 = 1. Then f(y+1) = LA b S (1)

Since y € 'D'-( and y+1 =1, e £ y. Thus y = o® for some ne 7 .

Therefore f(y) = -(27™), so |£(y)] = |-2™] = 27« A e
Then f(y)+£(1) = £(1) | eeeecccsesessccsscescaeann (II)
From (I) and (II), f(y: ,/ﬂé
Case 7: T oo : 1 f is similar to the proof of
Case 6.
Case 8: x€ D, a :zf-:_ sither x < y or y £ X.
2 -\hTheorem 3.1.7; X+y = X,
Then f(x+y) = £(x). ve X & yus 0 an is an order map,
£(x) € £(y) < 0 which implies thato < [£(y)| < [£60]. Thus
£(x)+£(y) = £(x). Hence I
v "':("i':
Subca g_ By , Theorem 3.1.7, y+x = y.

Then f(y+x) = £ Y :f an order map,

fly) £ £(x)'< 0 whlch implies that 0 < |£(x)’ < fly)|." Thus

f(x)+f(y)ﬂ ‘H’EJ ‘%‘?‘lﬁﬂ jfwm ﬂ ‘j

-AUASRINGHIANGINY

Case 1: x =0, y e K. This case is clear.

Case 2: y = 0, x e K. This case is clear.

Case 3: X 1, y € K. This case is clear.

"

Case 4: y 1, x € K. This case is clear.
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Case 5: X € D; and y € D;;. Then x = o and y = o™ for some n,

me Z\ {0}. Thus xy = oo™ = "™, Therefore we get that

-n-m)

_ f(xy) = -(2 . Now, we have that f(x) = -(2™™) and f(y) = -(2_,m).

Then £ ME(Y) = =]=(27M(-2™) ] = =]27"™ = -(2"™).  Therefore

fixy) = £(x)E(y).

Hence f is an i

fields

Definition 3.2. ed an ordered ®-skew

semifield iff ( and £ is an order on K

satisfying the f
(i) For any 84K, - Sy i nplies that x+z £ y+z for all
z <o in K.

(ii) 1at xz £ yz and zx £ zy

for all z <o in/

(515 <E :
s HARBIGNY TR 2 o

Cor, (x) = eK|x+y—°°}‘forallxsK

QARSI NIUNBAINEINL . i

properties hold:

(1) For every x e K, ® ¢ CorK(x).
(2) CorK(“’) = K.
(3) For every x € K\ {=}, CorK(x) = X CorK(1).

(4) If Cor (1) = {=}, then x+y # @ for all x, y € K~ {=}.
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(5) If xe CorK(1) and x # «, then x-1s CorK(1).

Proof: The proof of 1) and 2) are obvious.

To show 3), let x ¢ K~{=} be arbitrary. We must show that

Cor (x) = x CorK(1). To prove this, let y € CorK(x) be arbitrary.

Then y+x = ® which implies th + 1 = ». Therefore x-1y € CorK(1).

1
‘y
JJ!' CorK(1). -On the other hand,

let z € X CorK(1) be a: b Téﬁ + 1 = ® which implies

Thus y € x CorK(1).

that z+x = ©. X CorK(1) c CorK(x).

Thus CorK(x) =

arbitrary. If x+y =\ Cor (x) - y 3f, y € X cOrK(1) which
implies that x 'y € P (1)i= =k drhu. = ® Then ® = x® =

. Hence x+y # ©.

3 {?}. Then x+1 = ® which implies

Notatlon Let ;Jbe an ordered w-skew semlgleld Then we will denote

£ e TNy N T -

is never the empty set.

awwmmm mﬂﬂﬂﬁl’]ﬁﬂ

Prop031tlon 3:2:9. Let (X,+,*,<) be an ordered «-skew semifield.

f
K

“Then the following properties hold:

(1) For every x, y € Kn{®}, xy ¢ K~ {=}.
(2) For every x, y € K, x < y implies that xz < yz and zx < zy

for all z e Di.
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£ -1 f f
(3) For every x, y € Dir X € DK and xy € Dy

(4) For every X € Df

K and for every y € D;'(, Xy € D

(5) For every x, y € D;, X+y < ® implies that xle( n yD; =

(6) suppose that Cor, (1) = {Q}UD:(. Then for every X, y € D_,

f -1 f " il
x+y € Di and xy = € Dp. ',’//
i ; £
(7) Suppose K ADK’ Then for every x € D
and for every y ew"' . ‘-H
(8) Su/ ! s \ Then for every x, y € Di(,
@
X+y =
> @
(9) Then for every x, y € D;(,
< @
Xy . =
> @

en Di is a normal

subgroup of K\ ﬁl e

(11) Supp&ﬂthat Cor_ (1)L K. Then x+y = @ for all x € D_

oo QUEINININGTAT
QRERATANAINENA Y

To show (2), let x, y € K be such that x < y. Let z ¢ le( e

arbitrary. Then z < ®. By Definition 3.2.1 (ii), xz £ yz and zx £ zy.
1f zx = zy, then z-1(zx) = z—1(zy) which implies that x = y, a

contradiction. Thus xz < yz. Similarly, zx < zy.

To show (3), let x, y t-:_' Di be arbitrary. Then x < ® and

y <o, “If @ g x—1, then by Definition 3.2.1 (ii), ® = ®x < X X =7,
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-1 : e
a contradiction. Therefore x < ©, Thus x : € Di. Now, we shall

show that xy < ®. Suppose that ® < xy. By Definition 3.2.1 (i),

® = x o % x—1(xy) = (x_1x)y = y, a contradiction. Therefore xy < ®.

Hence xy € Df It is clear that x+y <

K-
To show (4), let x ¢ f dye€e D;L( be arbitrary.. Then x < @

and y > ©®. By Definitior &1 < xy. If xy = @ then

5 ,

: W / :
= (xy) = x_1°° =1 100 &'\pl‘es &-— ©, a contradiction. Hence

® < xy. Therefor

To show (5 that x+y < ®. We shall

show that xle< n>yD

Then y = xd for some
£

de DK' Therefore : (4), x+y > @, a

contradiction. Hen

To sho:*l(6), suppose that Cor ( o} U DJ;(. Let X, y € le(

1 + xy =t Th\ap Xy 1 e cor (1), so xy € {“’}UDK, a contradiction.

Theremﬂm_l FRENINYING
Q w\,_] a Q ﬂ % o that Corﬁﬂ &V[ {=} u D% E]Letix e Tzznand

y € be arbitrary. By (3), x y € DK'
x_1y € CorK(‘l), it follows that x-1y + 1 = ®. Therefore x+y = ®.

To show (8), suppose that CorK(1) = {=} UD:IL(. Let x, y € D?(

"be arbitrary. Now, we have that K = DiUCorKH) . Therefore

f £
K = xK = x(DK 1] CorK(1)) = xDK U xCorK(1). ..................... (*)



By (*) and Proposition 3.2.2 (3), K = xDi u CorK(x). L e (*x*)

. T f
If-y € xDK, then y = xd for some d € DK' Thus x4y = x+xd = x(1+d) >®
by (4). Ify¢ xle(, then by (**), y € CorK(x). Thus X+y = @,

To show (9), suppose that Cor (1) = {°°}UD1. Let X, y € D

K
‘”//x d for somedele( Thus
-1_f
‘I3er

be arbitrary. If y € x .

Xy = x(x_1d) = < @, Suppose that y ¢ x D

- K
To show that xy >'('—'.A . *.yxmﬁs @, If xy = @ then
x-1(xy) = x ol ' f ‘ : S '_;tion. If xy < @, then
xy = s for some s Dy @ contradiction.
Therefore xy >
To show (10 = {=*}uD We shall show
that le( is a normal glibgroup of . Let x € K~{=} and d ¢ le( be

arbitrary. Now, we have. 1 ‘(Cor (1))~ . We must show that

- _':.{_. 4

xdx~ Ve nt. suppose that x € D.. If
K K
| £
then xd ax '+ 1 ==, so dx '+ x|
¢DK, en xdx xi']+ =®, sodx + X =
which implies thaii' =.®, a co adlctlon. Therefore xdx o € D!f<.

e £ USRS NN T
AR T A ..

and y # @®. Then vx_1y € K, so x—1y € Cor (1). Therefore x ! y +1=mw,

‘Hence y+x = ®. #

Proposition 3.2.4. Let (K,+,+,<) be a complete ordered «-skew

semifield. Then the following properties hold:
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(1) (Di,s) is a complete ordered set.

(2) 21If D # {1}, then for every x € D xDi has no upper

Kl
bound and has no lower bound in DK'

(3) If (H,°*) is a subgroup of (Df,‘) and H # {1}, then H has

Vr bound in D

(Cor (1))
/

a nonempty set having a

neither a lower bound nor an |

(4) If (Cor (M)

Proof:
lower bound in omplete, A has a greatest
lower bound in infl Lo S . Thenwgac<®

Therefore w € D > ordered set.

To show ™M Let x € D; be arbitrary.

Without loss of g ; has an upper bound. Let

Let s € Di ~{1}. Thus

zs'_1 for all d € Di.

zZ = sup(fo). Then xd

xds £ z for aliﬁ? [> xﬂﬁ

Therefore zs~ is a

T ‘mi ﬁiﬂﬂﬁ‘ﬁ”ﬂ’%ﬁﬁ*ﬁs s e
“°‘EIW*T aﬁr’r‘samﬂ Tﬁ”’i’?"ﬂ‘%:l""}ﬂ < ey

tradiction.

To show (3), by Proposition 3;2.3 (39, (D§,°) is a group.
Suppose that (H,*) is a subgroup of (Di,') and H # {1}. By (1) and
Proposition 3.2.3 (2), (Di,',s) is a complete ordered group. By
Proposition 1.25, Theorem 1.26 and Theorem 1.28, (Di,',s) is either

isomorphic to ({Zn'n e 2},°,<) or (R",*,€). Let x e H 5{1} be
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arbitrary. Then either x < 1 or 1 < x. Without loss of generality,
suppose that x < 1. Then x" has the property that for every r e Di

there exists an N € z* such that n > N implies that x" < r. Therefore

H has no lower bound in le(. Now, we have that 1 < x-1. Then (x-“)m

has the property that for every s € le( there exists an M € 2" such

in D_ .

# . First, we shall

(o]

show that ((Cor ve this, let x, ye (CorK(1))

be arbitrary. follows that 1+x-1 # o,
Thus x~ ' € (Cor +X+y+1=w, Thus
x(y+1) + y + 1 = (y+1) = ®. Since x+1 # @,
y+1 = @, a contra ion *'m}eq : ©. Thus xy € (CorK(1))c,

' (CorK(1))c,') is a group.

Clear]_’ys 1fD§ ) is true. Suppose that le( # {1}.
L R R B ‘
-

.

be such that x

“ a LY

ence o RELBV PR VI PE MRS
Y £ : f c

Let y € D, be arbitrary. Nowgswe have.thatAD n(OorK(1)) %)

LARIASRIANINENA . o e

bound of le( N(Cor, (1))S. Then there exists a t € Din (Cor, (1)°

‘this claim, let x € le(

'm
£ c
us X € DKﬂ(CorK(ﬂ) .

1. Then x+1 £ 141 < @,

such that y < t. Therefore y+1 £ t+1 < ®. Thus y € (CorK(1))c.

¢ c
Hence DK c (CorK(1)) - 4
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Theorem 3.2.5 Let K be a complete ordered @-skew semifield. Then

! i
either CorK(1) = {«} or Cor (1) = {=}v Dy or CorK(1)

= K.

Proof: Assume that CorK(1) # {=} and CorK( 1) # K. We must

show that CorK(1)

i
COI‘K(1) # {o}UDK.

: c
c
DK (CorK(1)) s
Case 1: (CorK(1

arbi trary. Then
Thus @ < 1+z £ 1+y

P

£ i
so DKUDKQDKU_

K~ {=} = (Cor (1) )§

lower bound. Leﬂd -

that a is an upper

AR

c 3
u € (OorK(ﬂ) ﬂDK

a contradiction.

is complete, CorK(

Then B < a. IfB

Therefore ® < B <

= {=}y D;l(. To prove this, suppose not. Then

Theref ‘V .1))c # le(. By Proposition 3.2.4,

i '!Ea:a—:a
K e "".-*"-.r
e T ".f»";

K

i
y € DKbe

that z < y.

e g i c
_’Nerefore Dy € (Corp (1))7,

; i i
bound in D, . Since

. 'fﬁhen a >, We claim

‘bound of Cor ( ) To prove this claim, suppose

. e R B Y WS

o« e ((Cor 1)) , then © < a¥1 < v+1, aceontradiction.’ Thus

NAMAAINELIALL. .

such that @ < u < v. Then ® < 140 < u+l1 £ v+1 = @,

Hence we have the claim. Since CorK(1) € K and K

1) has a least upper bound. Let B

Q

=, then Cor, (1) & lect; '(CorK(1))c

= sup(CorK( 190

, a contradiction.
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Subcase 2.1: B < a. Then ® < B < a. If there exists a
t € K such that B < t < a. Then ® < t and t+1 # ®, so
t & (CorK(1))an;. Thus o £ t, a contradiction. Therefore there

does notexist at e K such that B < £:€ Gl % cotvenssom v )

Let s € le( \x {1}. Then as # o

as < B < a. Therefore

a < Bs-1< Qs-1» s
which implies th% .
B+1 # =, then B o

< B,,a contradiction.

&1

Thus B+1 = ®, so herefore as-1s B £ B< a.

as-1< o and use the same

proof z=: in Subcase

=
.K' Then B = o ¢ Cor (1).

b '
Let t & D {1} % Then Bt # B.

K

- N RN I I NG, == -

which 1mp11 s that 1 + u_ t‘;éco. Therefore B u t, so Bt~ S SRS

e Lo FOHAAA I B e <

There ore Bt~ < B. Then B < Bt, a contradiction. Therefore B < Bt.

Suppose theg Bt < B. Then there exists

Then Bt_1<B and use the same proof as the one just given to get a

contradiction.

Subcase 2.2.2: .a ¢ (CorK(1))cﬂ D}L(. Let w € Di\ {1}.
Then aw # a. Suppose a < aw. Then there exists a v ¢ (CorK(1))an;

such that a < v < aw. Thus aw_1< v g &, So vw-1+1 = o which implies
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that v 'w+1 = ®. Therefore g ¥ < a. Then v_1$ w~'. But we have

that v+1 # @, this implies that ‘I+v-1 # ®. Thus a < v_1, it follows
that o < v-1$ aw—1. Hence aw < &, a contradiction. Therefore aw < a.

Then o < aw_1 and use the same proof as the one just given to get a

contradiction.

Hence CorK(1) =

From Theorem e e are three type of complete

ordered «-skew se

(1) comp . : 3 i:'h?‘ ield K with CorK(1) = {=},

(2) compl K with Cor (1) = 1% D,
(3) comple ske & field K with Cor (1).7="Ke

If a comple ' 7 2 >T7jr \\ ~1d K satisfies (1) then K is

called a type I ‘:atisfies (2) then K is called

a type II w—skew semlf cld isfies (3) then K is called a

type III «~-ske

Let (K,+,*,$) De a typéﬂ} o_skew semifield.

Then the fﬁomnir"] 'ﬂﬁ hold%/ gj

2 +2*<) 1is a co plete ordered ‘s ew ratio semiring.

q Wﬂﬂ"%ﬂﬁtﬁﬂ MR R AR B o <

lmplles that y is the unique element of the coset yD such that

’ nit:

Proposition 3.2 Gm

X+y < ®.

(3) Suppose that 1+41 # 1. Then for every y € D; and for

every c, d € Di, y+c = y+d implies that c = d.

(4) Suppose that 1+1 # 1. Then for every c, d € Di and
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for every y e Do

k? S # d implies that (y+c)Dlt;n (y+d)D§ =4.

Proof: To show (1), by Proposition 3.2.4, (Di, L) is a

complete ordered set. By Proposition 3.2.2 (4) and Proposition 3.2.3
(3), (le(,+,') is a skew ratio semiring. Hence (D§,+,-,s) is a

complete ordered skew ratio semi

To show (2), Supp

4(“‘ :+»'»\< ). Let x,y € DK

f =l :
(Di»+,°,<) is isomorCrEEEs s

be such that x+y < = ot y is the unique element of

W . £
yle( such that x+y 7 \ . there exists a ze(yDK)\ {y}

such that x+z < le(\ {1}.

Case 1: 1°<'d. i Therefore x+z

= x+yd = x+y(1+c)

Since X+y € le( and yc e DX

Thus x+z = x(d+a)+yd

............ MR it

= xd+xa+yd = (x.;ﬁ)d.,. sl

Since (x+yl)d e %ﬂ xa € D (x¢y)d+xa > ®. Thus x+z 2 ®, a

. uEQWﬂ%§WH1ﬂi
q WTAY ﬂ"‘ﬁm‘“’u‘ﬁ/] ﬁ(‘ﬁ‘ y;xl Ry e

To show (3), suppose that Tetat 1B and Theorem 2.18,

f s : + okt
(DK,+,-,§) is isomorphic to R ,+,,€) or (R ,+,°;\<°pp). Let y € D

and c, d € le( be such that y+c = y+d. To show that c = d, suppose
not. Then c # d. Without loss of generality, suppose that ¢ < d.

Then d = c+a for some a € le(. Thus y+c = y+d = y+(c+a) = (y+c)+a.
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By CorK(1) = {*} and Proposition 3.2.2 (4), y+c # ®. From (i), we
have that (y+c)_1(y+c) = (y+c)_1(y+c)+(y+c)_1a which implies that

1 =1+ (y+c)_1a. .................... TPl el (ii)

Since (y«!-c)—1 >« and a < @, (y+c)-1a > ®, From (ii), we have that

1 > ®, a contradiction.

To show (4),
f

Sup >ttt .18,
(Df,+,',<) is isomorph + ) , »* < ). Let c, de D
K B ‘ t: : opp K

be such that c #

£ f a3 £
(y+c)DKD"|(y+d)DK DKn(y-i-d)DK # §. Thus
(y-!~c)Df = (y+d)' some a € D
K K-
\‘\
o '.' E A 3 £ b
Case 1: c <-du ‘ ; eRbLE Thus
(y+cla = y+d = I T e e (iii)
By Cor, (1) = {=} an 222 %(4), y+c # ®. From (iii), we

have that (y+c -

a=14+ (y+c)-1bm alll TR RS (iv)
Since (y+c)” H < ®, (y+c)"1-6 > o, From (iv), we have that
i cﬁlilﬂg NENINEINT
¢

= PRI KA -

Therefore (y+C‘D n‘(y+d)D = f. #

Theorem 3.2.7. Let (K,+,+,<) be a type I ®-skew semifield such that

141 = 1. Then D"l‘< -

Proof: Assume that D:lL( # @. Let xe€ D; be arbitrary. Since

(K \{»},«) is a group, x(K~{=}) = K~ {®}. Thus



' D1UDfA =.x(DfU~Dl) = foUxDl .

Kk, K K - K K
Giss I i AL o
By Proposition 3.2.3 (4), xDK‘; DK' By (*), Dy & xDK. ........ (%)
Case 1: '~ For every a e D]l-< and .for every be K~{=}, atb € D;. Let

yeDl andstf. Then ® <

K K < ®, Thus @ ( y+z.. By

w < y+z. Then y+z € Dl.

(y z) Where exists a w e DK

such that (y+z)WE Dl FFFF B AR - - - - e cccecennannnn (x%)

CorK(1) = {=} and Pro

From (**), we have

By Proposition 3.2. i : :f\.: "By as ption, we have that

YW+ZW € D;_ Then ’ .' is a contradiction.
LI

Case 2: There exi € *1}1‘5‘ K\ {=} such that x+y # Dll<. Let
aeD. and b e K \ {»} be steh t +b ¢ D;. Then a+b £ ©. By

Proposition 3.

: ! ')
Subcase . a+b, a contradiction.

Subcase 2.2 m < b. = ot(a+b) < (a+b)+b = a+(b+b) =

a+b»aconﬂ%f:}«’3°flﬂﬂ‘§wmﬂ‘§

aﬁﬁ%@ﬁ%iﬁ QN8

Theorem 3228 Let (K,+,+,<) be a type I =-skew semifield such that

1+1 = 1. Then (K,+,°*,<) is isomorphic to exactly one of the following
o-skew semifields:
(1) o-skew semifield with the almost trivial addition of

order 2.

(2) (R:, ® ,+,<) where - and ¢ are the usual multiplication



9L

and order and

min{x,y} if x #® and y # «,

X0y-=
L if x =2 o0ory=®o.

(3) ({2"] ne Z}U{=},*,+,<) where * and < are the usual

multiplication and order and

Theorem 3.2.9. o-skew semifield such that

T+1# 15 Suppose that-for > ‘\M’ X y implies that x+z< y+z

for all z e K. ;mm..;~ “R..h ,<) or

Y A

(R:.+.°:\<*) wherﬂs = ‘for all x e R'.
Uy AVENSNE N 'i"’ S
£
that D ‘ To prove thls, suppose not. Then D Let x € DK

and’il Wﬂ RRERVPRTEL) ﬂf:!r’l@ﬂ s

There ore x+y = ®. By Proposition 3.2.2.(4), x+y # ®, a contradiction.
Hence D:ll( = §. By Proposition 3.2.6 (1) and Theorem 2.18, (K,+,*,<) is

. % % - + * * 3+
is isomorphic to (Ra,+,-,s) or (R_,+,*,< ) where £ = ‘<opp on R and

*
X < o for all x elR+.

#
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Remark 3.2.10. Let A =-{1,2,t}. Defineg<onA by 1 <® <t and

define multiplication * on A by

- 1 €0 t

t t ol

There are two v e binary operation + on A
=
such that A is an -
+ ® t
1 ®
® © o
t e t
Note that ‘.y.i»f” o to an ®-skew semifield
with the trivial additidh; table (2)/make {1,@,t} into an ®-skew

o da 4 2 .
semifield with the almest trivial:; ion.

Y]
Remark 3.2.11. Eet 3, «%{(2’“,1)|m e 2}.
Define + and * on P y as follow

ﬂuﬂanﬂM5malﬂ§
/ Wﬂmmmw’mwmaﬂ

(x,0) 0) = (minix,

(x,1) + (y,1) (min{x,y},1),

(x,0) £y, 1) =0%",
(x;0) 0y, 1) = (tys 1),
(¥ 1)0x;0) = (yx;1),
(x,NDN(y,1) = (xy,1),
(x,0)(y,0) = (xy,0).



shown below.

(x,c1),(y,cz),(z
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Define < on B, by as follows: Let x, y € {Zn'n e 7}

(%,0) < » < (y,+),
(x,0) < (y,0) iff xgy,

(x,1) € (y,1) iff xgvy.

Then (B1,+,',$) is

I ;te ordered ®-skew semifield as is

Proof:
We shall To prove this, let

ne 2z} and c1,c2,c3e{0,1}.

We must show tha : ; Y4 (z, : »c1)+(y,c2)]+(z,c3).
Case 1 c,= +(z,0)]—-(x,0)+(mln{y.z} 0)
= (min{x,y,2},0) and /(3,0 = (min{x,y},0)+(z,0)

= (min{x,y,z},0). Thus,gm ' 001 = [(x,0)+(y,0)1+(z,0).
Case 2 c,= 7 “0)+(z,1)]'= (x,1)+=

= ® and [(x,0)+29,0)]+ 3 ')yv,0)311,1) = ® so

(x,0)+[(y,0)+(z, DT & [(x,1)+(y,00]4(z,1).

Case 3: c = 0 and c,= 1 Then (x,0)+[(y,1)+(z,0)]

ﬂumwﬂmwmm

(x,0)+=

Q’an‘ﬁﬂ’ifﬂ SHAINETA Y

(x,0) 3 (y,1+(2,00]1 = [(x,0)+(y,1)1+(z,0).

Case 4: c.= 0 and c.= c.= 1. Then (x,0)+[(y,1)+(z,1)]

1 2 3

(x,0)+(min{y,2z},1) = ® and [(x,0)+(y,N]+(z,1) = @+(z,1) = .

Thus (x,0)+[(y,N+(z, 1] = [(x,0)+(y,1)]1+(z,1).

Case 5: c.= c.= c.= 1. Then (x,1)+[(y,1)+(z,1)] = (x,1)+(min{y,z},1)




o7

(mini{x,y,z},1) and [(x,D+(y,NI+(z,1) = (min{x,y},D+(z,1)

]

(min{x,y,z},1). Thus (x,1)+[(y,D+(z,1)]=[(x,D+(y,D]+(z,1).

"

Case 6: c,= 1 and Cy= Cg= 0. Then (x,1)+[(y,0)+(z.,0)]

1
(x,1)+(min{y,z},0) = ® and [(x,1)+(y,0)]1+(2,0) = =+(z,0) = @. Thus
(x,1)+[(y,0)+(z,0)]) = [(x, ]+(z 0).
Case 7 €= c,= &.1)+[(y,1)+(z,0)] = (x,1)+=
= o and [(x,1)+(y,1)]+bz : ""K’J ,1)+(z,0) = ®. Thus

v,0)+(z, NN =(x,1)+® = @

Case 8: c.,= N \\\
and [(x,1)+(y, ; \ u

[(x,1)+(y,0)]+( ) 4@ \

We shall show t! & “'_ tive. To prove this, let

(x,N+[(y,0)+(z,1)] =

(x,¢,),(x,e,), (x,c3) £ '= ©} . —Th X,y,2z € {2"|n e 2} ana

C,1C5,CE {0,1

i

cﬁ co

= (xyz,0) and [(x¢-0 (y,0)1(z,0) = (xy,O)(z, ) = (xyz,0). Thus

‘*'°>“wﬂwm&mwmn§
("lz 7 m‘@[(xa?mﬂmljﬁaﬁ yzEJ- (x,0) (yz,1)

Thus (x,0)[(y,0)(z,1)] = [(x,0)(y,0)](z,1).

Case 1: c.=

1 ,)__ﬁ,on = (x,0)(yz,0)

Case 3: C = cy= 0 and c,= 1= Then H(x;0) [y, 1)(z;0) 1 = (%,0) (yz,1)

= (xyz,1) and [(x,0)(y,1)](z,0) = (xy,1)(z,0) = (xyz,1).

Thus (x,0)[(y,1)(z,0)] = [(x,0)(y,1)1(z,0).
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Case 4: C,= 0 and c,= c = 1. Then (x,0)[(y,1)(z,1)]=(z,0)(yz,0)
= (xyz,0) and [(x,0)(y,1)](z,1) = (xy,1)(z,1) = (xyz,0).

Thus (x,0)[(y,1)(z,1)] = [(x,0)(y,1)1(z,1).

Case 5: c,= 1and c,= c,= 0. Then (x,1)[(y,0)(2,0)]= (x,1)(yz,0)

1 2 3
)’l (xy,1)(z,0) = (xyz,1).
Wheo

Thus (x,1)[(y,0)(z,0)] "

| —
Case 6: c,=c W
_— 1 3
= (xyz,0) and [(/

Thus (x,1)[(y,0)

B, 1)(z,1)] = (x,1)(yz,0)

(xyz,1).

We shall show that B, \ {‘”} is d_xstrlbutlve. To prove this,

g ﬂ%ﬂ"}%ﬁ ﬂ‘ﬁ [ EraEy 5 men x,y,26(2"|nen)

and c1,c cﬂ € {0 1)

N MNP UUBIITLD A Bl artmr

= (m:n.n{xy.xz},O) and (x,0)(y,0)+(x,0)(z,0)

(xy,0)+(xz,0)

= (min{xy,xz},0). Thus (x,0)[(y,0)+(z,0)] = (x,0)(y,0)+(x,0)(z,0).

Case 2: c,=c,= 0 and cy= 1. Then (x,0)[(y,0)+(z,1)] = (x,0)® = =

and (x,0)(y,0)+(x,0)(z,1) = (xy,0)4(xz,1) = ®. Thus

(x,0)[(y,0)+(z,1)] = (x,0)(y,0)+(x,0)(z,1).
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Case 3: C,= C3= 0 and c,= 1. Then (x,O)[(y,1)+(z,0.)]= (x,0)® =«

and (x,0)(y,1)+(x,0)(z,0) = (xy,1)+(xz,0) = . Thus

(x,0)[(y,0)+(z, D] = (x,0)(y,0)+(x,0)(z,1).

Case 4: c,= 0 and C,= Ca= 1. Then (x,0)[(y,N+(z,1)] =

1
% ’ nd (x,0)(y,1)+(x,0)(z,1)
P ,)}4 x,0) [(y, D+(z, 1]

(x,0) (min{y,z},1) = (min{

(xy,1)+(xz,1) = (mi

i

(x,0) (Y)1’)'+(x,0) "

Case 5: c=1/'.

3 y,0)+(z,0)] =

(x"l)(“‘in{y,z}, 3 ,0‘+(X,1)(Z,0)

(xy, 1) +(xz,1) i xzbs Dt Thus G (y,00+(2,0)]

I
%
-
~
~
<
-
o
+
—~
bl

Case 6: c,= c,= 1 afid cg=0. Then G (y,0)+(z,D] = (x, 1) = =

and (x,1)(y,0)+(x,1)'(z,‘-' 7y (% = @, Thus

Case 7: Cc.= 7 1) y,1)+(z,0)] = (X;1)® =

and (x,1)(y,1)+(xi2)(z,0) (xy,0)+(xz 1) = ®. Thus

‘*'”“v»ﬂ%’a NERTHEN T
L GCOE LR T R

= (min{xy,xz},0). Thus (x,D[(y,1)+(z,1)] = (x,1) (y,D+(x,1)(z,1)

Hence B1 \ {=} is distributive.

We shall show that (B1\ {=},*) is a group. To prove this,
let (x,c) € B1 \ {®} pe arbitrary. Now, we have that

(1,0),(x"V,c) € B, {=).



(min{x,z},0) =

100

Case 1: c =0. Then (x,0)(1,0) = (x,0) (1,0)(x,0) and

G, 80 O 0w 11,00 = (% 0 6%, 00

(1,0)(x,1) and

Case 2: c =1. Then (x,1)(1,0) = (x,1)

GuD 67,1 = (1,0 = (LD 6.

) gf B~ {~} and (x—1,c) ie an

inverse of (x,c). ) 4BS {=},*) is a croup.

We shall show (y,d) € B1, (x,c) < (y,d)
implies that (x,c 7;_;“'> ,c)(z,b) £ (y,8}{z,b)
for all (z,b) < ‘. le ),(y,d) ¢ B, be such that

1

(x,c) < then we are doz=.
Suppose = ® or (y,d)
then we " >“that }iﬁ”- - € B{~{°}-

Case 1:

(mnﬂ,z} 0) = (y,0). Thus

;::Z:i:;ﬁwifm ey e M
“ARTESRI RN 8 Y. .

(min{x,z},0) = (x,0) and (y,0)+(z,0) = (min{y,z},0) = (2,0). Thus

—,O) and (y,0)+(z,0) =

(x,0)+(z,0) € (y,0)+(z,0). The proof that (x,0)(z,0) < (y,l (z,0) is
similar to the one given in Subcase 1.1.1.

Subcase 1.1.3: z £ Xx £y. This proof is similar to the

proof of Subcase 1.1.1.
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Subcase 1.2: d = 1. Then (x,0)+(z,0) = (min{x,z},0) and
(y,1)+(z,0) = ®. Thus (x,0)+(z,0) < (y,1)+(z,0). Now, we have that

(x,0)(z,0) = (xz,0) and (y,1)(2z,0) = (yz,1). Thus

= 1 refore x < y. Then (x,1)+(z,0) =
‘; /y‘)ﬂz,m. Now, we have that

1). It follows from xz £ yz

(x,0)(z,0) < (y,1)(z,0).

Case 2: C = 1.- Then d

= (y,1)+(2,0). Thus ( ‘

(x,1)(z,0) = (x2,1)

Lastly, a T 5 - to the ome given in Remark 3.1.8

The proof of £ N s is similar to the proof of

FUL2",1) |m e Z}. Define

+ and ° on B a 1n Remas

“ RUEINERSNeNg

,0) iff x &y,

’QW']MT]?QJN!&'JQMEJ’]GEJ

Then (Bz,+,-,s) is a complete ordered «-skew semifield.

angd defi@ < on B2 by as follows:

Remark 3.2.13. Let B.= {(2",0)|n e ZtU{=}U {(2",1)|m e Z}. Define

» and < as in Remark 3.2.11. Let x, y € {an ne Z}. Define + on B3

by follows:
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(x,0)+(y,0) = (max{x,y},0),
(x,1)+(y,1) = (max{x,y},1),
(x,0)+(y,1) = =,

Then (B3,+,',s) is a complete ordered «-skew semi field.

//}U{“}U{(Zmﬂ)lme z}.

and define < on B as in

“Me ordered @-skew semifield.

Remark 3.2.14. Let B.= {(2
befine + and * on B,

Remark 3.2.12.

Remark 3.2.15. {/2",1)|me 7 is odd}.

Let X1y X {2"n d let' ) W 'E 2 € Z is odd}. Define

2€
+and‘onc1a f
‘.,y},O),

{x,y},O).

L Ny VLT N Y 419 W e

‘H

ﬂﬂﬂ%ﬂﬂﬂ‘ﬁ‘ﬂﬂﬁﬂ‘i

(y1,1)(y )= (y1y2,0)

AR ﬁTﬂJ M IMENAY

Define £ on C by as follows:
(x1,0) <®< (y1,1),
(x1,0) (x2,0) iff X, < Xy

Then (C1,+,°,$) is a complete ordered ®-skew semifeild.
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Remark 3.2.16. Let Cy= {(2n,0)|n € ZGlJ{°}lJ{(JEE.1)|m € Zis odd}.

Define + and * on C, as in Remark 3.2.15. Let x,, xze{ 2"|n e 3} and

let y., y,¢ {V2"|m ¢ Z is odd}. Define < on C, as follows:

(x1,0) < @< (y1,1),

Then (C,,+, | cte ordered ®-skew semifield.

Remark 3.2.17. ‘ ‘U{(JZm,1)|m e Z is odd}.

Define * and < Let X, X € {2n|n e 7}

+ on C_ as follows:

and let Yq1 Yy€ 3

Then (C ?, <) is a complete ordered «-skew semifield.

ﬂuH’J‘VIH‘VI‘ﬁWMﬂ‘E

Remark 3. 2 18. Let C,= {&2 »0)|n e ZQLJ{°}LJ{(J_— 1)|m € Z is odd}.

Deammnimmn BEAA L <, o

Remark 3:2.16..° Then (C4,+, ,<) is a complete ordered @-skew semifield.

Remark 3.2.19. Let E, = R'x {0}) Ul=} UM {1}). Let x, vy e RT.

Define + and * by :

(x,0)+(y,0) (x+y,0),

® 5

(x,0)+(y,1)
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(x,D+(y,1) = (x+y,1),
(x,0)(y,0) = (xy,0),
(%, 000y, 1) = (xXy;1),
(y;1)(x50) "= (yxf1),

Then (E1, red @-skew semifield.

Remark 3.2.20. (IR+x.{1}). Define + and

on E, as in Remark 3.2.19 ot Ry . Define < on E, as

follows:

< (y,0) iff x €y,

fl uzﬁ NYTTINYINT

(E2,+, » <) 15? complete ordered w-skew semifield.

QW'W&Nﬂ‘iﬁlJﬂJWTmEﬂﬁEI

emark 3.2.21. Let E = @' {0} U {=} U®R'x {1}). Define + and -

on E3 as in Remark 3.2.19. Let x, y € IR+. Define < on E3 as
follows:

(x,0) < ®< (y,1),

(x,0) € (y,0) iff y < x

(x51) € Uy,1) 1fEx < V.
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Then ,(E3,+,° ,<) is a complete ordered «-skew semifield.

‘Remark 3.2.22. Let E,= @R*x {0hH U {=}U®*x {1}). Define + and °

on }':‘.4 as in Remark 3.2.19. Let x, y elR . Define < on E4 as

follows:

Then (E4 o -skew semifield.

Remark 3.2.23. A{‘l}). Define ¢ and <

on ES as in Rem ~Define + on E_ as follows:

5

- m._.——“;m n-". ‘
and ' l_— gy ‘T‘

Then (EE,' ,<) is a complete order@ ®_skew semifield.
e ﬂu EL’lMJ-WﬁMlﬁJ’m‘E B e

2.23 aﬁd define as in Rémark 3.2.20.

~a “AWFT LB INIIAS

‘Remark 3.2.25. Let E- wrx {o})Uu{=}U ®r* {1}). Define * and

on E, as in Remark 3.2.19. Let x, y € R*. Define + on E, as
follows:

(x,0)+(y,0) (min{x,y},0),

[

(x,)+(y,1) = (min{x,y},1),



106

(x,0)+(y,1) ==

and z+* =« for all z € E7.

Then (E.',-},',s) is a complete ordered ®-skew semifield.

Remark 3.2.26. Let Eg= wx {o})HU {»}U@®"'x {1}). Define + and °

< on E, as given in Remark

on E8 as in Rerqark 3.2.25 8

3.2.20. Then (E8,+, ered o_skew semifield.

| —

Proposition 3.2. 2

Then (DK,+,',\<) is io semiring.

Proof: e II «-skew semifield.
| (6), (DL,+,°,<) is an
ordered skew ratio semiring., By Pro it 3.2.4 (1), (Di,s) is a

cte ordered skew ratio semiring. g

v“ field. Suppose that

=

for every x, y € ‘t] X s@+z for all z € K. 1If

'D # @, then there éxists a t € D gsuch that K = U{Q}UtD and

ﬂuaqwﬂWEWSWﬂi
a CERRES SRR B

{m}UD Then K = D U{‘”}UD -D UCor (1), e T eyt

Let X € D:IL( be arbitrary. From (1), we have that K = xK x(DiU CorK(1))

= xle(Ux CorK(1). : A S R R L (2)

|
¥
S|
ond
0
o
R
X
w

By Proposition 3.2.2 (3) and (2), K

g. Ry Ry o A (4)

; f f
Since DKﬂCorK(U =0 xDKnCorK(x)
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Now, we have that K\ {=} = D]f(UD:( = DKU (U XDli)' Since DinD; =g
xeD
K
and Dif]( U _fo) = fand U_fo # ¢, U .fo i Suppose that there
1K i K i~ K K
xeDK xeDK xeDK

are two disjoint cosets contained in D;. Let vDi and wDi be distinct

cosets of Dl. Then v < w o

K Without loss of generality,

wa. Then u € wa. Now,

suppose that w < v. K

we have that 1+a € D : osition 3.2.3, w(1+a) € D;.

Thus o < w(1+a) ="w+ : WS e TR AR (5)

';?55{ is 0 or 1. If the number

of coset in D; is 0, , SR diction. Therefore the
number of coset in D is 13;=:hu = flJ{°}lJtD for some t € D;.
Then ‘K = tK = zDi = Di. Therefore
tze D

mesren .20 5 ANUNIWEINT mie

- iﬁi"éﬁﬁs Bl AR A

(K,+,* ,<) is isomorphic to exactly one of the following «-skew

semifields:

(1) ({2n|n e Z}U{=},*,+,<) as in (3) of Theorem 3.2.8.
(2) (B1,+,-,<) as in Remark 3.2.11.
(3) (Bz,+,-,<) as in Remark 3.2.12.

(4) (C1,+,-,<) as in Remark 3.2.15.
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(5) (Cé,+,',<) as in Remark 3.2.16.

Proof : Assume that (D§,+,',<) is isomorphic to
n : ' £ i i
({2 In e Z},min,*,<). Now, we have that K = DKLl{w}l}DK. If Dy = g,

then (K,+,°*,<) is isomorphic to (1). Suppose that D; # @§. By

Theorem 3.2.28, there exists such that K = DiLJ{Q}LJzDi and

zze Di. Thus D we shall assume that

={2"|ne 2. now i . = rz for all re Di.

' - 2.2 f

Let r € D be ar 1rs show that z'r"e DK and

2 g
(zr)”e Dy. Clearly (zr) = (zr)(zr) = z(rz)z.

................. (*)
Since rz ¢ D; = zD From (*), we have
that (zr)
Next, we shall Mﬁﬁap : To prove this,

2rey < zzr2 which

implies that zrz E;z e ; ..E] ...... clereis o s ebie e (%*)

Since rz ¢ = zs for séme . From (**), we have

e 3 ET uﬂm ﬂﬁiﬂﬁlﬂ £l i

= 5. Then ZzS+zr =

,..Mmg,aﬁmm SABETAY. o

2r2, (zr)ze Di, z2r2 < (zr) , a contradlctlon. If zzr2< (zr) , then

zzr2 < zrzr which implies that zzr <1 ZX A s e R s o (xxx)

Since rz € D; = zDi, rz = zw for some w € Di. From (***),we have

that zzr < z(zw) = (zz)w = zzw, it follows that r < w. Therefore

r+w = r, so zr+zw = zr. Then zr+rz = 2zr. Thus rz(zr)+rz(zr) = zr(zr)
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X 2 f
which implies that (zr)2+zzr2= (zr)z. Since zzrz, (zr)~ e DK)’

(zr)2\< zzrz, a contradiction. Hence (zr)2 = zzrz. ............ (*%x%)

Finally, from (****), we have that zrzr = zzrr. Then

z_1(z'rzr) = 2'1(zzrr), hence rzr = zrr. Therefore (r'zr)r-1= (zrr)r .

Thus rz = zr. Therefore we get hat zr = rz for all r € Di.
............. . (1)
2 ;
Case 1 2z = = 1. By (i),
(22 05¢ 1. Y. and EOE = (22 D
K K
= z(2-me) ................. (ii)
K
Using a (i) we can show that
ts = st for all s gD F s RS W ................. (iii)
Now, we have that t2 #
2 Subcase 1.1: - '_- shall show that the following
properties hold.::_'i, ' i
(a)
For every m, ne zt A m < n implies that t2 < t2 iy
I e
To show (a), let n e;z be arb ary. We 1 prove this
-~ of naloflon] | nck a1 444 ’1 %H’}adﬂe- suppose
that (a) is true for some n-1 > 1. Then 2" s 2" Thus

n+1 > t2n for all ne 2+.

(202 > (t2n_ )2, so 2™ 5> 2. Hence t2
To show (b), let m, ne Z' be such that m < n. Then there
exists an £ € Z' such that m# = n. It follows from (a) that

£ Sopalert o o GoRtR o eof
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To show (c), let m, n € Z be such that m < n. Now, we have

fhatire ' <t A proof similar to the proof of (a) shows that

£2% « tzm'1 for allne Z . Sincem<n, m =n for some £ € zt.
Thus t2™ < t2m+1<...< t2m+£= t2". From (b) and (c), we have that
for every m, ne Z, m < n implies. that R ey e .. (iv)

Let B,= {(2",0)|n e

)‘/ U{(2",1)|me Z}. Define +, * and
2 : K B1 in the following
way: f(®) = o, Le&f{mb

n € Z. Define f(

< as are given in Rem

, then x = 2 for some

r. e Dlt;. Define f(x
bi jection.

(I) To

f(x) € £(y), let
Case I1.1: XLy <e

Case 1.2: X

that f(x) = (x,0%

Skl D i g '
o ﬂ"ﬂ*ﬁ ) PP P ST B e oy - o

for some s ‘D . Thus f(x) (r,1) and f(y) (s,1). Then there are

I LARGA ﬂ??d’ K TRH VR -

If m < n, then by (1v), t2™ < 2", a contradiction. Thus n < m.

(x) = 4%,0). < (,;1)

Therefore r = 2 o

£ 2 = s, hence (r,1) < (s,1). Therefore f(x)< f(y).
(II) To show that f(x+y) = f(x)+f(y) for all x, y € K, let
X, y € Kbe arbitrary. If x = ® or y = @, then we are done. Suppose

that x, y € K\ {=}.
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Case II.1: x £y <®. This case is clear.

Case II.2: x < ®<y. Theny = tr for some r € Di. Thus
f(x) = (x,0) and f(y) = (r,1). Therefore f(x)+£f(y) =,(x,0)+(r,1) =i o,

Since x < ® <y, ® £ xty £ ®. Then x+y = ®. Thus f(x+y) = £(®) = =,

W,

J

Hence f(x+y) = £(x)+f(y).

Case II.3: " ® << x < e r e D and y = ts for

some s € Df. Thus 'n{r,@ ). Thus

K

f(x+y) = (minir,s = (r,1) and f(y)=(s,1).

Then f(x)+f(y) = ence f(x+y) = £(x)+f(y).
(III) To all x, y € K, let
X, vy € K be arbitr n we are done. Suppose

that x, y € K\ {=}.
Case III.1:

Case III.2: D By Proposition

3.2.3 (4), xy € D By (iii), xr = r

1
Then f(xy) = (r1,1) (xr,1) = (x,O)(r,1) = f(x)f(y).

i fAUE A ﬂﬂ"ﬂiw BLE)D oo oot o
ﬁm’] ANN IR NW’]’JWEJ’]@ d

Case I I 4: ® < x £y. Then x = tr for some r € D and y = ts for
some s € Di. By (iii), xy = t’rs = rs. Therefore f(xy) = (rs,0) =

Therefore f is an isomorphism. Hence (K,+,¢,<) is isomorphic

to-{2):

Subcase 1.2: t2< t. Now, we shall show that the following
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properties hold:

P for all ne 7,

@ 2™ < ¢2
(e) For every m, n € Z+, m < n implies that t2n < t2m,

(f) For everym, ne Z , m < n implies that 220 <™,

To show (d), let n ¢

by using induction on n "Qﬂ“
o

that (d) is true forhx;t1

(t2™)2 < (2 N2,

,Lze arbitrary. We shall prove this

////, then we are done. Suppose
1. :ﬁn“ < 2™, Thus

‘ “.rq: < t2"” for all ne 2"
‘b‘,.‘s, . that m < n. Then there

we have that

To show

exists an 2 ¢ 2T

827 s 82T g 5L

To show ( at m < n. Now, we have

that t < t2'1. A oof of (d) shows that

t2n+1

< t2n for all m+f = n for some £ ¢ 2+.

Thus t2" = t2m+‘.e R From (e) and (f), we

have that for e . —————— _ . < n 1mpl3 res hat P M (7))

Let B,= {@n,O) ne - ,1)@1 € Z}. Define +, * and

< as are given in Romark 3.2.12. Bdfine in the following
way: F(w)ET
U

WEINENIWEADR o e
Y QU T el b1

To show that for every x, ye K, x £ y implies that F(x) < F(y),

let x, y € K be such that x < y. If x, y ¢ le(, then we are done.

If x <® <y, then F(x) < ® < F(y). Suppose that ® < x £ y. Then

H

by (i), x = tr for somerlef( and y = ts for some s € D Thus

K
F(x) = (r,1) and F(y) = (s,1). Then there are n, m ¢ Z such that

r = 2" and s = 2™. Therefore t2" = x < y = 2™ I B < m, then
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by (v), £2™ < t2n, a contradiction. Therefore m £ n. Thus
g% 2" <% = v, ihen (r,1) £ (s,1). Hence F(x) £ F(y).
Using a proof similar to the one used in Subcase 1.1 we can

show that F is a homomorphism. Therefore we get that F is an

isomorphism. Hence (K,+,s,<) is isomorphic to (3).

Case 2: z2= 2V for sontiNE Zbddi;‘Then z2= 22m—1'for some m € 7.
Thus 222%™ " = 2ale By (i),J(ZZ_m)2 = . Let w=22"". Then
W e Di andrw2= 5 and‘wDi = z2ij£ = zDi = Di. Now, we have that
w2 # w. Then w2 >affordudd iz }

Subcase 2. 4% J#w2 > Q, ﬁ;;ng a proof similar to the proof

of (iv) in SubcaseA1.1;we get thqk for every m, n e Z, m < n implies
that w2™ < w2". ok | SR (vi)
i Tl

Let C.= {(2",0) |ofe @} U{=}Uf(V2",1) |m ¢ 7 is odd}. Define

+, ¢ and £ as are givenvin.Remarkr§t2¢45. Define g: K — C1 in the

following way:'g(;Q—abuh——{ﬁﬂ%ee1%4%&4«4ﬁ~—liikfs Di, then x = 2"

for some n € Z. Define g(x) = (x,0). If x e‘D;, then x = wr for
some r € Di. Then r = 2" for some,m € Z. Define g(x) = (422m_1,1).
Clearly, giis well-defined and g is a bijection.

(I) To show that for every x, y € K, x £ y implies that

g(x) & g(y), let %, |y €,K/be such that x/<ly.

Case I.1: X £ y< o. This case is clear.
Case I.2: X <o <y. Then y = wr for some r ¢ Di. Thus r = 2"
for some m € Z. Therefore g(y) = ( 22m_1,1). Now, we have that x = 2

for some n e 2. Thus g(x) = (2",0). Hence g(x) = (27,0) < =< (,/22“‘-1,1)

= g(y).
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Case I1.3: @® < x £y. Then x = wr for some r € le< and y = ws for

some s € Di. Thus r = 2rn for some s € le(‘ Thus r = 2™ for some
me Zand s = 2" for some n € Z. Therefore g(x) = (422m-1,1) and
gly) = (J22n-1,1). Now, we have that w2® < w2®. If n <m, then by

(vi), w2? < w2 , a contradiction. Therefore m < n, it follows that

/p2m=1 < /22n-1_ Henc\' Vp/‘/_ﬂ < (227N = gy

(II) To sh &;ﬁ(xﬂ) . (y) for all X, y € K, let

en we. Suppose that

X, ye K. If x =

X, Y€ K\ {=}.
Case II.1: 3

Case I1I.2: X € rem:3.2.25, x+y = @,

Now, we have that y = wr for some r € Df(
(2™,0) and g(y) = (/227!

Then r = 2" for some n i)

Thus g(x)-fg(y)'.h( ,0).1.(";;5 .;’;f’:

g(x)+gly).

Case II.3: x e and y € D!f( Thls proof is similar to the proof

e U AN NI NENS
"Jﬁi St .

some n § Z. Without loss of generality, suppose that m < n. Then

x+y = 22"+ 22" = z(2™+2") = z2™. Therefore g(x+y) = ( 2m'1,1).

,1) and g(y) = (22 . Then
g(0+a(y) = (2201 1), (/22071 1) o (min{22™1,V222 1), ) = (22T

Now, we have that g(x) = ( gt
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Hence g(x+y) = g(x)+g(y).
(III) To show that g(xy) = g(x)g(y) for all x, y € K, for
X, Y€ K be arbitrary. If x = ® or y = ®, then we are done. Suppose

that x, y e K\ {=}.

Case III.1: X, ye D .

.

' ]7 is clear.
: & £//&c—2 for some m € Z and
y = w2" for some ? ‘ p\: to the proof of (i)

- . Thus

(2" ,0) and

« (2N 0022 1

grse FIT.3: X € D;l(

Case III.4: x§ DK and 3 ; ; M for some m € Z and

y = w2" for some

S

]
Tré}x XY = w22m+n___ 2m+n-1.

Thus g(xy) = ﬁﬂﬁmg\]w% = (V ,1) and
1 1) = (/22m+2n 2

gly) = ,1) Then g(x)g(y) ,1)(

Wﬂﬁﬂﬁwﬁdﬁqf}ﬂ H’I@ d

Thus g is an isomorphism. Hence (K,+,°*,<) is isomorphic to

we can show that 9 = bw

(4).
Subcase 2.2: w2 < w. Using a proof similar to the proof of

Subcase 2.1 we get that (K,+,°,<) is isomorphic to (5). #

Theorem 3.2.30. Let (K,+,°,<) be a type II «-skew semifield.
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Suppose that for every x, y € S 4 y implies that x+z < y+z for
all z2¢ K. 1If (D§,+,'.s) is isomorphic to ({2?|n € 2}, max,*,<).
Then (K,+,;,<) is iéomorphicrto exactly one of the following «-skew
semifields:
(D ({2°|n ¢ 2} Uls}, max,«,<).
(2) | .
(3)
(4)

(5)

The proof to the proof of

Theorem 3.2.29.

Theorem 3.2.31. Let M(K,+5+,<) be d.type II w-skew semifield.

f .

z'e K. If (Dpf *,<). Then (K,+,°*,<)

is isomorphic skew semifields:

(1) a»s_} semifield with the almost trivial addition

" MY ’MQ},J WIHENA. .
RN TAUANINYAE

Proof: Assume that (D +,°,<) is isomorphic to ({1},+,-,%).

Now, we have that K = DKlJ{Q}LJDK. T D; = @, then (K,+,+,<) is
isomorphic to (1). Suppose that D; # §. By Theorem 3.2.26, there
exists B te D- such that K = Do UdetUen: and bt eh . Thas b= &b

K K K K K K-

Therefore we get that (K,+,*,<) is isomorphic to (2). "
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Proposition 3.2.32. Let (K,+,*,<) be a type II «-skew semifield.

Suppose that for every x, ye K, x £ y implies that x+z < y+z for all
z € K and suppose that D; £ @ If (D§,+,',$) is isomorphic to

(R+,+5°,<), then for every a, b € D;, a < a+b or for every c, d € Dl,

K
C+d <ol
Proof: Assume that D’ Theorem 3.2.28, D; = tle<
b Bt 3 ]
and t" e DK for some ' (DK,+, ,S) is isomorphic to

(R+.+:'.S). For that D W Now, we

K
have that 2t # t.

Case 1: £t < 2t.

Step 1.1. We sh € z+, m < n implies

+

that mt < nt. We clai , nt< (n+1)t. Let ne Z'.

-+

We shall prove this ne 2. If n=1, then

we are done. ue for some n-1 > 1. Then

(n=Pit < nt. 1 m_- : N —— “ lows that nt < (n+1)t.

If nt = (n+1)t, eE}n n 'iﬂ. Thus nt < (n+1)t, so

we have the clalm.

AL VHRTHUATG. oo

some 2 £ Z' Therefore mt <s(m+1)t <.. < (m+n)t =

o I 1AINIUIAIN, AL, .....

that rt < st. To prove this, let r, s € Q+ be such that r < s.

Then r = 2 and s = E for some m, n, p, g € z*. Thus = < E, it follows
n q n q

that gm < np. By Step 1.1, gmt < npt. Therefore % t < % t. Hence

It <igt.
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PR
Step 1.3. We shall show that tQ+ has no lower bound in DK' To

prove this, suppose not. Then tQ+ has a lower bound in D;. Since

K is complete and D}( [ tQ+ has an infimum in DJI‘(. Let z = inf(tQ+).
Then ® < z. Therefore z < rt for all r € Q+. Thus z < % t for all
r e Q+, so 2z £ rt for all r e Q+ Then 2z is a lower bound of tQ+.

Thus 2z < z. ; L VR R s i)

Similarly, 2z < ~.a ‘ llows that 27 'z < z. Thus

Z2 £ 2z, “From (1), ' ~ Wimplies that 1'= 2, a

contradiction. und in D;

Let r € Q+

Step 1.4. We sha ":'{ E+dt r all d e Di.

be arbitrary. t < (14r)t = t+rt. Hence

t < t+rt for all 'V?’:”7¥:‘-, I W s e e R AZ)

Suppose that }} 5 trar Then 4t € D;. By Step 1.3,
dt is not a lower bound of , hen there exists an r ¢ Q+ such

have that t < t+dt.

Now, we zaall Ty x@]y € D;, x < x+y. Let

£
X, Y€ DA be arbitrary. Then x =it and y = dt for some ¢, d € Dy -

s L ANENANE AN Lsiee e
ﬁwmﬁmumwmaﬂ

Case : 2t < t. Using a proof similar to the one used in Case 1

we can show that x+y < x for all x, y e D;.

Hence, the theorem is proved. #

Theorem 3.2.33. Let (K,+,°*,<) be a type II «-skew semifield.
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Suppose that for every x, y € K, x < y implies that x+z < y+z. If
(Di,+n,$) is isomorphic to (R+,+,-,<), then (K,+,*,<) is isomorphic
to exactly one of the following ®-skew semifields:

(1) (R+:+»'s$)-

(2) (E1,+,°,\<) as in

Remark 3.2.19.

(3) (E2:+o.)<)

Proof

1 /<) 1§ isomorphic to (|R+,+,-,\<).

, then (K,+,*,g<) is

Suppose th b eoren 28, there exists a
z € D such that K ’. | and 2% D; For simplicity, we
shall assume that D 4 </Thenz & A 3% some ae R'. Thus a = b2

a proof similar to the

proof of (i) in Theorem : can, show that (zb_1)2 = 1. Let
Coarrgi ) 1)le( = z(b_1D )
f i
= - . - *
zDK DK‘ ................. (*)

Using a proof sxmllar to the proof f (i) in Theorem 3.2.29 we can

ﬁutgx}wgmwm - s

Now, we have that 2t #£ t. . I‘ﬁei]eﬁh;iaﬁtﬂrf] a E]
Case 1 t < 2t. Then by the proof of Proposition 3.2.32, a < a+b

for all a, be Dli<, Let E1=((R"§({1})U{°°}U(|R+x{1}),+,',\<) be given
as in Remark 3.2.19. Define F: K — E1 in the following way: F(®)=o,
Define F(x) = (x,0) for all x € le(. Let y € Di‘(. By (*),:y = ts:for
some s € Dlt;. Define F(y) = (s,1). Clearly, F is well-defined and

F is a bijection.
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" (1.1) To show that for every x, y € K, x <y implies that
F(x) < F(y), let x, y € K be such that x L y. If x =1y, then we

are done. Suppose that x < y.

Subcase 1.1.1: x <y £ ». This case is clear.

Subcase 1.1.2: x { ® <y. This case is clear.

”/Then x = tr for some r ¢ Df and

f <1y then there exists

Subcase 1.1.3:

é u € Df such t

K tr. Then ts+tu < ts

and ts, tu € o Therefore

K
(r,1) < (s,1).
This sh £ y implies that

F(x) < F(y).
(1.2): To

and F(xy) = F(x)F(y),

then we are done.

is case is clear.

Subcase 2 25 X € Df

ol
for some ﬂﬂ&’}%g}%@%ﬂ’}ﬂﬁus Fxty) = F(e)

= @ and F( +F(y) = (x,0)+(2,1) = o, Hence F(x+y) = F(x)+F(y)

m;] WW@#&?W%WY%%%H@% Dotk hy

By (* Xy =

Then by (*), y =

tr.. Hence xr = r,. Therefore we get that F(xy) =

(r1,1) = (xr,1) = (x,0)(r,1) = F(X)F(y).

Subcase 1.2.3: X E D; and y € Di. This proof is similar

to the proof of Subcase 1.2.2.

Subcase 1.2.4: X € D; and y € D;. Then x = tr for some

£
re DK and y = ts for some s € Df

K Then x+y = t(r+s). Then
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- : 2
F(x+y) = (r+s,1) = (r,1)+(s,1) = F(x)+Fly). By (**), xy = t'rs = rs
Therefore F(xy) = (rs,0) = (r,1)(s,1) = F(x)F(y).
Therefore F is an isomorphism. Hence (K,+,°,<) is

isohorphic to (2).

Case 2: 2t < t. Then by th

for all a, b e Dl.

Zoof of Proposition 3.2.32, atb < a
K

y (=} U ®*{11),+,°,<) be

sing >fsimilar to the proof of
¥ —

Case 1 we can shy ‘
Hence, th e

Theorem 3.2.34.

given as in Remark

ic to (3).

o-skew semifield.

Suppose that for every ‘ : f VJ A ies that x+z < y+z for

f . .
all z'e K. If (Dg,+ (R+,+,-,<opp), then
(K,+,*,<) is isomorphic ‘ -'_Qi of the following ®-skew

are Eje usual addition and

multiplication, regpectively and - < dn RY and x < ® for all
A LY,

. AUHINININEINT
(2) (Eg,4,0,<) as fn Remark 3:2.21. 'Y,
ARIANIHAAINES

The proof of Theorem 3.2.34 is similar to the proof of

Theorem 3.2.33.

Proposition 3.2.35. Let (K,+,+,<) be a type II =-skew semifield.

Suppose that for every x, y e K, x £y implies that x+z < y+z for
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all z € K and suppose that D1 #. 8. . -If (D§,+,',<) is.isomorphic to

p Y
£ a+b or for everyc, d € D,

(R+,max, <), then for every a, b € D K

k.2
c+d < d.

Proof: Assume that D; # @ and suppose that (D§,+,',<) is

i 2
heorem 3.2.28, i tDi and t = 1

isomorphic to (R+,max,‘ K

<) .

’)11 assume t_hat le( = R+. Now,
we have that 2t # ' :

Case 12 t < Zt/ ' ¥ ‘ very a, b e D]l'(, a a+b.

<
f
K

for some t € D For sim

.

First, we shall Let d € be
arbitrary.

Subcase = t+dt

Subcase 1.2: . exists an m € Z' be such

that 3™ 2'a < 2° tlesat. ‘Then

(2™rd)t < (2’“*}51&.» hus At | sl it

(m+1) m+1

Let 2%

|
bt < 2“‘“t, it gllows that bt < 27™¢.

ﬂumwﬂmwmm """"""" &

Now, we hat¥ that 2~ (m+1 ik By (29,d t < 2™, so

RN TRG ??ﬂ 3*%’3’3 il EI e

Therefore we get that t < t+dt for all d € DK Now, we shall

From (1), we have that 22m+1

i

show that a < a+b for all a, b € DK Let a, b€ D; be arbitrary.

Then a = rt for some r € Di and b = st for some s € Di. Since

rlse Di, t < t+r 'st. fThen rt £ rt+st. Hence a < a+b.

Case 2: 2t < t. We shall show that for every c, d € D;, c+d £ 4.
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¥ ‘.
We shall first show that t+ut £ ut for all u € D,. Let u e DK be

K
arbi trary.
Subcase 2.1: 1 £ u. Then t+ut = (1+u)t = ut.
Subcase 2.2: u < 1. Then there exists an n ¢ 2* such that

—(nh+1) -(n+1)

g1 a2 sinte 27t 2, £, 2% it € 2 t+ut.

Thus (27 74u)t < (2—(n+1) 27t < ut which implies

that £ < 2 %t < u

f
u e DK' Now, we

shall show that c+d ‘ ) c, de D; be arbitrary

arbitrary. Then c

f
= st for some s ¢ DK'

1 f

Since r~ 's € D £ st. Hence c+d < d

g

Suppose that for every X, K 2 implies that x+z < y+z for
?fu_p’;f : ek ¥
all z ¢ K and sf‘ju-muammwm , (Dy»+ ,<) is isomorphic to
+
(R™5,mitn g€, or for every
i
chid.e DK’ c

Tﬂpuéﬁrww%'wmﬂ% o e

Prop051tloéu3 2535,

a‘mmn‘im UANAINYIAY

Theorem 35237 Let (K,+,°,<) be a type II «-skew semifield.

Suppose that x, y € K, x £ y implies that x+z < y+z for all z € K.
I£ (D£,+,°,$) is isomorphic to (R+,max,',$), then (K, 4,°*,<) is

isomorphic to exactly one of the following «-skew semifields:

(1) (R+,max,',<).
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(2) (E5.+,',s) as in Remark 3.2.23.

(3) (E6,+,°,\<) as in Remark 3.2.24.

Proof: Assume that (D§,+,-,\<) is isomorphic to (R+,min,-,'$).

Now, we have that K = DEU{‘”}UDl. If Dl = @, then (K,+,°*,<) is

isomorphic to (1).

Suppose that T ty, we shall assume that

bf = R*. By Theomem™I2e . the . 1 DK such that Df-th

and t2= 1 for somel ~Using a pr > -similar to the proof of

(i) in Theorem 3. ' gan-s at .t rt for all r ¢ Di. cE(¥)

Now, we have that % ‘ € A B2t or 2t < t.

Case 1: £ €2t position 3.2.30, a < a+b

for all a, b ¢ Dl. ..................... e (%)
A if-;’{éw } _.

Let Es_ (® x{oﬁu{a}u( {1 s A Remark 3.2.23.

o, F(x) = (x,0) for
all xe D,. ' D, some r € D.. Define

F(y) = (r,1). Cl!aﬂy. F is wellidefined and F is a bi jection.

AREANENINENL, - oore

¢ o

AR RHINIIN Ay

theniwe are done. Suppose that x, y € K

Subcase 1.1.1: X € lf< and y € le( This case is clear.
Subcase 1.1.2: X € le( and y € D;l(. Then y = tr for some
re Dlt;. By Proposition3.2.3(7). x+y = ®. Thus F(x+y) = «® and

F(x)+F(y) = (x,0)+(r,1) = ®. Hence F(x+y) = F(x)+F(y). From (%),

we have that xy = txr. By Proposition 3.2.3 (4), xy ¢ D:IL(. By (*),



125

Xy = tr,. Hence xr = r,. Therefore we get that F(xy) = (r1,1)

= (xr,1) = (x,0)(r,1) = F(x)F(y).

Subcase 1.1.3: X € D; and y € Di. This proof is similar to

the proof of Subcase 1.1.2.

. Then x = tr for some

Subcase 1.1.4: X ,and y € D,

t(r+s). Without loss

re Di and y = ts for s

of generality, supp ts. Then F(x+y) =(s,1)

'+
«
1

= (max{r,s},1) = (*), xy = t2rs = rs.

Therefore F(xy)

done. Suppose t

case is clear.

is case is clear.

Dy - then by Subcase 1.2.2

. 4
we are done. Su%s nen ﬂ= tr for some r € le(
and y = ts for somq- 5 DK Thus Sf =~ PR - o then s+r = r.

mﬂum I MTCY CA

contradlcts **). Thenr g, so (r,1 ;< (s51) Hence F(x) < F(y).

MANIUNIINENAY.

is isomorphic to (2).

Case 2: 2t < t. Using a proof similar to the proof of Case 1 we

can show that (K,+,+,<) is isomorphic to (3).

#
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Theorem 3.2.38. Let (K,+,°,<) be a type II ®-skew semifield.

Suppose that x, y € K, x < y implies that x+z < y+z for all z € K.
If (D£,+,‘,s) is isomorphic to (R",min,*,<), then (K,+,*,<) is

isomorphic to éxactly one of the following ®-skew semifields:

(1) R . in (2) of Theorem 3.2.8.

(3)

The proo : I3 .8 RS -\g\;- to the proof of

Theorem 3.2.37.

We canno 4 B | "v  on mi fields. We close

Example 3.2.39. = ;1,5 el .. Define +, * and <

AUBARERNNT

q FRNA TN URIANYIA Y

(x,0):< Ay; 0y IFF x < ye

Then (H1,+,-,s) is a type III »-skew semifield.

Example 3.2.40. Let Hy= (RTx{0}) U{=}. Define +, * and < on H2 is

as in Example 3.2.24.

Then (H2,+.',$) is a type III ®-skew semifield.
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Example 3.2.41. Let H,= ({2%|n € z}x{0D) U {=} U ({2%|n € Z}x{1}).

Define * and < on H3 as are given in Remark 3.2.11. Define + on H3

as follows:

Let x, y € {2"|n € 2} be arbitrary. Define

(x,0)+(y,0) =o

Example 3.2.42. & ‘_ 0 [ » Define +, * and

< on H4 as in Ex

Then (H4,+ semifield.

Example 3.2.43., 2 ield with the trivial

addition of _g ¢ ‘
AULINENTNYINS
RININIUNRINYAY

W semifield.
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