CHAPTER III

SEMIFIELDS

In this chapter, we shall classify all 0-skew semifields up to isomorphism in Section 1. In Section 2 we shall give partial classifications of -skew semifields.

Section 1. 0-Skew Semifields

- Definition 3.1.1. A system $(K,+,\cdot,\leqslant)$ is called an ordered 0-skew semifield iff $(K,+,\cdot)$ is a 0-skew semifield and \leqslant is an order on K satisfying the following properties:
- (i) For any x, y ϵ K, x \leqslant y implies that x+z \leqslant y+z for all z ϵ K,
- (ii) For any x, y ϵ K, x \leqslant y implies that xz \leqslant yz and zx \leqslant zy for all z \geqslant 0 in K and

(iii) 0 < 1.

Proposition 3.1.2 Let K be a 0-skew semifield. If there are x, $y \in K \setminus \{0\}$ such that x+y=0, then K is a skew field.

<u>Proof</u>: Assume that x, y ε K \{0} are such that x+y = 0, let z ε K be arbitrary. Since x ε K \{0}, x⁻¹ exists. Therefore $zx^{-1}(x+y) = (zx^{-1})0 = 0$, it follows that $z+zx^{-1}y = 0$. Thus $zx^{-1}y$ is an additive inverse of z. Since z ε K is arbitrary, b has an

additive inverse for every b ϵ K. Hence K is a skew field.

Notation : Let K be an ordered 0-skew semifield. Then we will denote $D_K^+ = \{x \in K | x > 0\}$ and $D_K^- = \{x \in K | x < 0\}$. Note that 1 $\in D_K^+$, so D_K^+ is never the empty set.

The following remarks follow immediately from Definition 3.1.1.

Remarks: 1) $x \in D_K^+$ and $y \in D_K^-$ imply that $xy \in D_K^-$. 2) $x \in D_K^-$ implies that $x^{-1} \in D_K^-$.

Proposition 3.1.3. Let K be a complete ordered 0-skew semifield which is not a skew field. Then D_K^+ is a complete ordered skew ratio semiring and D_K^- is a complete ordered semigroup with respect to addition if $D_K^- \neq \emptyset$.

<u>Proof:</u> First, we shall show that D_K^+ is a complete ordered skew ratio semiring. To prove this, let $x, y \in D_K^+$. So x > 0 and y > 0, which implies that $x+y \geqslant 0$. Suppose that x+y = 0, by Proposition 3.1.2, K is a skew field, contrary to the assumption. Thus $x+y \in D_K^+$. We see that $xy \geqslant x \cdot 0 = 0$. Suppose that xy = 0. Then $x^{-1}(xy) = x^{-1} \cdot 0$, therefore y = 0, a contradiction. So $xy \in D_K^+$. To show that $x^{-1} > 0$, suppose that $x^{-1} < 0$. By Definition 3.1.1, $x \cdot x^{-1} \leqslant x \cdot 0 = 0$, so $1 \leqslant 0$, a contradiction. Thus $x^{-1} > 0$. This shows that D_K^+ is an ordered skew ratio semiring.

Next, we shall show that D_K^+ is complete. Suppose that $A \subseteq D_K^+$ is a nonempty set having an upper bound in D_K^+ , it follows that $A \subseteq K$. Since K is complete, A has a least upper bound in K. Let $z = \sup(A)$. So for every $a \in A$, $a \leqslant z$. Fix $b \in A$. We get that $0 < b \leqslant z$. Therefore $z \in D_K^+$. Thus D_K^+ is complete, as required.

Finally, suppose that $D_{\overline{K}} \neq \emptyset$. To show that $D_{\overline{K}}$ is a complete ordered semigroup with respect to addition, let $x, y \in D_{\overline{K}}$. Then x < 0 and y < 0. Thus $x+y \leqslant 0+y = y < 0$. Therefore $x+y \in D_{\overline{K}}$. Thus $D_{\overline{K}}$ is an ordered semigroup. To show that $D_{\overline{K}}$ is complete, suppose that $A \subseteq D_{\overline{K}}$ is a nonempty set having a lower bound in $D_{\overline{K}}$, it follows that $A \subseteq K$. Since K is complete, A has a greatest lower bound in K. Let C in C is a complete. Thus the proposition is proved.

Proposition 3.1.4. Let K be an ordered 0-skew semifield such that $1+1 \neq 1$. Then the prime 0-skew semifield of K is isomorphic to \mathbb{Q}_0^+ with the usual addition, multiplication and order.

<u>Proof</u>: Let $(P,+,\cdot,\leqslant)$ be the prime 0-skew semifield of $(K,+,\cdot,\leqslant)$. By Theorem 1.39, $(P,+,\cdot) \cong (\mathbb{Q}_{\mathbf{Q}}^+,+,\cdot)$ or $P \cong \mathbb{Z}_{\mathbf{P}}$ where \mathbf{p} is a prime number. Suppose that $P \cong \mathbb{Z}_{\mathbf{P}}$ for some prime \mathbf{p} . We shall denote an element in $\mathbb{Z}_{\mathbf{p}}$ by $\bar{\mathbf{n}}$ where $\mathbf{n}=1,2,3,\ldots,\mathbf{p}$. Since 0<1, by induction we get that $0<1<2<\ldots<\mathbf{p}$ in P. Thus $\bar{0}<\bar{1}<\bar{2}$ $\bar{0}<\bar{1}<\bar{2}<\ldots<\bar{\mathbf{p}}=\bar{0}$, a contradiction. Therefore $P \ncong \mathbb{Z}_{\mathbf{p}}$ for all prime \mathbf{p} . This shows that $(P,+,\cdot)\cong (\mathbb{Q}_{\mathbf{p}}^+,+,\cdot)$. Using the same arguement as before $(P,+,\cdot,\leqslant)\cong (\mathbb{Q}_{\mathbf{p}}^+,+,\cdot,\leqslant)$.

Theorem 3.1.5. Let $(K,+,\cdot,\leqslant)$ be a complete ordered 0-skew semifield such that $1+1 \neq 1$. Suppose that $(K,+,\cdot)$ is not a skew field. Then $(K,+,\cdot,\leqslant) \geq (\mathbb{R}_0^+,+,\cdot,\leqslant)$.

<u>Proof:</u> By Proposition 3.1.3 and Proposition 3.1.4, $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant)$. Now, we shall show that $D_K^- = \emptyset$. Suppose that $D_K^- \neq \emptyset$. Let $x \in D_K^-$ be arbitrary. Since $(K \setminus \{0\}, \cdot)$ is a group, $x(K \setminus \{0\}) = K \setminus \{0\}$. Therefore $x(D_K^+ \cup D_K^-) = D_K^+ \cup D_K^-$, it follows that $xD_K^+ \cup xD_K^- = D_K^+ \cup D_K^-$. Since $xD_K^+ \subseteq D_K^-$, $xD_K^- \supseteq D_K^+$. So $xD_K^- \supseteq D_K^+$ for all $x \in D_K^-$.

Case 1: Suppose that x+y < 0 for all x \in D_K^-, for all y \in K. Let $y \in D_K^-$ and $z \in D_K^+$. By assumption, $y+z \in D_K^-$. Thus we get that $(y+z)D_K^- \supseteq D_K^+$, so there is a t \in D_K^- such that $(y+z)t \in D_K^+$. Now, we have that $zt \in D_K^-$. By assumption again, $yt+zt \in D_K^-$. Therefore $(y+z)t \neq yt+zt$. This shows that K is not distributive, a contradiction, so this case can not occur.

Case 2: Suppose that $a+b\geqslant 0$ for some $a\in D_K^-$ and for some $b\in K$. If a+b=0, then K is a skew field, a contradiction. Therefore a+b>0. Let $C=\{c\in K \mid a+c>0\}$. Clearly, $A\neq\emptyset$ since $b\in A$. Thus $0< a+c\leqslant 0+c=c$ for all $c\in C$. Then 0 is a lower bound of C. Since K is complete, C has a greatest lower bound, say z^* . Therefore $z^*\geqslant 0$. We shall show that $a+z^*=0$. To prove this, suppose that $a+z^*\neq 0$. Then either $a+z^*<0$ or $a+z^*>0$.

Subcase 2.1: $a+z^*>0$. If $z^*=0$, then $a+z^*=a+0=a<0$, a contradiction. Thus $z^*>0$, it follows that $z^*\in D_K^+$. Since $(D_K^+,+,\cdot,\leqslant)$ is densely ordered, which

implies that there exists an $r \in D_K^+$ such that $0 < r < a + z^*$. Let $0 < u < \min\{r,z^*\}$. Again, using the fact that $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to $(R^+,+,\cdot,\leqslant)$, there are s,t,w $\in D_K^+$ such that r = u + w, $a + z^* = r + s$ and $z^* = u + t$. Thus $a + z^* = r + s = u + w + s$. Therefore, substiting u + t for z^* we have that a + u + t = u + w + s which implies that a + t = w + s > 0. Then $t \in C$, hence $t \geqslant z^*$. Since $z^* = u + t$ where u, $t \in D_K^+$, $z^* > t$, a contradiction.

Subcase 2.2: $a+z^* < 0$.

Step 1. We shall show that $0 = \sup\{n^{-1}x \mid n \in \mathbf{Z}^+\}$ for all $x \in D_K^-$. Let $x \in D_K^-$ be arbitrary and let $B = \{n^{-1}x \mid n \in \mathbf{Z}^+\}$. Then B has 0 as an upper bound. Since $B \subseteq K$ and K is complete, B has a least upper bound. Let $y = \sup(B)$, so $y \leqslant 0$. Assume now that y < 0. Then $(n2)^{-1}x \leqslant y$ for all $n \in \mathbf{Z}^+$, it follows that $(2^{-1}n^{-1})x \leqslant y$ for all $n \in \mathbf{Z}^+$ which implies that $n^{-1}x \leqslant 2y$ for all $n \in \mathbf{Z}^+$. Therefore 2y is an upper bound of B, so $y \leqslant 2y$. But we have that y < 0, this implies that $2y = y + y \leqslant 0 + y = y$. Thus 2y = y, hence 2 = 1, a contradiction. Then $0 = \sup(B)$.

Step 2. We shall show that a+z>0 for all $z>z^*$. To prove this, let $z>z^*$ be arbitrary. Then there exists an $r\in C$ such that $z>r>z^*$. Thus $a+z\geqslant a+r>0$.

Step 3. We shall show that there is q > 0 such that $(a+z^*)+q < 0$.

To prove this, suppose not. Then $(a+z^*)+d > 0$ for all d > 0. We claim that c+d > 0 for all c < 0 and for all d > 0. To prove the claim, let c < 0 be arbitrary. If $c \geqslant a+z^*$, then $c+d \geqslant (a+z^*)+d > 0$ for all d > 0. If $c < a+z^*$, then by the fact that $0 = \sup\{n^{-1}c \mid n \in \mathbf{Z}^+\}$,

there exists an n ϵ \mathbf{z}^+ such that $\mathbf{a}+\mathbf{z}^*<\mathbf{n}^{-1}\mathbf{c}$. Thus $\mathbf{n}^{-1}\mathbf{c}+\mathbf{d}\geqslant(\mathbf{a}+\mathbf{z}^*)+\mathbf{d}>0$ for all $\mathbf{d}>0$. It follows that $\mathbf{n}^{-1}(\mathbf{c}+\mathbf{n}\mathbf{d})>0$ for all $\mathbf{d}>0$. Since $\mathbf{n}\mathbf{D}^+=\mathbf{D}^+$, $\mathbf{n}^{-1}(\mathbf{c}+\mathbf{d})>0$ for all $\mathbf{d}>0$ which implies that $\mathbf{c}+\mathbf{d}>0$ for all $\mathbf{d}>0$, so we have the claim. Let $\mathbf{t}<0$ and $\mathbf{s}>0$. By the claim $\mathbf{t}+\mathbf{s}>0$. Since $\mathbf{t}^{-1}<0$, $(\mathbf{t}+\mathbf{s})\mathbf{t}^{-1}<0$. But we have that $\mathbf{t}\mathbf{t}^{-1}=1>0$ and $\mathbf{s}\mathbf{t}^{-1}<0$. Again, by the claim, $\mathbf{t}\mathbf{t}^{-1}+\mathbf{s}\mathbf{t}^{-1}>0$. Thus K is not distributive, a contradiction. This shows that there is $\mathbf{q}>0$ such that $(\mathbf{a}+\mathbf{z}^*)+\mathbf{q}\leqslant0$, as required.

By Step 3, there exists an r>0 such that $(a+z^*)+r\leqslant 0$. But we have that $z^*+r>z^*$. By Step 2, $a+(z^*+r)>0$. Thus $(a+z^*)+r>0$, a contradiction.

Thus we have shown that $a+z^*=0$. By Proposition 3.1.2, K is a skew field, a contradiction. Therefore $D_K^-=\emptyset$. This shows that $(K,+,\cdot,\leqslant) \cong (\mathbb{R}_0^+,+,\cdot,\leqslant)$.

Hence, the theorem is proved. #

Notation: Let K be an ordered 0-skew semifield and z ϵ K. Then we will denote $I(z) = \{y \epsilon K | y+z = z\}$, $I_K^+(z) = I_K^-(z) \cap D_K^+$ and $I_K^-(z) = I_K^-(z) \cap D_K^-$.

Assume that $(K,+,\cdot,\leqslant)$ is a complete ordered 0-skew semifield which is not a skew field such that 1+1=1. Then by Proposition 3.1.3, $(D_K^+,+,\cdot,\leqslant)$ is a complete ordered skew ratio semiring. By Theorem 2.5 and Theorem 2.6, $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ratio semirings:

- (1) (R⁺, min, ⋅, ≼).
- (2) $(\{2^n | n \in \mathbb{Z}\}, \min, \cdot, \leq).$
- (3) (R⁺, max, •, ≼).
- (4) $(\{2^n \mid n \in \mathbb{Z}\}, \max, \cdot, \leq)$.
- (5) $(\{1\}, +, \cdot, \leqslant)$.

Theorem 3.1.6. There does not exist an ordered 0-skew semifield $(K,+,\cdot,\leqslant)$ such that $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to either of the following two ordered ratio semirings:

- (1) (R⁺, min, ⋅, ≼)
- (2) $(\{2^n | n \in \mathbb{Z}\}, \min, \cdot, \leq)$.

Proof: Assume that there exists an ordered 0-skew semifield $(K,+,\cdot,\leqslant)$ such that $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant)$ or $(\{2^n\mid n\in \mathbf{Z}\},\min,\cdot,\leqslant)$. Without loss of generality, suppose that $D_K^+=\{2^n\mid n\in \mathbf{Z}\}$ or \mathbb{R}^+ . Let $x,y,z\in K$ be such that $x=0,y=2^3$ and $z=2^4$. Then x< y. By Definition 3.1.1, $x+z\leqslant y+z$. But we have that $x+z=0+z=z=2^4$ and $y+z=\min\{2^3,2^4\}=2^3$, this implies that y+z< x+z which is a contradiction.

Theorem 3.1.7. Let $(K,+,\cdot,\leqslant)$ be a complete ordered 0-skew semifield. If $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\max,\cdot,\leqslant)$, then $(K,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\max,\cdot,\leqslant)$.

suppose not. Then $D_K^- \neq \emptyset$.

Step 1. We shall show that for every a, b \in D_K^+ , a < b implies that zb < za and bz < az for all $z \in D_K^-$. To prove this, let a, b \in D_K^+ be arbitrary. Suppose that a < b. From (i), we have that a+b=b. Let $z \in D_K^-$ be arbitrary. Then zb = z(a+b) = za+zb. Since zb < 0, $za+zb \leqslant za$. Thus $zb \leqslant za$. If za = zb, then $z^{-1}(za) = z^{-1}(zb)$ which implies that a = b, a contradiction. Therefore zb < za. Similarly, bz < az.

Step 2. We shall show that for every x, y \in D_K^- , x \leqslant y iff x+y = x. To prove this, let x, y \in D_K^- be arbitrary. Suppose that x \leqslant y. Then $x = x+x \leqslant x+y$. Since y < 0, $x+y \leqslant x+0 = x$. Thus x+y = x. On the other hand, suppose that x+y = x. If y < x, then by the first proof in this step shows that y+x = y, it follows that $x+y \neq y+x$, a contradiction.

By Step 2 we see that addition in D_K^- is minimum, therefore it is clear that $I_K^-(w) = \{s \in D_K^- \mid s+w=w\} = \{s \in D_K^- \mid w \leqslant s\}$ for all $w \in D_K^-$(iii)

Step 3. We shall show that for every x, y \in D_K^- , x < y iff $y^{-1} < x^{-1}$. To prove this, let x, y \in D_K^- be arbitrary. Suppose that x < y. By Step 2, x+y = x. Thus $xx^{-1} + yx^{-1} = xx^{-1}$, so $1 + yx^{-1} = 1$ which implies that $y^{-1} + x^{-1} = y^{-1}$. By Step 2, $y^{-1} < x^{-1}$. If $y^{-1} = x^{-1}$, then x = y, a contradiction. Therefore $y^{-1} < x^{-1}$. On the other hand, suppose that $y^{-1} < x^{-1}$. By the first proof in this step, x < y.

Step 4. We shall show that x+y=x or x+y=y for all $x\in D_K^-$ and for all $y\in D_K^+$. To prove this, let $x\in D^-$ and $y\in D_K^+$ be arbitrary.

Clearly, $x+y \neq 0$.

Case 1: x+y < 0. Since x+y = (x+x)+y = x+(x+y), $x \in I_K^-(x+y)$.

By (iii), $I_K^-(x+y) = \{s \in D_K^- \mid x+y \leqslant s\}$. Then $x+y \leqslant x$. But we have that 0 < y, this implies that $x = x+0 \leqslant x+y$. Thus x+y = x.

Case 2: x+y > 0. Since x+y = x+(y+y) = (x+y)+y, $y \in I_K^+(x+y)$.

By (ii), $I_K^+(x+y) = \{t \in D_K^+ \mid t \leq x+y\}$. Then $y \leq x+y$. Since x < 0, $x+y \leq 0+y = y$. Therefore x+y = y.

Step 5. We shall show that $I_K(x) = xI_K(1)$ for all $x \in K \setminus \{0\}$. To prove this, let $x \in K \setminus \{0\}$ be arbitrary. Suppose that $y \in I_K(x)$. Then y+x = x which implies that $x^{-1}y+1 = 1$. Thus $x^{-1}y \in I_K(1)$, hence $y \in xI_K(1)$. Therefore $I_K(x) \subseteq xI_K(1)$. On the other hand, suppose that $b \in xI_K(1)$. Then b = xt for some $t \in I_K(1)$, so b+x = xt+x = x(t+1). Since $t \in I_K(1)$, t+1 = 1. Hence b+x = x. Thus $b \in I_K(x)$. Therefore $xI_K(1) \subseteq I_K(x)$. Hence $I_K(x) = xI_K(1)$.

Step 6. We shall show that for every $x \in K \setminus \{1\}$, $x^n \neq 1$ for all $n \in \mathbf{Z}^+$. To prove this, let $x \in K \setminus \{1\}$ be arbitrary. Suppose that $x^m = 1$ for some $m \in \mathbf{Z}^+$. Clearly m > 1, so $m-1 \in \mathbf{Z}^+$. Therefore $x(x^{m-1} + x^{m-2} + \ldots + 1) = x^m + x^{m-1} + \ldots + x^2 + x = 1 + (x^{m-1} + x^{m-2} + \ldots + x)$ $= (x^{m-1} + x^{m-2} + \ldots + x) + 1 = x^{m-1} + x^{m-2} + \ldots + x + 1$. Then x = 1 which is a contradiction.

Step 7. We shall show that $I_K^-(1) \neq \emptyset$. To prove this, let z,t ϵ K be such that z < 0 < t. By Step 4, z+t = z or z+t = t.

Case 1: z+t=z. Then $z(1+z^{-1}t)=z$ which implies that $1+z^{-1}t=1$. Since $z^{-1}t\in D_K^-$, $z^{-1}t\in I_K^-(1)\cap D_K^-=I_K^-(1)$. Thus $I_K^-(1)\neq\emptyset$. Case 2: z+t = t. Then $t(t^{-1}z+1) = t$ which implies that $t^{-1}z+1 = 1$. Since $t^{-1}z \in D_K^-$, $t^{-1}z \in I_K^-(1) \cap D_K^- = I_K^-(1)$. Thus $I_K^-(1) \neq \emptyset$.

Step 8. We shall show that $I_{\overline{K}}(1)$ has a greatest lower bound in $D_{\overline{K}}$. It suffices to show that $I_{\overline{K}}(1)$ has a lower bound in $D_{\overline{K}}$. To prove this, suppose not. Then $I_{\overline{K}}(1)$ has no lower bound in $D_{\overline{K}}$. Let $d \in D_{\overline{K}}$ be arbitrary, so d is not a lower bound of $I_{\overline{K}}(1)$. Then there exists an $r \in I_{\overline{K}}(1)$ such that r < d. Therefore $1 = 1 + r \le 1 + d$. Since d < 0, $1 + d \le 1 + 0 = 1$. Thus 1 + d = 1, so $d \in I_{\overline{K}}(1)$. Then $D_{\overline{K}} \subseteq I_{\overline{K}}(1)$. But we have that $I_{\overline{K}}(1) \subseteq D_{\overline{K}}$ this implies that $D_{\overline{K}} = I_{\overline{K}}(1)$. Therefore for every $a \in D_{\overline{K}}$, a + 1 = 1. Let $a_0 \in D_{\overline{K}}$, therefore $a_0 + 1 = 1$. Since $a_0^{-1} \in D_{\overline{K}}$, $a_0^{-1} + 1 = 1$ which implies that $1 + a_0 = a_0$. Then $a_0 = 1$ which is a contradiction since $a_0 < 0$.

From now on, α will denote $\inf(I_{K}^{-}(1))$.

Step 9. We shall show that $\alpha \in I_K^-(1)$. To prove this, suppose not. Then $\alpha \not\in I_K^-(1)$, so $\alpha+1=\alpha$. Thus $1+\alpha^{-1}=1$. Therefore $\alpha^{-1}\in I_K^-(1)$, if follows that $\alpha < \alpha^{-1}$. We claim that there exists an $s_0 \in I_K^-(1)$ such that $s_0 < \alpha^{-1}$. To prove this claim, suppose not. Then $\alpha^{-1} \leqslant s$ for all $s \in I_K^-(1)$. Thus α^{-1} is a lower bound of $I_K^-(1)$, so $\alpha^{-1} \leqslant \alpha$, a contradiction. Hence we have the claim. Let $s \in I_K^-(1)$ be such that $s < \alpha^{-1}$. By Step 3, $\alpha < s^{-1}$. Using a proof similar to the claim of this step, we can show that there exists an $r \in I_K^-(1)$ such that $r < s^{-1}$. Thus $1 = 1 + r \leqslant 1 + s^{-1}$. Since $s^{-1} < 0$, $1 + s^{-1} \leqslant 0 + 1 = 1$. Then $s^{-1} + 1 = 1$, so 1 + s = s. Since $s \in I_K^-(1)$, s + 1 = 1. Thus s = 1, a contradiction.

Step 10. We shall show that $\alpha^{-1} < \alpha$. To prove this, suppose not. Then $\alpha < \alpha^{-1}$. By Step 9, $1 = 1 + \alpha < 1 + \alpha^{-1}$. Since $\alpha^{-1} < 0$,

 $1+\alpha^{-1} < 1+0 = 1$. Thus $1+\alpha^{-1} = 1$ which implies that $\alpha+1 = \alpha$. Since $\alpha+1 = 1$, $\alpha = 1$, a contradiction.

Step 11. We shall show that there does not exist $y \in D_K^-$ such that $\alpha^{-1} < y < \alpha$. To prove this, suppose not. Let $y \in D_K^-$ be such that $\alpha^{-1} < y < \alpha$. Thus y+1=y. By Step 3, $y^{-1} < (\alpha^{-1})^{-1} = \alpha$. Then $y^{-1}+1=y^{-1}$ which implies that 1+y=1. Hence y=1, a contradiction.

Step 12. We shall show that $\alpha^n+1=1$ for all $n\in\mathbb{Z}^+$. We shall prove this by using mathematical induction on $n\in\mathbb{Z}^+$. Let $n\in\mathbb{Z}^+$. If n=1, then by Step 9, $\alpha+1=1$. Suppose that $\alpha^{n-1}+1=1$ for some $n-1\geqslant 1$. Then $\alpha=\alpha(\alpha^{n-1}+1)=\alpha^n+\alpha$, it follows that $1=\alpha+1=(\alpha^n+\alpha)+1=\alpha^n+(\alpha+1)=\alpha^n+1$. Hence $\alpha^n+1=1$ for all $n\in\mathbb{Z}^+$.

Step 13. We shall show that $\alpha^n < 0$ for all $n \in \mathbb{Z}^+$. We shall prove this by using mathematical induction on $n \in \mathbb{Z}^+$. Let $n \in \mathbb{Z}^+$. If n = 1, then we are done. Suppose that n = 2. If $\alpha^2 > 0$, then $\alpha^2 = d$ for some 0 < d < 1. Thus $\alpha = \alpha^{-1}d$. Let 0 < d < d < 1. By Step 1, $\alpha^{-1} < \alpha^{-1}d < \alpha^{-1}d = \alpha$ which contradicts Step 11. Then $\alpha^2 < 0$. Let $n-1 \geqslant 2$. Suppose that $\alpha^k < 0$ for all $1 \leqslant k \leqslant n-1$. If $\alpha^n > 0$. then by Step 12 and (i), $\alpha^n \leqslant 1$. By Step 6. $0 < \alpha^n \leqslant 1$. Thus $\alpha^n = d$ for some 0 < d < 1, so $\alpha^2 = \alpha^{-(n-2)}d < 0$. Let 0 < d < d < 1. By Step 1 and $\alpha^{-(n-2)} < 0$, $\alpha^{-(n-2)}d < 0$. Let $\alpha^2 < 0$.

Case 1: $\alpha^{-(n-2)}d_1 = \alpha$. Then $0 < d_1 = \alpha^{n-2}\alpha = \alpha^{n-1}$ which is a contradiction.

 $\begin{array}{lll} \underline{\text{Case 2}}\colon & \alpha < \alpha^{-(n-2)} d_1. & \text{Then } \alpha < \alpha^{-(n-2)} d_1 < \alpha^2. & \text{By Step 2,} \\ \\ \alpha + \alpha^{-(n-2)} d_1 = \alpha. & \text{Thus } \alpha^{n-2} \alpha + d_1 = \alpha^{n-2} \alpha, \text{ so } \alpha^{n-1} + d_1 = \alpha^{n-1}. & \dots \text{(iv)} \\ \\ \text{By Step 2 again, } \alpha^{-(n-2)} d_1 + \alpha^2 = \alpha^{-(n-2)} d_1, \text{ so } \alpha^{-n+2} d_1 + \alpha^2 = \alpha^{-n+2} d_1. \end{array}$

Therefore $\alpha^{-1}(\alpha^{-n+2}d_1 + \alpha^2) = \alpha^{-1}(\alpha^{-n+2}d_1)$. Thus $\alpha^{-n+1}d_1 + \alpha = \alpha^{-n+1}d_1$, so $\alpha^{-(n-1)}d_1 + \alpha = \alpha^{-(n-1)}d_1$. By Step 2, $\alpha^{-(n-1)}d_1 \leqslant \alpha$.

Subcase 2.1: $\alpha^{-(n-1)}d_1 = \alpha$. Then $d_1 = \alpha^{n-1}\alpha = \alpha^n = d$, a contradiction.

Subcase 2.2: $\alpha^{-(n-1)}d_1 < \alpha$. Then $\alpha^{-(n-1)}d_1 + 1 = \alpha^{-(n-1)}d_1$.

Thus $d_1 + \alpha^{n-1} = d_1$.

From (iv) and (v), we have that $\alpha^{n-1} = d_1 > 0$, a contradiction.

We claim that $d_1 + \alpha \neq d_1$. To prove this claim, suppose not. Then $d_1 + \alpha = d_1$, so $1 + \alpha d_1^{-1} = 1$. Thus $\alpha \leq \alpha d^{-1}$. Now, we have that $1 < d_1^{-1}$.

By Step 1, $\alpha d_1^{-1} < \alpha$ which is a contradiction. Hence we have the claim. Now, we have that $n-2 \geqslant 1$. If n-2 = 1, then by (\blacktriangledown) ,

 $\alpha^{-1}d_1 + \alpha^{-1} = \alpha^{-1}d_1$. By Step 2, $\alpha^{-1}d_1 \leqslant \alpha^{-1}$. Since $0 < d_1 < 1$ and $\alpha^{-1} < 0$, by Step 1, $\alpha^{-1} < \alpha^{-1}d_1$, a contradiction. Therefore n-2 > 1.

Hence $n-3 \geqslant 1$. From (\triangledown) , we have that $d_1 + \alpha^{n-3} = d_1$(vi)

If n-3=1, then by (vi), $d_1+\alpha=d_1$, a contradiction. Therefore n-3>1. Hence $n-4\geqslant 1$ and $\alpha^{n-3}<0$. From (vi), we have that $1+\alpha^{n-3}d_1^{-1}=1.$ Then $\alpha\leqslant\alpha^{n-3}d_1^{-1}.$ By Step 2, $\alpha+\alpha^{n-3}d_1^{-1}=\alpha$ which

implies that $d_1 + \alpha^{n-4} = d_1$(vii)

If n-4=1, then $d_1+\alpha=d_1$, a contradiction. Therefore n-4>1. Continue in this way. Since n is finite after a finite number of

Steps, $d_1 + \alpha = d_1$. This is a contradiction.

Hence $\alpha^n < 0$ for all $n \in \mathbf{Z}^+$.

Step 14. We shall show that $\alpha^n < \alpha^{n+1}$ for all $n \in \mathbb{Z}^+$. To prove this, Suppose not. Then $\alpha^{m+1} < \alpha^m$ for some $m \in \mathbb{Z}^+$. By Step 13 and Step 2, $\alpha^{m+1} + \alpha^m = \alpha^{m+1}$ which implies that $\alpha + 1 = \alpha$. Then $\alpha \not\in I_K^-(1)$, a contradiction.

Step 15. We shall show that $I_K(\alpha) = \{y \in K | \alpha \leqslant y < 1\}$. To prove this, we first to prove that $I_K^+(\alpha) \neq \emptyset$. We claim that there exists a $u \in D_K^+$ such that $u+\alpha = \alpha$. Suppose not. Then by Step 4, $u+\alpha = u$ for all $u \in D_K^+$. Thus $1+u^{-1}\alpha = 1$ for all $u \in D_K^+$, so $u^{-1}\alpha \in I_K^-(1)$. for all $u \in D_K^+$. Then $\alpha \leqslant u^{-1}\alpha$ for all $u \in D_K^+$. Let $L = \{u^{-1}\alpha | u \in D_K^+\}$, so α is a lower bound of L. Let $\beta = \inf(L)$. Then $\beta \leqslant u^{-1}\alpha$ for all $u \in D_K^+$, so $s^{-1}\beta \leqslant u^{-1}\alpha$ for all $u \in D_K^+$. Let 1 < s. Therefore $\beta \leqslant su^{-1}\alpha$ for all $u \in D_K^+$, so $s^{-1}\beta \leqslant u^{-1}\alpha$ for all $u \in D_K^+$. Thus $s^{-1}\beta$ is a lower bound of L, hence $s^{-1}\beta \leqslant \beta$. Since $s^{-1}<1$, by Step 1, $\beta < s^{-1}\beta$, a contradiction. Hence we have the claim. By the claim, $I_K^+(\alpha) \neq \emptyset$.

Next, we shall show that $I_K^+(\alpha) = \{t \in D_K^+ | t < 1\}$. To prove this, let a $\in I_K^+(\alpha)$. Then a+ $\alpha = \alpha$. If $1 \leqslant a$, then $1 = 1 + \alpha \leqslant a + \alpha = \alpha$, a contradiction. Thus $0 \leqslant a \leqslant 1$, so a $\in \{t \in D_K^+ | t \leqslant 1\}$. Hence $I_K^+(\alpha) \subseteq \{t \in D_K^+ | t \leqslant 1\}$. On the other hand, let b $\in \{t \in D_K^+ | t \leqslant 1\}$. If b+ $\alpha = b$, then $1 + b^{-1}\alpha = 1$, so $b^{-1}\alpha \in I_K^-(1)$. Thus $\alpha \leqslant b^{-1}\alpha$. Since $1 \leqslant b^{-1}$, by Step 1, $\alpha b^{-1} \leqslant \alpha$, a contradiction. Then b+ $\alpha \neq b$. By Step 4, b+ $\alpha = \alpha$. Thus b $\in I_K^+(\alpha)$. Therefore $\{t \in D_K^+ | t \leqslant 1\} \subseteq I_K^+(\alpha)$. Hence $I_K^+(\alpha) = \{t \in D_K^+ | t \leqslant 1\}$.

Finally, by (iii), $I_K^-(\alpha) = \{s \in D_K^- | \alpha \leqslant s\}$. Then $I_K^-(\alpha) = I_K^-(\alpha) \cup \{0\} \cup I_K^+(\alpha) = \{s \in D_K^- | \alpha \leqslant s\} \cup \{0\} \cup \{t \in D_K^+ | t < 1\} = \{y \in K \mid \alpha \leqslant y < 1\}.$

Step 16. We shall show that there does not exist an $\ell \in D_K^-$ such that $\alpha^n < \ell < \alpha^{n+1}$ for all $n \in \mathbb{Z}^+$. To prove this, let $n \in \mathbb{Z}^+$. Now, we have that $I_K(\alpha^{n+1}) = \{y \in K \mid \alpha^{n+1} \leqslant y \leqslant d\}$ for some 0 < d < 1. By Step 5, $I_K(\alpha^{n+1}) = \alpha^{n+1}I_K(1)$ $= \alpha^n(\alpha I_K(1))$ $= \alpha^n(I_K(\alpha))$ $= \alpha^n\{w \in K \mid \alpha \leqslant w \leqslant 1\} \setminus \{1\})$ $= \alpha^n\{w \in K \mid \alpha \leqslant w \leqslant 1\} \setminus \{\alpha^n\}$

 $= \alpha^n I_K(1) \sim \{\alpha^n\}$

 $= I_K(\alpha^n) \setminus \{\alpha^n\}$

= $\{v \in K \mid \alpha^n < v \leq d_1\}$ for some $0 < d_1 < 1$.

Hence there does not exist an ℓ ϵ D_K^- such that $\alpha^n < \ell < \alpha^{n+1}$.

Step 17. We shall show that $0 = \sup\{\alpha^n \mid n \in \mathbf{Z}^+\}$. To prove this, let $T = \{\alpha^n \mid n \in \mathbf{Z}^+\}$. By Step 13, 0 is an upper bound of T. Let $\lambda = \sup\{\alpha^n \mid n \in \mathbf{Z}^+\}$. Then $\lambda \leqslant 0$. Suppose that $\lambda < 0$. Thus $\lambda \in \{z \in K \mid \alpha \leqslant z < 1\} = I_K(\alpha)$ (by Step 16) $= \alpha I_K(1) \quad \text{(by Step 5)}$ $= \alpha (I_K^+(1) \cup \{0\} \cup I_K^-(1))$

= $\alpha I_{\kappa}^{+}(1) U \{0\} U \alpha I_{\kappa}^{-}(1)$.

Since $\lambda \neq 0$, $\lambda \in \alpha I_{K}^{+}(1)$ or $\lambda \in \alpha I_{K}^{-}(1)$.

Case 1: $\lambda \in \alpha I_K^+(1)$. Then $\lambda = \alpha d$ for some $0 < d \leqslant 1$. If d = 1, then $\lambda = \alpha < \alpha^2 \leqslant \lambda$, a contradiction. Thus $d \neq 1$. Let 0 < d < d < 1. By Step 1, $\alpha < \alpha d < \alpha d = \lambda$. By Step 16, $\alpha d = \alpha^m$ for some $m \in \mathbb{Z}^+ \setminus \{1\}$. Then $\alpha^{m-1} = d > 0$ which contradicts Step 13.

Case 2: $\lambda \in \alpha I_K^-(1)$. Then $\lambda = \alpha u$ for some $u \in I_K^-(1)$.

Subcase 2.1: $\lambda = u$. Then $\alpha u = u$, so $\alpha = 1$ which is a contradiction.

Subcase 2.2: $\lambda < u$. Then $\alpha u < u < 0$. By Step 2, $\alpha u + u = \alpha u$. Thus $\alpha + 1 = \alpha$. By Step 9, $\alpha + 1 = 1$. Hence $\alpha = 1$, a contradiction.

Subcase 2.3: $u < \lambda$. Then $u = \alpha^m$ for some $m \in \mathbb{Z}^+$. Thus $\lambda = \alpha u = \alpha \alpha^m = \alpha^{m+1}$. By Step 14, $\lambda = \alpha^{m+1} < \alpha^{m+2} \leqslant \lambda$, a contradiction.

Hence $0 = \sup\{\alpha^n \mid n \in \mathbb{Z}^+\}$. From Step 14 and Step 16, we have that $I_K^-(1) = \{\alpha^n \mid n \in \mathbb{Z}^+\}$. Let 0 < r < 1. By Step 1, $\alpha < \alpha r < 0$. Then $\alpha r = \alpha^m$ for some $m \in \mathbb{Z}^+ \setminus \{1\}$. Therefore $\alpha^{m-1} = r > 0$ which contradicts Step 14. Thus $D_K^- = \emptyset$

Hence, the theorem is proved. #

Remark 3.1.8. Let β be a symbol not representing any integer and let p be a positive integer greater than 1. Let $K_{(p)} = \{\beta^n \mid n \in \mathbb{Z}\} \cup \{0\}$. Define multiplication on $K_{(p)}$ by $\beta^n \cdot 0 = 0 \cdot \beta^n = 0 = 0 \cdot 0$ and $\beta^n \beta^m = \beta^{n+m}$ for all m, $n \in \mathbb{Z}$. Define addition on $K_{(p)}$ by $\beta^n \cdot 0 = 0 + \beta^n = \beta^n$, 0 + 0 = 0 and $\beta^n + \beta^m = \beta^{\min\{n,m\}}$ for all m, $n \in \mathbb{Z}$. Define order \leqslant on $K_{(p)}$ by as follows: Let m, $n \in \mathbb{Z}$.

(1) If $m \equiv 0 \pmod{p}$, then $0 < \beta^{m}$.

- (2) If $n \not\equiv 0 \pmod{p}$, then $\beta^n < 0$.
- $(3) \quad \text{If } n \equiv 0 \pmod p \text{ and } m \equiv 0 \pmod p \text{, then } \beta^m \leqslant \beta^n$ iff $n \leqslant m$.
- (4) If $n \not\equiv 0 \pmod p$ and $m \not\equiv 0 \pmod p$, then $\beta^m \leqslant \beta^n$ iff $m \leqslant n$. Then $(K_{(p)},+,\cdot,\leqslant)$ is a complete ordered 0-skew semifield as is shown below.

Proof: Clearly, $(K_{(p)},+)$ is a commutative semigroup, $(K_{(p)},\cdot)$ is an abelian group with zero and the distributive law holds. Also, it is clear that $(K_{(p)},\leqslant)$ is an ordered set. We must first show that $(K_{(p)},+,\cdot,\leqslant)$ is an ordered 0-skew semifield.

We must show that for every β^m , $\beta^n \in K_{(p)}$, $\beta^m \leqslant \beta^n$ implies that $\beta^m + \beta^\ell \leqslant \beta^n + \beta^\ell$ for all $\beta^\ell \in K_{(p)}$. To prove this, let β^m , $\beta^n \in K_{(p)}$ be such that $\beta^m < \beta^n$. Let $\beta^\ell \in K_{(p)}$ be arbitrary.

Case 1: $m, n \equiv 0 \pmod{p}$. Then n < m.

Subcase 1.1: $\ell < n < m$. Then $\beta^m + \beta^\ell = \beta^\ell$ and $\beta^n + \beta^\ell = \beta^\ell$. Thus $\beta^m + \beta^\ell \leqslant \beta^n + \beta^\ell$.

 $\underline{\text{Subcase 1.3}}\colon\quad n< m<\ell.\quad \text{Then }\beta^m+\ \beta^\ell=\beta^m\ \text{ and }\beta^n+\ \beta^\ell=\beta^n.$ Thus $\beta^m+\ \beta^\ell\leqslant\beta^n+\ \beta^\ell.$

Case 2: $m, n \not\equiv 0 \pmod{p}$. Then m < n.

Subcase 2.1: $\ell < m < n$. Then $\beta^m + \beta^\ell = \beta^\ell$ and $\beta^n + \beta^\ell = \beta^\ell$. Thus $\beta^m + \beta^\ell \leqslant \beta^n + \beta^\ell$.

Subcase 2.2: $m < \ell < n$. Then $\beta^m + \beta^\ell = \beta^m$ and $\beta^n + \beta^\ell = \beta^\ell$ $\underline{\text{Subcase 2.2.1}} \colon \quad \ell \equiv 0 \pmod{p} . \text{ Then } \beta^m < \beta^\ell . \text{ Thus}$ $\beta^m + \beta^\ell \leqslant \beta^n + \beta^\ell .$

Case 3: $m \not\equiv 0 \pmod{p}$ and $n \equiv 0 \pmod{p}$.

Subcase 3.1: m < n

Subcase 3.1.2: $m < \ell < n$. Then $\beta^m + \beta^\ell = \beta^m$ and

 $\beta^{n} + \beta^{\ell} = \beta^{\ell}$

Subcase 3.1.2.1: $\ell \equiv 0 \pmod{p}$. Then $\beta^m < \beta^{\ell}$.

Thus $\beta^m + \beta^{\ell} \leq \beta^n + \beta^{\ell}$.

Subcase 3.1.2.2: $\ell \not\equiv 0 \pmod{p}$. Then $\beta^m < \beta^{\ell}$.

Then $\beta^m + \beta^{\ell} \leq \beta^n + \beta^{\ell}$.

Subcase 3.2: n < m. The proof is similar to the proof of Subcase 3.1.

Next, we must show that for every β^m , $\beta^n \in K_{(p)}$, $\beta^m \leqslant \beta^n$ implies that $\beta^m \beta^\ell \leqslant \beta^n \beta^\ell$ for all $\beta^\ell > 0$. To prove this, let β^m , $\beta^n \in K_{(p)}$ be such that $\beta^m \leqslant \beta^n$. Let $\beta^\ell > 0$ be arbitrary.

Case 1: $n \equiv 0 \pmod{p}$ and $m \equiv 0 \pmod{p}$. Then $n \leqslant m$, so $\ell + n \leqslant \ell + m$.

Now, we have that $\ell \equiv 0 \pmod{p}$. Then $n + \ell \equiv 0 \pmod{p}$ and $m + \ell \equiv 0$ (mod p). Thus $\beta^{m+\ell} \leqslant \beta^{n+\ell}$. Therefore $\beta^m \beta^\ell \leqslant \beta^n \beta^\ell$.

Case 2: $m \not\equiv 0 \pmod p$ and $n \not\equiv 0 \pmod p$. Thus $m \leqslant n$. Now, we have that $\ell \equiv 0 \pmod p$. Thus $m+\ell \not\equiv 0 \pmod p$ and $n+\ell \not\equiv 0 \pmod p$ and $m+\ell \leqslant n+\ell$. Therefore $\beta^{m+\ell} \leqslant \beta^{n+\ell}$. Hence $\beta^m \beta^\ell \leqslant \beta^n \beta^\ell$.

Case 3: $m \not\equiv 0 \pmod{p}$ and $n \equiv 0 \pmod{p}$. Now, we have that $\ell \equiv 0 \pmod{p}$. Thus $m+\ell \not\equiv 0 \pmod{p}$ and $n+\ell \equiv 0 \pmod{p}$. Hence $\beta^{m+\ell} \leqslant \beta^{n+\ell}$. Thus $\beta^m \beta^\ell \leqslant \beta^n \beta^\ell$.

Lastly, we must show that $K_{(p)}$ is complete. To prove this, let $H \subseteq K_{(p)}$ be a nonempty set which has an upper bound. Let w be an upper bound of H.

Case 1: $w \le 0$. Then $H \subseteq \{\beta^m \mid m \in \mathbb{Z} \setminus p\mathbb{Z}\}$. Since $(\{\beta^m \mid m \in \mathbb{Z} \setminus p\mathbb{Z}\}, \le)$ is isomorphic to $(\mathbb{Z} \setminus p\mathbb{Z}, \le)$ and $(\mathbb{Z} \setminus p\mathbb{Z}, \le)$ is complete, H has a least upper bound.

Case 2: 0 < w. Then $w = \beta^{1}$ for some $n_{1} \epsilon p \mathbb{Z}$. If w is a least upper bound then we are done. Suppose that w is not a least upper bound of H. Now, we have that $w = \beta^{kp}$ for some $k \epsilon \mathbb{Z}$. If $\beta^{(k+1)p}$ is a least upper bound of H, then we are done. Suppose that $\beta^{(k+1)p}$ is

not a least upper bound of H. Continue in this way.

Subcase 2.1: The process stops at $\beta^{(k+\ell)}$ for some $\ell \in \mathbf{Z}^+$. Then H has a least upper bound.

Subcase 2.2: The process does not stop. If 0 is a least upper bound, then we are done. Suppose that 0 is not a least upper bound of H. Then there exists an r < 0 which is an upper bound of H. Using the same proof as in the proof of Case 1, we obtain that H has a least upper bound in $K_{(p)}$:#

Remark 3.1.9. $K_{(2)}$ is isomorphic to the complete ordered 0-skew semifield $(\{-\sqrt{2^m} \mid m \in \mathbb{Z} \text{ is odd}\} \cup \{0\} \cup \{2^n \mid n \in \mathbb{Z}\}, \oplus, \cdot, \leqslant)$ where \leqslant , are the usual order and multiplication and $x \oplus y = x$ iff $|x| \geqslant |y|$.

Let $A = \{-\sqrt{2^m} \mid m \in \mathbf{Z} \text{ is odd}\} \cup \{0\} \cup \{2^n \mid n \in \mathbf{Z}\}$. The isomorphism f from $K_{(2)}$ to A is given by f(0) = 0 and

$$f(\beta^{n}) = \begin{cases} -\sqrt{2^{-n}} & \text{if } n \not\equiv 0 \pmod{2}, \\ \\ -\frac{n}{2} & \text{if } n \equiv 0 \pmod{2}. \end{cases} \#$$

Theorem 3.1.10. Let $(K,+,\cdot,\leqslant)$ be a complete ordered 0-skew semifield. If $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to $(\{2^n\mid n\in \mathbb{Z}\},\max,\cdot,\leqslant)$. Then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following 0-semifields:

- (1) $(\{2^n \mid n \in \mathbb{Z}\} \cup \{0\}, \max, \cdot, \leq).$
- (2) $(K_{(p)},+,\cdot,\leqslant)$ for some p > 1 as in Remark 3.1.8.

 then $(K,+,\cdot,\leqslant)$ is isomorphic to $(\{2^n|n\in Z\}\cup\{0\},\max,\cdot,\leqslant)$. Suppose that $D_K^-\neq\emptyset$. For simplicity, we shall assume that $D_K^+=\{2^n|n\in Z\}$. Step 1 to Step 12 of Theorem 3.1.7 hold with these hypotheses and the proofs are exactly the same. As in Theorem 3.1.7 α will denote $\inf(I_K^-(1))$.

Step 1. We shall show that $\alpha^m > 0$ for some m ϵ Z. To prove this, suppose not. Then $\alpha^n < 0$ for all n ϵ Z. Using the same proof as in the proof of Step 14 of Theorem 3.1.7 we get that $\alpha^n < \alpha^{n+1}$ for all n ϵ Z \setminus {0}.

Using the same proof given in Step 16 of Theorem 3.1.7 we get that there does not exist a y ϵ D $_K^-$ such that $\alpha^n < y < \alpha^{n+1}$ for all (**)

We claim that $0 = \sup \{\alpha^n \mid n \in \mathbf{Z}^+\}$. To prove this claim, let $L = \{\alpha^n \mid n \in \mathbf{Z}^+\}$. By (*), 0 is an upper bound of L. Since $L \subseteq K$ and K is complete, L has a least upper bound. Let $\lambda = \sup(L)$. Then $\lambda \leqslant 0$. Suppose that $\lambda < 0$. Using the same argument as given in the proof of Step 15 in Theorem 3.1.7 we get that $I_K(\alpha) = \{y \in K \mid \alpha \leqslant y < 1\}$.

Now, we have that $\mathbf{I}_K(1) = \{\mathbf{z} \in \mathbf{K} \mid \alpha \leqslant \mathbf{z} \leqslant 1\}$. By Step 5 of Theorem 3.1.7 and (***), $\{\mathbf{y} \in \mathbf{K} \mid \alpha \leqslant \mathbf{y} \leqslant 1\} = \mathbf{I}_K(\alpha) = \alpha \mathbf{I}_K(1)$ $= \alpha \{\mathbf{z} \in \mathbf{K} \mid \alpha \leqslant \mathbf{z} \leqslant 1\} = \alpha (\{\mathbf{s} \in \mathbf{D}_K^- \mid \alpha \leqslant \mathbf{s}\} \mathbf{u} \{0\} \mathbf{u} \{\mathbf{t} \in \mathbf{D}_K^+ \mid \mathbf{t} \leqslant 1\} = \alpha \{\mathbf{s} \in \mathbf{D}_K^- \mid \alpha \leqslant \mathbf{s}\} \mathbf{u} \{0\} \mathbf{u} \{\mathbf{t} \in \mathbf{D}_K^+ \mid \mathbf{t} \leqslant 1\} = \alpha \{\mathbf{s} \in \mathbf{D}_K^- \mid \alpha \leqslant \mathbf{s}\} \mathbf{u} \{0\} \mathbf{u} \{\mathbf{t} \in \mathbf{D}_K^+ \mid \mathbf{t} \leqslant 1\}.$ Since $\alpha \leqslant \lambda \leqslant 0$, $\lambda \in \{\mathbf{y} \in \mathbf{K} \mid \alpha \leqslant \mathbf{y} \leqslant 1\}$. From (****), we have that $\lambda \in \alpha \{\mathbf{s} \in \mathbf{D}_K^- \mid \alpha \leqslant \mathbf{s}\} \mathbf{u} \{\mathbf{t} \in \mathbf{D}_K^+ \mid \mathbf{t} \leqslant 1\}$.

Case 1: $\lambda \in \alpha$ {t $\in D^+$ | t \leq 1}. Then $\lambda = \alpha d$ for some $0 < d \leq 1$. Clearly, $d \neq 1$. Suppose that $d = \frac{1}{2}$. Then $\lambda = \alpha(\frac{1}{2})$. Now, we have that $0 < \frac{1}{2} < 1$ and $\alpha^{-1} < 0$. By Step 1, $\alpha^{-1} < \alpha^{-1}(\frac{1}{2})$

Subcase 1.1: $\alpha^{-1}(\frac{1}{2})<\alpha$. Then $\alpha^{-1}<\alpha^{-1}(\frac{1}{2})<\alpha$, a contradiction.

Subcase 1.2: $\alpha \leq \alpha^{-1}(\frac{1}{2})$. If $\alpha = \alpha^{-1}(\frac{1}{2})$, then $\alpha^2 = \frac{1}{2}$, a contradiction. Thus $\alpha < \alpha^{-1}(\frac{1}{2})$.

Subcase 1.2.1: $\alpha^{-1}(\frac{1}{2}) < \lambda$. Then by (**), $\alpha^{-1}(\frac{1}{2}) = \alpha^m$ for some m ϵ $\mathbb{Z}^+ \setminus \{1\}$. Thus $\alpha^{m+1} = \frac{1}{2}$, a contradiction.

Subcase 1.2.2: $\lambda \leqslant \alpha^{-1}(\frac{1}{2})$. Then $\alpha(\frac{1}{2}) \leqslant \alpha^{-1}(\frac{1}{2})$, so $\alpha < \alpha^{-1}$, a contradiction.

Therefore $d \neq \frac{1}{2}$, so $\lambda = \alpha d$ for some $d < \frac{1}{2}$. Let $0 < d < d^{'} < 1$. Then by Step 1, $\alpha < \alpha d^{'} < \alpha d = \lambda$. From (**), $\alpha d^{'} = \alpha^{m}$ for some $m \in \mathbb{Z}^{+} \setminus \{1\}$. Hence $\alpha^{m-1} = d^{'} > 0$, a contradiction.

Case 2: $\lambda \in \alpha \ \{s \in D^- | \alpha \leqslant s\}$. Then $\lambda = \alpha u$ for some $u \in \{s \in D^- | \alpha \leqslant s\}$. Subcase 2.1: $\lambda = u$. Then $\alpha u = u$, so $\alpha = 1$ which is a contradiction.

Subcase 2.2: $\lambda < u$. Then $\alpha u < u < 0$. By Step 2 of Theorem 3.1.7, $\alpha u + u = \alpha u$ which implies that $\alpha + 1 = \alpha$. Since $\alpha + 1 = 1$, $\alpha = 1$, a contradiction.

 $\underline{\text{Subcase 2.3}}\colon\quad u<\lambda\,.\quad \text{Then }u=\alpha^m\text{ for some m }\epsilon\ Z^+.\quad \text{Thus}$ $\lambda=\alpha u=\alpha\alpha^m=\alpha^{m+1}<\alpha^{m+2}\leqslant\lambda\,,\text{ a contradiction.}$

Hence $\lambda = 0$, so we have the claim.

Let 0 < s < 1. By Step 1 of Theorem 3.1.7, $\alpha < \alpha s < 0$.

From (**), we have that $\alpha s = \alpha^{\ell}$ for some $\ell \in \mathbb{Z}^+ \setminus \{1\}$. Therefore $\alpha^{\ell-1} = s > 0$, a contradiction.

This shows that $\alpha^m > 0$ for some $m \in \mathbf{Z}^+$.

Let $B=\{n \ \epsilon \ Z^+ \big| \ \alpha^n>0\}$. By Step 1, $B \neq \emptyset$. Let p=min(B) . Then p>1 .

Step 2. We shall show that $\alpha^p = \frac{1}{2}$. To prove this, suppose not. Then $\alpha^p < \frac{1}{2}$. Now, we have that $I_K(\alpha) = I_K^-(\alpha) \cup \{0\} \cup I_K^+(\alpha)$. By Step 5 of Theorem 3.1.7, $I_K(\alpha) = \alpha I_K^-(1) \cup \{0\} \cup I_K^+(1)$ $= \alpha I_K^-(1) \cup \{0\} \cup \alpha I_K^+(1)$ which implies that $I_K^-(\alpha) \cup I_K^+(\alpha) = \alpha I_K^-(1) \cup \alpha I_K^+(1)$. Since $\alpha I_K^+(1) \subseteq I_K^-(\alpha)$, $I_K^+(\alpha) \subseteq \alpha I_K^-(1)$. Hence $\{t \in D^+ \mid t \leq \frac{1}{2}\} \subseteq \alpha \{\alpha, \alpha^2, \alpha^3, \dots, \alpha^{p-1}, \alpha^{p+1}, \dots, \alpha^{2p-1}, \alpha^{2p+3}, \dots\}$. We see that $\alpha(\alpha^{p-1}) = \alpha^p < \frac{1}{2}$

 $\alpha(\alpha^{2p-1}) = \alpha^{2p} = (\alpha^p)^2 < (\frac{1}{2})^2 = \frac{1}{4}$

 $\alpha(\alpha^{np-1}) = \alpha^{np} = (\alpha^p)^n < (\frac{1}{2})^n = \frac{1}{2^n}$ for all $n \in \mathbb{Z}^+$

Hence $\frac{1}{2} \notin \alpha I_{K}^{-}(1)$, a contradiction.

Step 3. For every $n \in \mathbb{Z}^+$, $n \not\equiv 0 \pmod p$ and $n+1 \not\equiv 0 \pmod p$ implies that there does not exist a $y \in D_K^-$ such that $\alpha^n < y < \alpha^{n+1}$. This proof is the same as the proof of Step 16 in Theorem 3.1.7.

Step 4. We shall show that for every $n \in \mathbf{Z}^+$, $n \not\equiv 0 \pmod{p}$ and $n+2 \not\equiv 0 \pmod{p}$ and $n+1 \equiv 0 \pmod{p}$ implies that there does not exist $y \in D_K^-$ such that $\alpha^n < y < \alpha^{n+2}$. To prove this, let $n \in \mathbf{Z}^+$ be such

Hence, we have the claim. Now, we have that $I_K(\alpha^{n+2}) = \{y \in K \mid \alpha^{n+2} \leqslant y \leqslant \alpha^r\} \text{ for some } r \in p\mathbb{Z}_0^+. \dots (v)$ By Step 5 of Theorem 3.1.7, $I_K(\alpha^{n+2}) = \alpha^{n+2}I(1)$ $= \alpha^n(\alpha^2I_K(1))$ $= \alpha^n\{u \in K \mid \alpha \leqslant u \leqslant 1\} \setminus \{\alpha,1\})$ $= \alpha^n\{\{u \in K \mid \alpha \leqslant u \leqslant 1\} \setminus \{\alpha^{n+1},\alpha^n\}\}$ $= \alpha^nI_K(1) \setminus \{\alpha^{n+1},\alpha^n\}$ $= I_K(\alpha^n) \setminus \{\alpha^{n+1},\alpha^n\}$ $= \{v \in K \mid \alpha^n \leqslant v \leqslant \alpha^s\} \setminus \{\alpha^{n+1}\}$

 $\alpha^n < y < \alpha^{n+2}$.

Step 5. We shall show that for every $n \in \mathbb{Z}^+$, $n-1 \not\equiv 0 \pmod p$ and $(n+1) \not\equiv 0 \pmod p$ and $n \equiv 0 \pmod p$ implies that there does not exist a $y \in D_K^-$ such that $\alpha^{n-1} < y < \alpha^{n+1}$. To prove this, let $n \in \mathbb{Z}^+$ be such that $n-1 \not\equiv 0 \pmod p$ and $n+1 \equiv 0 \pmod p$ and $n \equiv 0 \pmod p$. Now, we have that

$$\begin{split} \mathbf{I}_{K}(\alpha^{n+1}) &= \{\mathbf{y} \in K \big| \alpha^{n+1} \leqslant \mathbf{y} \leqslant \alpha^{r} \} \text{ for some } \mathbf{r} \in \mathbf{p} \mathbb{Z}_{O}^{+}. \qquad \qquad (\text{vii}) \end{split}$$
 By Step 6 of Theorem 3.1.7, $\mathbf{I}_{K}(\alpha^{n+1}) &= \alpha^{n+1} \mathbf{I}_{K}(1) \\ &= \alpha^{n-1} (\alpha^{2} \mathbf{I}_{K}(1)) \\ &= \alpha^{n-1} \{\mathbf{u} \in K \big| \alpha < \mathbf{u} < 1 \} \quad (\text{by (iii})) \end{split}$ $= \alpha^{n-1} \{\mathbf{u} \in K \big| \alpha \leqslant \mathbf{u} \leqslant 1 \} \setminus \{\alpha, 1 \}) \\ &= \alpha^{n-1} \mathbf{I}_{K}(1) \setminus \{\alpha^{n}, \alpha^{n-1} \} \\ &= \mathbf{I}_{K}(\alpha^{n-1}) \setminus \{\alpha^{n}, \alpha^{n-1} \} \\ &= \{\mathbf{v} \in K \big| \alpha^{n-1} < \mathbf{v} \leqslant \alpha^{S} \} \setminus \{\alpha^{n} \} \end{split}$

for some $s \in p\mathbb{Z}_{0}^{+}$(viii)

By (vii) and (viii), $\{y \in K \mid \alpha^{n+1} \le y \le \alpha^r\} = \{v \in K \mid \alpha^{n-1} < v \le \alpha^s\} \setminus \{\alpha^n\}$ for some r, s $\in \mathbb{P}_0^{\mathbb{Z}_0^+}$. Therefore there does not exist $y \in \mathbb{D}_K^-$ such that $\alpha^{n-1} < y < \alpha^{n+1}$.

Step 6. We shall show that $0 = \sup \{\alpha^n \mid n \in \mathbf{Z}^+ \setminus p\mathbf{Z}^+\}$. To prove this, let $\mathbf{T} = \{\alpha^n \mid n \in \mathbf{Z}^+ \setminus p\mathbf{Z}^+\}$. Clearly $\mathbf{T} \neq \emptyset$ since $\alpha \in \mathbf{T}$. Since $\alpha^n < 0$ for all $n \in \mathbf{Z} \setminus p\mathbf{Z}$, 0 is an upper bound of \mathbf{T} . Since $\mathbf{T} \subseteq K$ and K is complete, \mathbf{T} has a least upper bound. Let $\lambda = \sup(\mathbf{T})$. Then $\lambda \leqslant 0$. Suppose that $\lambda < 0$. We claim that $\lambda \in \mathbf{I}_K(\alpha^p)$. To prove the claim, suppose not. Then $\lambda \not\in \mathbf{I}_K(\alpha^p)$. Therefore $\lambda + \alpha^p = \lambda$. Thus

 $1+\lambda^{-1}\alpha^p=1$, it follows that $\alpha\leqslant\lambda^{-1}\alpha^p<0$. By Step 2 of Theorem 3.1.7, 3.1.7, $\alpha+\lambda^{-1}\alpha^p=\alpha$ which implies that $\lambda+\alpha^{p-1}=\lambda$. By Step 2 of Theorem 3.1.7, $\lambda\leqslant\alpha^{p-1}$, a contradiction. Hence we have the claim. By the claim, $\lambda\in I_K(\alpha^p)=\alpha^pI_K(1)=$

$$\begin{split} &\alpha^p\{y\;\epsilon\;\kappa\;\;|\;\;\alpha\leqslant\;y\leqslant\;1\} = \alpha^p(\{s\;\epsilon\;D_K^-\big|\alpha\leqslant\;s\}\;U\;\{0\}\;U\;\{t\;\epsilon\;D_K^+\big|\;\;t\leqslant\;1\}\\ &= \alpha^p\{s\;\epsilon\;D_K^-\big|\;\;\alpha\leqslant\;s\}\;U\;\{0\}\;U\;\;\alpha^p\{t\;\epsilon\;D_K^+\big|\;\;t\leqslant\;1\} \quad \text{which implies that}\\ &\lambda\;\epsilon\;\alpha^p\{s\;\epsilon\;D^-\big|\;\;\alpha<\;s\}\;. \quad \text{Therefore}\;\;\lambda\;=\;\alpha^pu\;\;\text{for some}\;\;u\;\epsilon\;\;\{s\;\epsilon\;D_K^-\big|\;\;\alpha\leqslant\;s\}\;. \end{split}$$

Case 1: $\lambda = u$. Then $u = \alpha^p u$, so $\alpha^p = 1$, a contradiction.

Case 2: $\lambda < u$. Then $\alpha^p u < u$. Since $0 < \alpha^p < 1$ and u < 0, by Step 1, $u < \alpha^p u$, a contradiction.

Case 3: $u < \lambda$. Then $u = \alpha^r$ for some $r \in \mathbb{Z}^+ \setminus p\mathbb{Z}^+$. Thus $\lambda = \alpha^p u = \alpha^p \alpha^r = \alpha^{p+r} < \alpha^{2p+r} \le \lambda$, a contradiction.

This shows that $0 = \sup\{\alpha^n \mid n \in \mathbb{Z}^+ \setminus p\mathbb{Z}^+\}$.

Hence $D_K^- = \{\alpha^n | n \in \mathbb{Z} \setminus p\mathbb{Z}\}$. Let K(p) be the complete ordered 0-semifield given in Remark 3.1.8. Define $f \colon (K,+,\cdot,\leqslant) \to (K_{(p)},+,\cdot,\leqslant)$ in the following way: Define f(0) = 0. Let $x \in K \setminus \{0\}$. If $x \in D_K^-$, then $x = \alpha^m$ for some $m \in \mathbb{Z} \setminus p\mathbb{Z}$. Define $f(x) = \beta^m$. If $x \in D_K^+$, then $x = 2^k$ for some $k \in \mathbb{Z}$. Define $f(x) = \beta^{-pk}$. Clearly, f is well-defined and f is a bijection.

We shall first show that for every x, $y \in K$, $x \leqslant y$ implies that $f(x) \leqslant f(y)$. To prove this, let x, $y \in K$ be such that $x \leqslant y$.

Case 1: $x \le 0 \le y$. This case is clear.

Case 2: $x \le y < 0$. Then $x = \alpha^n$ for some $n \in \mathbb{Z} \setminus p\mathbb{Z}$ and $y = \alpha^m$ for

some m ϵ Z \ pZ. Suppose that m < n. Then n-m ϵ Z⁺. By assumption and Step 2 of Theorem 3.1.7, x+y = x. Then α^n + α^m = α^n which implies that α^{n-m} + 1 = α^{n-m} . By Step 12 of Theorem 3.1.7 and the fact that n-m ϵ Z⁺, α^{n-m} + 1 = 1. Thus α^{n-m} = 1 which contradicts Step 6 of Theorem 3.1.7. Therefore n \leq m. Hence $\beta^n \leq \beta^m$. Thus $f(x) \leq f(y)$.

Case 3: 0 < x < y: Then $x = 2^k$ for some $k \in \mathbb{Z}$ and $y = 2^l$ for some $l \in \mathbb{Z}$. Since $2^k < 2^l$, k < l. It follows that -pl < -pk. Thus $\beta^{-pk} \le \beta^{-pl}$. Hence $f(x) \le f(y)$.

Next we shall show that for every x, y ε K, f(x+y) = f(x)+f(y). To prove this, let x, y ε K be arbitrary. If either x = 0 or y = 0, then the result is clear. Suppose that x, y ε K \{0}.

Case 1: $x \in D_K^+$ and $y \in D_K^+$. Then $x = 2^k$ for some $k \in \mathbb{Z}$ and $y = 2^k$ for some $\ell \in \mathbb{Z}$. Without loss of generality, suppose that $x \leqslant y$. Then x + y = y, it follows that f(x + y) = f(y). Now, we have that $k \leqslant \ell$. Then $-p\ell \leqslant -pk$. Therefore $f(x) + f(y) = \beta^{-pk} + \beta^{-p\ell} = \beta^{-p\ell} = f(y)$. Hence f(x + y) = f(x) + f(y).

Case 2: $x \in D_K^-$ and $y \in D_K^-$. Then $x = \alpha^n$ for some $n \in \mathbb{Z} \setminus p\mathbb{Z}$ and $y = \alpha^m$ for some $m \in \mathbb{Z} \setminus p\mathbb{Z}$. Without loss of generality, suppose that $x \leq y$. By Step 2 of Theorem 3.1.7, x+y = x, therefore f(x+y) = f(x). Since $\alpha^n + \alpha^m = \alpha^n$, $\alpha^{m-n} + 1 = 1$ which implies that $m-n \geqslant 0$. Therefore $n \leq m$. Thus $f(x) + f(y) = \beta^n + \beta^m = \beta^n = f(x)$. Hence f(x+y) = f(x) + f(y). f(x+y) = f(x) + f(y).

Case 3: $x \in D_K^-$ and $y \in D_K^+$. Then $x = \alpha^n$ for some $n \in \mathbb{Z} \setminus p\mathbb{Z}$ and $y = 2^k$ for some $k \in \mathbb{Z}$. By assumption and Step 4 of Theorem 3.1.7, x+y = x or x+y = y.

Case 4: $x \in D_K^+$ and $y \in D_K^-$. The proof is similar to the proof of Case 3.

Lastly, we must show that for every x, y ε K, f(xy) = f(x)f(y). To prove this, let x, y ε K be arbitrary. If either x = 0 or y = 0, then the result is clear. Suppose that x, y ε K \{0}.

Case 1: $x \in D_K^+$ and $y \in D_K^+$. Then $x = 2^k$ for some $k \in \mathbb{Z}$ and $y = 2^k$ for some $k \in \mathbb{Z}$. Thus $xy = 2^{k+\ell}$. Then $f(xy) = \beta^{-p(k+\ell)}$. Now, we have that $f(x) = \beta^{-pk}$ and $f(y) = \beta^{-p\ell}$. Therefore we get that $f(x)f(y) = (\beta^{-pk})(\beta^{-p\ell}) = \beta^{-p(k+\ell)}$. Hence f(xy) = f(x)f(y).

Case 2: $x \in D_K^-$ and $y \in D_K^-$. Then $x = \alpha^n$ for some $n \in \mathbb{Z} \setminus p\mathbb{Z}$ and $y = \alpha^m$ for some $m \in \mathbb{Z} \setminus p\mathbb{Z}$. Thus $xy = \alpha^{n+m}$

Subcase 2.1: $n+m \in \mathbb{Z} \setminus p\mathbb{Z}$. Then $f(xy) = \beta^{n+m} = \beta^n \beta^m = f(x)f(y)$ = f(x)f(y)

Case 3: $x \in D_K^-$ and $y \in D_K^+$. Then $x = \alpha^m$ for some $m \in \mathbb{Z} \setminus p\mathbb{Z}$ and $y = 2^k$ for some $k \in \mathbb{Z}$. Thus $y = (2^{-1})^{-k} = (\alpha^p)^{-k} = \alpha^{-pk}$. Then $y = \alpha^{m-pk}$ and $y = \alpha^{m-pk}$

Case 4: $x \in D_K^+$ and $y \in D_K^-$. The proof is similar to the proof of Case 3.

This shows that f is an isomorphism.

To finish the proof we must show that if p, q > 1 are distinct, then $K_{(p)}$ is not isomorphic to $K_{(q)}$. Let p, q $\in \mathbb{Z}^+ \setminus \{1\}$ be such that $p \neq q$. Without loss of generality, suppose that p < q. Then $K_{(p)} \setminus \{0\}$ and $K_{(q)} \setminus \{0\}$ are infinite cyclic group. Let β_1 and β_2 be generators of $K_{(p)} \setminus \{0\}$ and $K_{(q)} \setminus \{0\}$, respectively. Suppose that there is an isomorphism $F: K_{(p)} \setminus \{0\} \to K_{(q)} \setminus \{0\}$. Then $F(\beta_1) = \beta_2$ or $F(\beta_1) = \beta_2^{-1}$. Now, we have that $\beta_1^p > 0$, $\beta_2^p < 0$ and $\beta_2^{-p} < 0$. Then $0 < F(\beta_1^p) = (F(\beta_1))^p = \beta_2^p$ or β_2^{-p} , a contradiction. Hence $K_{(p)}$ is not isomorphic to $K_{(q)} \cdot \#$

Remark 3.1.11. Let $C = \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\} \cup \{0,1\}$. Let the order on C be the usual order. Define addition and multiplication on C by

absolute value of x. Then $(C,+,\cdot,\leqslant)$ is a complete ordered 0-semifield as is shown below.

Proof: Clearly, C is closed under +, • and (C,≼) is an
ordered set.

To show that + is associative, let x, y, $z \in C$.

Case 1: |x| < |y| < |z|. Then x+(y+z) = x+z = z and (x+y)+z = y+z = z. Thus x+(y+z) = (x+y)+z.

Case 2: |x| < |z| < |y|. Then x+(y+z) = x+y = y and (x+y)+z = y+z = y. Thus x+(y+z) = (x+y)+z.

Case 3: |y| < |x| < |z|. Then x+(y+z) = x+z = z and (x+y)+z = x+z = z. Thus x+(y+z) = (x+y)+z.

Case 4: |y| < |z| < |x|. Then x+(y+z) = x+z = x and (x+y)+z = x+z = x. Thus x+(y+z) = (x+y)+z.

Case 5: |z| < |x| < |y|. Then x+(y+z) = x+y = y and (x+y)+z = y+z = y. Thus x+(y+z) = (x+y)+z.

Case 6: |z| < |y| < |x|. Then x+(y+z) = x+y = x and (x+y)+z = x+z = x. Thus x+(y+z) = (x+y)+z.

Case 7: |x| = |y|.

Subcase 7.1: |y| < |z|. Then x+(y+z) = x+z = z and (x+y)+z = x+z = z. Thus x+(y+z) = (x+y)+z.

Subcase 7.2: |z| < |y|. Then x+(y+z) = x+y = x and (x+y)+z = x+z = x. Thus x+(y+z) = (x+y)+z.

Case 8: |y| = |z|

Subcase 8.1: |x| < |y|. Then x+(y+z) = x+y = y and (x+y)+z = y+z = y. Thus x+(y+z) = (x+y)+z.

Subcase 8.2: |y| < |x|. Then x+(y+z) = x+y = x and x+(y+z) = x+y = x. Thus x+(y+z) = (x+y)+z.

Case 9: |x| = |z|.

Subcase 9.1: |x| < |y|. Then x+(y+z) = x+y = y and (x+y)+z = y+z = y. Thus x+(y+z) = (x+y)+z.

Subcase 9.2: |y| < |x|. Then x+(y+z) = x+z = x and (x+y)+z = x+z = x. Thus x+(y+z) = (x+y)+z.

This shows that + is an associative.

To show that $(C \setminus \{0\}, \bullet)$ is an abelian group, let $x \in C \setminus \{0\}$. We shall show that $x^{-1} \in C \setminus \{0\}$.

Case 1 x = 1. Then we are done.

Case 2 $x \in \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}$. Then $x = -(2^m)$ for some $m \in \mathbb{Z} \setminus \{0\}$. Now, we have that $-m \in \mathbb{Z} \setminus \{0\}$, so $x^{-1} = (-(2^m))^{-1} = -(2^{-m}) \in \mathbb{C} \setminus \{0\}$.

Clearly, multiplication is commutative and associative and x1 = 1x = x for all $x \in C \setminus \{0\}$. Therefore $(C \setminus \{0\}, \cdot)$ is an abelian group.

To show that (C,+,•, \leqslant) satisfies the distributive law, let x, y, z ϵ C.

Case 1: |y| > |z|. Then x(y+z) = xy and |x||y| > |x||z|. Thus |xy| > |xz|, so xy+xz = xy. Thus x(y+z) = xy+xz. Similarly, (y+z)x = yx+zx.

Case 2: |y| < |z|. This proof is similar to the proof of Case 1.

Case 3: |y| = |z|. Then |x||y| = |x||z|, so |xy| = |xz|.

Therefore x(y+z) = xy+xz. Similarly, (y+z)x = yx+zx.

We shall show that for every x, y ϵ C, x \leqslant y implies that $x+z \leqslant y+z$ for all $z \epsilon$ C. To prove this, let x, y be such that $x \leqslant y$. Let $z \epsilon$ C be arbitrary. If $z \epsilon \{0,1\}$, then we are done. Suppose that $z \epsilon \{-(2^n) \mid n \epsilon \ z \setminus \{0\}\}$.

Case 1: $x, y \in \{0,1\}$. Then we are done.

Case 2: $x \in \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}$ and $y \in \{0,1\}$.

Subcase 2.1 $x \le z \le 0 \le y$. Then $|z| \le |x|$, so x+z = x. Thus $x+y \le y+z$.

Subcase 2.2 $z \le x < 0 \le y$. Then $|x| \le |z|$, so x+z = z. Thus $x+y \le y+z$.

Case 3: $x, y \in \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}$.

Subcase 3.1 $x \le z \le y \le 0$. Then $|z| \le |x|$ and $|y| \le |z|$, so x+z=x and y+z=z. Thus $x+z \le y+z$

Subcase 3.2 $z \le x \le y < 0$. Then $|y| \le |x| \le |z|$, so x+z=z and y+z=z. Thus x+z=y+z.

Subcase 3.3 $x \le y \le z \le 0$. Then $|z| \le |y| \le |x|$, so x+z=x and y+z=y. Thus $x+z \le y+z$.

To show that for every x, y ϵ C, x \leqslant y implies that xz \leqslant yz for all z \neq x⁻¹ , let x, y ϵ C be such that x \leqslant y. Let z ϵ C \setminus {x⁻¹}. If z ϵ {0,1}, then we are done. Suppose that z ϵ {-(2ⁿ) |n ϵ Z \setminus {0}}.

Case 1: x = 0 and y = 0. This case is clear.

Case 2: x = 0 and y = 1. This case is clear.

Case 3: x = 1 and y = 1. This case is clear.

Case 4: $x \le y < 0$. Then $x = -(2^n)$ and $y = -(2^m)$ and $z = -(2^\ell)$ for some m, n, $\ell \in \mathbb{Z} \setminus \{0\}$. Therefore we get that $xz = -|-(2^n)(-(2^\ell))| = -|2^{n+\ell}| = -(2^{n+\ell})$ and $yz = -|-(2^m)(-(2^\ell))| = -|2^{m+\ell}| = -(2^{m+\ell})$. Now, we have that $m \le n$, so $m+\ell \le n+\ell$. Thus $2^{m+\ell} \le 2^{n+\ell}$, it follows that $-(2^{n+\ell}) \le -(2^{m+\ell})$. Therefore $xz \le yz$.

Lastly, to show that (C,\leqslant) is complete. Now, we assume that $H\subseteq C$ be a nonempty set which has an upper bound. Let w be an upper bound of H. Now, we shall show that H has a least upper bound in C.

Case 1: $w \ge 0$. Then 0 or 1 is a least upper bound of H. Then we are done.

Case 2: w < 0. Then $a \le w < 0$ for all $a \in H$. Thus $H \subseteq \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}$. We claim that $(\mathbb{Z} \setminus \{0\}, \le)$ is isomorphic to $(\{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}, \le)$. To prove the claim, define $f: \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\} \rightarrow \mathbb{Z} \setminus \{0\}$ in the following way: Let $x \in \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}$. Then $x = -(2^n)$ for some $n \in \mathbb{Z} \setminus \{0\}$. Define f(x) = -n. Clearly, f is well-defined and f is a bijection. To show that f is an order map, let x, $y \in \{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}$ be such that $x \le y$. Then $x = -(2^n)$ and $y = -(2^m)$ for some n, $m \in \mathbb{Z} \setminus \{0\}$. Therefore $m \le n$, so $-n \le -m$. Thus $f(x) = -n \le -m = f(y)$, so we have the claim. By the claim $(\{-(2^n) \mid n \in \mathbb{Z} \setminus \{0\}\}, \le)$ is complete. Hence f has a least upper bound in f.

Theorem 3.1.12. Let $(K,+,\cdot,\leqslant)$ be a complete ordered 0-skew semifield. If $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to $(\{1\},+,\cdot,\leqslant)$, then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following 0-semifield:

- (1) $(\{0,1\},+,\cdot,\leqslant)$ as in Boolean semifield.
- (2) $(C,+,\cdot,\leqslant)$ as in Remark 3.1.11.

<u>Proof</u>: Assume that $(D_K^+,+,\cdot,\leqslant)$ is isomorphic to $(\{1\},+,\cdot,\leqslant)$. Now, we have that $K=D_K^-\cup\{0\}\cup D_K^+$. If $D_K^-=\emptyset$, then $(K,+,\cdot,\leqslant)$ is isomorphic to (1). Suppose that $D_K^-\neq\emptyset$. Step 2 to Step 12 of Theorem 3.1.7 hold with these hypotheses and the proofs are exactly the same. As in Theorem 3.1.7 α will denote $\inf(I_K^-(1))$.

Step 1. We shall show that $\alpha^n < 0$ for all $n \in \mathbb{Z} \setminus \{0\}$. It suffices to show that $\alpha^n < 0$ for all $n \in \mathbb{Z}^+$. To prove this, suppose not. Then $0 < \alpha^m$ for some $m \in \mathbb{Z}^+$. If $\alpha^m = 0$, then $\alpha = \alpha^{-(m-1)}0 = 0$, a contradiction. Thus $0 < \alpha^m$, so $\alpha^m = 1$ which contradicts Step 6 of Theorem 3.1.7.

Step 2. For every $n \in \mathbb{Z} \setminus \{0\}$, $\alpha^n < \alpha^{n+1}$. This proof is the same as the proof of Step 14 in Theorem 3.1.7.

Step 3. We shall show that for every x, y, $z \in D_K^-$, x < y and $z \neq x^{-1}$ implies that zx < zy and xz < yz. To prove this, let x, y, $z \in D_K^-$ be such that x < y and $z \neq x^{-1}$. By Step 2 of Theorem 3.1.7, x+y = x. Therefore zx = z(x+y) = zx+zy.

Case 1: $zy \in D_K^+$. Then $zx+zy \le zy$. From (*), we have that $zx \le zy$. If zx = zy, then x = y which is a contradiction. Therefore $zx \le zy$.

Case 2: $\text{zy } \in D_{K}^{-}$. From (*) and Step 2 of Theorem 3.1.7, we have

that $zx \le zy$. If zx = zy, then x = y, a contradiction. Therefore $zx \le zy$.

Hence zx < zy. Similarly, xz < yz.

Step 11 of Theorem 3.1.7.

Step 4. We shall show that for every n \in Z \{0} there does not exist $y \in D_K^-$ such that $\alpha^n < y < \alpha^{n+1}$. To prove this, suppose not. Then $\alpha^m < y < \alpha^{m+1}$ for some $m \in \mathbb{Z} \setminus \{0\}$ and for some $y \in D_K^-$. By Step 2, $\alpha^m < y < \alpha^{m+2}$(I)

Since $\alpha^{-m} = (\alpha^m)^{-1}$, $\alpha^{-m-1} \neq (\alpha^m)^{-1}$. From (I) and Step 3, we have that $(\alpha^{-m-1})\alpha^m < \alpha^{-m-1}y$. Then $\alpha^{-1} < \alpha^{-m-1}y$(II)

If $\alpha^{-m-1} = y^{-1}$, then $\alpha^{m+1} = y$, a contradiction. Thus $\alpha^{-m-1} \neq y^{-1}$. From (I) and Step 3, $\alpha^{-m-1}y < (\alpha^{-m-1})\alpha^{m+2}$. Then $\alpha^{-m-1}y < \alpha$(III)

From (II) and (III), we have that, $\alpha^{-1} < \alpha^{-m-1}y < \alpha$ which contradicts

Step 5. We shall show that $0 = \sup\{\alpha^n \mid n \in \mathbb{Z}^+\}$. To prove this, let $L = \{\alpha^n \mid n \in \mathbb{Z}^+\}$. By Step 1, 0 is an upper bound of L. Since $L \subseteq K$ and K is complete, L has a least upper bound. Let $\lambda = \sup(L)$. Then $\lambda \leq 0$. Suppose that $\lambda < 0$. We claim that λ is lower discrete. To prove this claim, if $\lambda = \alpha^n$ for some $n \in \mathbb{Z} \setminus \{0\}$, then by Step 4, we are done. Suppose that $\lambda \neq \alpha^n$ for all $n \in \mathbb{Z} \setminus \{0\}$. Now, we have that $\alpha^{-1} < \alpha < 0$.

If $\alpha^{-1}\lambda=(\alpha^{-1})^{-1}$, then $\alpha^{-1}\lambda=\alpha$. It follows that $\lambda=\alpha^2$, a contradiction. Thus $\alpha^{-1}\lambda\neq(\alpha^{-1})^{-1}$. From (i) and Step 3, we have that $\alpha^{-1}(\alpha^{-1}\lambda)<\alpha(\alpha^{-1}\lambda)$. Then $\alpha^{-2}\lambda<\lambda$. We shall show that there does not exist $y\in D_K^-$ such that $\alpha^{-2}\lambda< y<\lambda$. To prove this, suppose not. Then there exists a $y\in D_K^-$ such that $\alpha^{-2}\lambda< y<\lambda$(ii)

If $\lambda^{-1}\alpha=(\alpha^{-2}\lambda)^{-1}$, then $\lambda^{-1}\alpha=\lambda^{-1}\alpha^2$. Thus $\alpha=\alpha^2$ which implies that $\alpha=1$, a contradiction. Therefore $\lambda^{-1}\alpha\neq(\alpha^2\lambda)^{-1}$. From (ii) and Step 3, we have that $\alpha^{-2}\lambda(\lambda^{-1}\alpha)< y(\lambda^{-1}\alpha)$, hence $\alpha^{-1}< y(\lambda^{-1}\alpha)$(iii)

If $\lambda^{-1}\alpha = y^{-1}$, then $\alpha = \lambda y^{-1}$. Since $y < \lambda$, $y < \alpha^m < \lambda$ for some $m \in \mathbb{Z} \setminus \{0\}$. Thus $\alpha^m y^{-1} < \lambda y^{-1} = \alpha$, it follows that $\alpha^m y^{-1} + 1 = \alpha^m y^{-1}$. Then $\alpha^m + y = \alpha^m$. By Step 2 of Theorem 3.1.7, $\alpha^m < y$, a contradiction. Therefore $\lambda^{-1}\alpha \neq y^{-1}$. From (ii) and Step 3, we have that $y(\lambda^{-1}\alpha) < \lambda(\lambda^{-1}\alpha) = \alpha$(iv)

By (iii) and (iv), $\alpha^{-1} < y(\lambda^{-1}\alpha) < \alpha$ which contradicts Step 11 of Theorem 3.1.7. Then there does not exist $y \in D_K^-$ such that $\alpha^{-2}\lambda < y < \lambda$. Therefore λ is lower discrete, so we have the claim. Since $\lambda^- < \lambda$, $\lambda^- < \alpha^\ell < \lambda$ for some $\ell \in \mathbb{Z} \setminus \{0\}$. If $\lambda^- = \alpha^\ell$, then $\lambda^- < \alpha^{\ell+1} < \lambda$, a contradiction. Thus $\lambda^- < \alpha^\ell < \lambda$, a contradiction. Hence $\lambda = 0$.

Step 6. We shall show that $\{\alpha^{-n} \mid n \in \mathbb{Z}^+\}$ has no lower bound in \mathbb{D}_K^- . To prove this, suppose not. Then $\{\alpha^{-n} \mid n \in \mathbb{Z}^+\}$ has lower bound in \mathbb{D}_K^- . Thus $\{\alpha^{-n} \mid n \in \mathbb{Z}^+\}$ has a greatest lower bound. Let $w = \inf\{\alpha^{-n} \mid n \in \mathbb{Z}^+\}$, so $w \leqslant \alpha^{-n}$ for all $n \in \mathbb{Z}^+$. Suppose that $w = \alpha^{-m}$ for some $m \in \mathbb{Z}^+$. Since $\alpha^m < \alpha^{m+1}$, by Step 2, $(\alpha^{m+1})^{-1} < (\alpha^m)^{-1}$. Thus $\alpha^{-(m+1)} < \alpha^{-m} = w$, a contradiction. Therefore $w < \alpha^{-n}$ for all $n \in \mathbb{Z}^+$. By Step 2 again $(\alpha^{-n})^{-1} < w^{-1}$ for all $n \in \mathbb{Z}^+$, so $\alpha^n < w^{-1}$ for all $n \in \mathbb{Z}^+$. Since $0 = \sup\{\alpha^n \mid n \in \mathbb{Z}^+\}$, $0 < w^{-1}$ which is a contradiction.

From Step 4, Step 5 and Step 6, we have that $D_K^- = \{\alpha^n \mid n \in \mathbb{Z} \setminus \{0\}\}$. Let C be the complete ordered 0-semifield given in Remark 3.1.11. Define $f: (K,+,\cdot,\leqslant) \to (C,+,\cdot,\leqslant)$ in the following way: f(0) = 0

and f(1) = 1. Let $x \in D^-$ be arbitrary. Then $x = \alpha^n$ for some a unique $n \in \mathbb{Z} \setminus \{0\}$. Let $f(x) = -2^{-n}$. Clearly, f is well-defined and f is a bijection.

To show that f is an order map, let x, y ϵ K be such that $x \le y$. We must show that $f(x) \le f(y)$

Case 1: $y \in \{0,1\}$. Then we are done.

Case 2: $x \le y < 0$. Then $x = \alpha^n$ and $y = \alpha^m$ for some m, $n \in \mathbb{Z} \setminus \{0\}$.

Therefore $\alpha^n \le \alpha^m$, so $n \le m$ which implies that $2^{-m} \le 2^{-n}$.

Thus $-(2^{-n}) \le -(2^{-m})$. Hence $f(x) \le f(y)$.

To show that f(x+y) = f(x)+f(y) for all x, y ϵ K. To prove this, let x, y ϵ K be arbitrary.

Case 1: x = 0 and y = 0. Then we are done

Case 2: x = 0 and $y \in K$. Then f(x+y) = f(0+y) = f(y) = 0+f(y) = f(0)+f(y) = f(x)+f(y).

Case 3: y = 0 and $x \in K$. This proof is similar to the proof of Case 2.

Case 4: x = 1 and y = 0. Then we are done.

Case 5: x = 1 and y = 1. Then we are done.

Case 6: x = 1 and $y \in D_{K}^{-}$. Then y+1 = y or y+1 = 1.

Since $y \in D_{K}^{-}$ and y+1=y. Then f(y+1)=f(y).(*)

Since $y \in D_{K}^{-}$ and y+1=y, $y < \alpha$. Thus $y = \alpha^{-n}$ for some $n \in \mathbb{Z}^{+}$.

Therefore $f(y) = -(2^{-(-n)}) = -(2^{n})$, so $|f(y)| = |-(2^{n})| = 2^{n} > 1 = |f(1)|$. Then f(y)+f(1)=f(y).(**)

From (*) and (**), f(y+1) = f(y)+f(1).

Case 7: $x \in D_{K}^{-}$ and y = 1. This proof is similar to the proof of Case 6.

Case 8: $x \in D_K^-$ and $y \in D_K^-$. Then either $x \leqslant y$ or $y \leqslant x$.

Subcase 8.1: $x \le y$. By Step 2 of Theorem 3.1.7, x+y = x. Then f(x+y) = f(x). Since $x \le y < 0$ and f is an order map, $f(x) \le f(y) < 0$ which implies that 0 < |f(y)| < |f(x)|. Thus f(x)+f(y) = f(x). Hence f(x+y) = f(x)+f(y).

Subcase 8.2: $y \leqslant x$. By Step 2 of Theorem 3.1.7, y+x=y. Then f(y+x)=f(y). Since $y \leqslant x < 0$ and f is an order map, $f(y) \leqslant f(x) < 0$ which implies that $0 < |f(x)| \leqslant |f(y)|$. Thus f(x)+f(y)=f(y). Hence f(x+y)=f(x)+f(y).

Lastly, we must show that f(xy) = f(x)f(y) for all x, y ϵ K. To prove this, let x, y ϵ K be arbitrary.

Case 1: x = 0, $y \in K$. This case is clear.

Case 2: y = 0, $x \in K$. This case is clear.

Case 3: x = 1, $y \in K$. This case is clear.

Case 4: y = 1, $x \in K$. This case is clear.

Case 5: $x \in D_K^-$ and $y \in D_K^-$. Then $x = \alpha^n$ and $y = \alpha^m$ for some n, $m \in \mathbb{Z} \setminus \{0\}$. Thus $xy = \alpha^n \alpha^m = \alpha^{n+m}$. Therefore we get that $f(xy) = -(2^{-n-m})$. Now, we have that $f(x) = -(2^{-n})$ and $f(y) = -(2^{-m})$. Then $f(x)f(y) = -\left|-(2^{-n})(-(2^{-m}))\right| = -\left|2^{-n-m}\right| = -(2^{-n-m})$. Therefore f(xy) = f(x)f(y).

Hence f is an isomorphism. #

Section 2. ∞-Skew Semifields

<u>Definition 3.2.1.</u> A system (K,+,*,<) is called an <u>ordered ∞-skew</u>

<u>semifield</u> iff (K,+,*) is an ∞-skew semifield and ≤ is an order on K

satisfying the following properties:

- (i) For any x, $y \in K$, $x \le y$ implies that $x+z \le y+z$ for all $z \le \infty$ in K.
- (ii) For any x, y ϵ K, x \leqslant y implies that xz \leqslant yz and zx \leqslant zy for all z \leqslant ∞ in K.

(iii) 1 < ∞.

Notation: Let K be an ∞ -skew semifield. Then we will denote $Cor_K(x) = \{y \in K \mid x+y = \infty\}$ for all $x \in K$.

Proposition 3.2.2. Let K be an ∞-skew semifield. Then the following properties hold:

- (1) For every $x \in K$, $\infty \in Cor_{K}(x)$.
- (2) $\operatorname{Cor}_{K}(\infty) = K$.
- (3) For every $x \in K \setminus \{\infty\}$, $Cor_K(x) = x Cor_K(1)$.
- (4) If $Cor_{K}(1) = {\infty}$, then $x+y \neq \infty$ for all x, $y \in K \setminus {\infty}$.

(5) If $x \in Cor_K(1)$ and $x \neq \infty$, then $x^{-1} \in Cor_K(1)$.

Proof: The proof of 1) and 2) are obvious.

To show 3), let $x \in K \setminus \{\infty\}$ be arbitrary. We must show that $\operatorname{Cor}_K(x) = x \operatorname{Cor}_K(1)$. To prove this, let $y \in \operatorname{Cor}_K(x)$ be arbitrary. Then $y+x = \infty$ which implies that $x^{-1}y + 1 = \infty$. Therefore $x^{-1}y \in \operatorname{Cor}_K(1)$. Thus $y \in x \operatorname{Cor}_K(1)$. Hence $\operatorname{Cor}_K(x) \subseteq x \operatorname{Cor}_K(1)$. On the other hand, let $z \in x \operatorname{Cor}_K(1)$ be arbitrary. Then $x^{-1}z + 1 = \infty$ which implies that $z+x = \infty$. Therefore $z \in \operatorname{Cor}_K(x)$. Hence $x \operatorname{Cor}_K(1) \subseteq \operatorname{Cor}_K(x)$.

To show 4), suppose that $\operatorname{Cor}_K(1) = \{\infty\}$. Let $x, y \in K \setminus \{\infty\}$ be arbitrary. If $x+y = \infty$, then $y \in \operatorname{Cor}_K(x)$. By 3), $y \in x \operatorname{Cor}_K(1)$ which implies that $x^{-1}y \in \operatorname{Cor}_K(1) = \{\infty\}$. Thus $x^{-1}y = \infty$. Then $\infty = x\infty = x(x^{-1}y) = (xx^{-1})y = y$, a contradiction. Hence $x+y \neq \infty$.

To show 5), let $x \in Cor_K(1) \setminus \{\infty\}$. Then $x+1 = \infty$ which implies that $1+x^{-1} = \infty$. Hence $x^{-1} \in Cor_K(1)$. #

Notation: Let K be an ordered ∞ -skew semifield. Then we will denote $D_K^f = \{x \in K \mid x < \infty\}$ and $D_K^i = \{x \in K \mid x > \infty\}$. Note that 1 $\in D_K^f$, so D_K^f is never the empty set.

Proposition 3.2.3. Let $(K,+,\cdot,\leqslant)$ be an ordered ∞ -skew semifield. Then the following properties hold:

- (1) For every x, y ε K \{ ∞ }, xy ε K \{ ∞ }.
- (2) For every x, y ϵ K, x < y implies that xz < yz and zx < zy for all z ϵ $D_\kappa^{\rm f}.$

- (3) For every x, y ϵ D_K^f , x^{-1} ϵ D_K^f and xy ϵ D_K^f and x+y $\leqslant \infty$.
- (4) For every $x \in D_K^f$ and for every $y \in D_K^i$, $xy \in D_K^i$.
- (5) For every x, y ϵ D_K^i , x+y < ∞ implies that $xD_K^f \cap yD_K^i = \bar{r}$.
- (6) Suppose that $Cor_K(1) = \{\infty\} \cup D_K^i$. Then for every x, y $\in D_K^f$, x+y $\in D_K^f$ and xy⁻¹ $\in D_K^f$.
- (7) Suppose that $Cor_K(1) = \{\infty\} \cup D_K^i$. Then for every $x \in D_K^f$ and for every $y \in D_K^i$, $x+y = \infty$.
- (8) Suppose that $Cor_{K}(1) = \{\infty\} \cup D_{K}^{i}$. Then for every $x, y \in D_{K}^{i}$, $x+y = \begin{cases} \infty & \text{if } y \notin xD_{K}^{f}, \\ > \infty & \text{if } y \in xD_{K}^{f}. \end{cases}$
- (9) Suppose that $\operatorname{Cor}_{K}(1) = \{\infty\} \cup \operatorname{D}_{K}^{i}$. Then for every $x, y \in \operatorname{D}_{K}^{i}$, $xy = \begin{cases} < \infty & \text{if } y \in x^{-1} \operatorname{D}_{K}^{f}, \\ > \infty & \text{if } y \notin x^{-1} \operatorname{D}_{K}^{f}. \end{cases}$
- (10) Suppose that $Cor_K(1) = \{\infty\} \cup D_K^i$. Then D_K^f is a normal subgroup of $K \setminus \{\infty\}$.
- (11) Suppose that $\text{Cor}_K(1) = K$. Then $x+y = \infty$ for all $x \in \mathbb{D}_{\overline{X}}^{\frac{1}{2}}$ and for all $y \in \mathbb{D}_K^{\hat{I}}$.

Proof: The proof of (1) is obvious.

To show (2), let x, y ε K be such that x < y. Let z ε D_K^f is arbitrary. Then z < ∞ . By Definition 3.2.1 (ii), xz \leqslant yz and zx \leqslant zy. If zx = zy, then $z^{-1}(zx) = z^{-1}(zy)$ which implies that x = y, a contradiction. Thus xz \leqslant yz. Similarly, zx \leqslant zy.

To show (3), let x, y \in D_K^f be arbitrary. Then $x < \infty$ and $y < \infty$. If $\infty < x^{-1}$, then by Definition 3.2.1 (ii), $\infty = \infty x < x^{-1}x = 1$,

a contradiction. Therefore $x^{-1} < \infty$. Thus $x^{-1} \in D_K^f$. Now, we shall show that $xy < \infty$. Suppose that $\infty \leqslant xy$. By Definition 3.2.1 (i), $\infty = x^{-1} \infty \leqslant x^{-1} (xy) = (x^{-1}x)y = y, \text{ a contradiction.} \text{ Therefore } xy < \infty.$ Hence $xy \in D_K^f$. It is clear that $x+y \leqslant \infty$.

To show (4), let $x \in D_K^f$ and $y \in D_K^i$ be arbitrary. Then $x < \infty$ and $y > \infty$. By Definition 3.2.1 (ii), $\infty \leqslant xy$. If $xy = \infty$ then $x^{-1}(xy) = x^{-1}\infty = \infty$ which implies that $y = \infty$, a contradiction. Hence $\infty < xy$. Therefore $xy \in D_K^i$.

To show (5), let x, y \in D_K^i be such that x+y $< \infty$. We shall show that $xD_K^f \cap yD_K^f = \emptyset$. To prove this, suppose not. Then $xD_K^f \cap yD_K^f \neq \emptyset$. Thus $xD_K^f = yD_K^f$, so y \in xD_K^f . Then y = xd for some d \in D_K^f . Therefore x+y = x+xd = x(1+d). By (4), x+y $> \infty$, a contradiction. Hence $xD_K^f \cap yD_K^f = \emptyset$.

To show (6), suppose that $\operatorname{Cor}_K(1) = \{\infty\} \cup \operatorname{D}_K^i$. Let $x, y \in \operatorname{D}_K^f$ be arbitrary. By (3), $xy^{-1} \in \operatorname{D}_K^f$ and $x+y < \infty$. If $x+y = \infty$ then $1 + xy^{-1} = \infty$. Thus $xy^{-1} \in \operatorname{Cor}_K(1)$, so $xy^{-1} \in \{\infty\} \cup \operatorname{D}_K^i$, a contradiction. Therefore $x+y < \infty$. Hence $x+y \in \operatorname{D}_K^f$.

To show (7), suppose that $\operatorname{Cor}_K(1) = \{\infty\} \cup \operatorname{D}_K^i$. Let $x \in \operatorname{D}_K^f$ and $y \in \operatorname{D}_K^i$ be arbitrary. By (3), $x^{-1} \in \operatorname{D}_K^f$. By (4), $x^{-1}y \in \operatorname{D}_K^i$. Then $x^{-1}y \in \operatorname{Cor}_K(1)$, it follows that $x^{-1}y + 1 = \infty$. Therefore $x + y = \infty$.

To show (8), suppose that $\operatorname{Cor}_K(1) = \{\omega\} \cup \operatorname{D}_K^i$. Let $x, y \in \operatorname{D}_K^i$ be arbitrary. Now, we have that $K = \operatorname{D}_K^f \cup \operatorname{Cor}_K(1)$. Therefore $K = xK = x(\operatorname{D}_K^f \cup \operatorname{Cor}_K(1)) = x\operatorname{D}_K^f \cup \operatorname{xCor}_K(1). \qquad (*)$

To show (9), suppose that $\operatorname{Cor}_K(1) = \{\infty\} \cup \operatorname{D}_K^i$. Let $x, y \in \operatorname{D}_K^i$ be arbitrary. If $y \in x^{-1}\operatorname{D}_K^f$, then $y = x^{-1}\operatorname{d}$ for some $d \in \operatorname{D}_K^f$. Thus $xy = x(x^{-1}d) = (xx^{-1})d = d$. Therefore $xy < \infty$. Suppose that $y \not\in x^{-1}\operatorname{D}_K^f$. To show that $xy > \infty$, suppose not. Then $xy \leqslant \infty$. If $xy = \infty$ then $x^{-1}(xy) = x^{-1}\infty = \infty$. Thus $y = \infty$, a contradiction. If $xy < \infty$, then $xy = x^{-1}\cos x = x^{-1}\operatorname{D}_K^f$, a contradiction. Therefore $xy > \infty$.

To show (10), suppose that $\operatorname{Cor}_K(1) = \{\omega\} \cup \operatorname{D}_K^i$. We shall show that D_K^f is a normal subgroup of $K \setminus \{\omega\}$. Let $x \in K \setminus \{\omega\}$ and $d \in \operatorname{D}_K^f$ be arbitrary. Now, we have that $\operatorname{D}_K^f = (\operatorname{Cor}_K(1))^C$. We must show that $\operatorname{xdx}^{-1} \in \operatorname{D}_K^f$. If $x \in \operatorname{D}_K^f$, then we are done. Suppose that $x \in \operatorname{D}_K^i$. If $\operatorname{xdx}^{-1} \not\in \operatorname{D}_K^f$, then $\operatorname{xdx}^{-1} \in \operatorname{Cor}_K(1)$. Thus $\operatorname{xdx}^{-1} + 1 = \omega$, so $\operatorname{dx}^{-1} + x^{-1} = \omega$ which implies that $d+1 = \omega$, a contradiction. Therefore $\operatorname{xdx}^{-1} \in \operatorname{D}_K^f$. Hence D_K^f is a normal subgroup of $K \setminus \{\omega\}$.

To show (11), suppose that $\operatorname{Cor}_K(1) = K$. Let $x, y \in K$ be arbitrary. If $x = \infty$ or $y = \infty$, then we are done. Suppose that $x \neq \infty$ and $y \neq \infty$. Then $x^{-1}y \in K$, so $x^{-1}y \in \operatorname{Cor}_K(1)$. Therefore $x^{-1}y + 1 = \infty$. Hence $y+x = \infty$.

Proposition 3.2.4. Let (K,+,•,≼) be a complete ordered ∞-skew semifield. Then the following properties hold:

- (1) (D_K^f, \leq) is a complete ordered set.
- (2) If $D_K^f \neq \{1\}$, then for every $x \in D_K^i$, xD_K^f has no upper bound and has no lower bound in D_K^i .
- (3) If (H,•) is a subgroup of (D_K^f ,•) and H \neq {1}, then H has neither a lower bound nor an upper bound in D_K^f .
 - (4) If $(\operatorname{Cor}_{K}(1))^{c} \neq \emptyset$, then $D_{K}^{f} \subseteq (\operatorname{Cor}_{K}(1))^{c}$.

 $\underline{\operatorname{Proof}}\colon \quad \text{To show (1), let } A\subseteq D_K^f \text{ be a nonempty set having a}$ lower bound in D_K^f . Then $A\subseteq K$. Since K is complete, A has a greatest lower bound in K. Let $w=\inf(A)$. Fix $a\in A$. Then $w\leqslant a<\infty$. Therefore $w\in D_K^f$. Hence (D_K^f,\leqslant) is a complete ordered set.

To show (2), suppose that $D_K^f \neq \{1\}$. Let $x \in D_K^i$ be arbitrary. Without loss of generality, suppose that xD_K^f has an upper bound. Let $z = \sup(xD_K^f)$. Then $xd \leqslant z$ for all $d \in xD_K^f$. Let $s \in D_K^f \setminus \{1\}$. Thus $xds \leqslant z$ for all $d \in xD_K^f$, it follows that $xd \leqslant zs^{-1}$ for all $d \in D_K^f$. Therefore zs^{-1} is an upper bound of xD_K^f . Thus $z \leqslant zs^{-1}$, so $zs \leqslant z$.

Similarly, $xds^{-1} \leqslant z$ for all $d \in xD_K^f$ which implies that zs is an upper bound of xD_K^f . Then $z \leqslant zs$(**)

From (*) and (**), we have that z = zs which implies that 1 = s, a contradiction.

To show (3), by Proposition 3.2.3 (3), (D_K^f, \cdot) is a group. Suppose that (H, \cdot) is a subgroup of (D_K^f, \cdot) and H \neq {1}. By (1) and Proposition 3.2.3 (2), $(D_K^f, \cdot, \leqslant)$ is a complete ordered group. By Proposition 1.25, Theorem 1.26 and Theorem 1.28, $(D_K^f, \cdot, \leqslant)$ is either isomorphic to $(\{2^n \mid n \in \mathbb{Z}\}, \cdot, \leqslant)$ or $(\mathbb{R}^+, \cdot, \leqslant)$. Let $x \in H \setminus \{1\}$ be

arbitrary. Then either x < 1 or 1 < x. Without loss of generality, suppose that x < 1. Then x^n has the property that for every $r \in D_K^f$ there exists an N $\in \mathbb{Z}^+$ such that $n \geqslant N$ implies that $x^n < r$. Therefore H has no lower bound in D_K^f . Now, we have that $1 < x^{-1}$. Then $(x^{-1})^m$ has the property that for every $s \in D_K^f$ there exists an M $\in \mathbb{Z}^+$ such that m > M implies that $(x^{-1})^m > s$. Therefore H has no upper bound in D_K^f .

To show (4), suppose that $(\operatorname{Cor}_K(1))^C \neq \emptyset$. First, we shall show that $((\operatorname{Cor}_K(1))^C, \bullet)$ is a group. To prove this, let x, $y_E(\operatorname{Cor}_K(1))^C$ be arbitrary. Then $x+1 \neq \infty$ and $y+1 \neq \infty$. It follows that $1+x^{-1} \neq \infty$. Thus $x^{-1} \in (\operatorname{Cor}_K(1))^C$. If $xy+1 = \infty$, then $xy + x + y + 1 = \infty$. Thus $x(y+1) + y + 1 = \infty$ which implies that $(x+1)(y+1) = \infty$. Since $x+1 \neq \infty$, $y+1 = \infty$, a contradiction. Therefore $xy+1 \neq \infty$. Thus $xy \in (\operatorname{Cor}_K(1))^C$, it follows that $1 \in (\operatorname{Cor}_K(1))^C$. Hence $((\operatorname{Cor}_K(1))^C, \bullet)$ is a group.

Clearly, if $D_K^f = \{1\}$, then (4) is true. Suppose that $D_K^f \neq \{1\}$. We claim that $D_K^f \cap (\operatorname{Cor}_K(1))^C \neq \{1\}$. To prove this claim, let $x \in D_K^f$ be such that x < 1. Then $x+1 < 1+1 < \infty$. Thus $x \in D_K^f \cap (\operatorname{Cor}_K(1))^C$. Hence $D_K^f \cap (\operatorname{Cor}_K(1))^C \neq \{1\}$, so we have the claim.

Let $y \in D_K^f$ be arbitrary. Now, we have that $(D_K^f \cap (\operatorname{Cor}_K(1))^c, \cdot)$ is a subgroup of (D_K^f, \cdot) . By the claim and (3), x is not an upper bound of $D_K^f \cap (\operatorname{Cor}_K(1))^c$. Then there exists a t $\in D_K^f \cap (\operatorname{Cor}_K(1))^c$ such that y < t. Therefore $y+1 \le t+1 < \infty$. Thus $y \in (\operatorname{Cor}_K(1))^c$. Hence $D_K^f \subseteq (\operatorname{Cor}_K(1))^c$.

Theorem 3.2.5 Let K be a complete ordered ∞ -skew semifield. Then either $\operatorname{Cor}_K(1) = \{\infty\}$ or $\operatorname{Cor}_K(1) = \{\infty\}$ or $\operatorname{Cor}_K(1) = K$.

 $\underline{\operatorname{Proof}}\colon \text{ Assume that } \operatorname{Cor}_{K}(1) \neq \{\varnothing\} \text{ and } \operatorname{Cor}_{K}(1) \neq K. \text{ We must}$ show that $\operatorname{Cor}_{K}(1) = \{\varnothing\} \bigcup \operatorname{D}_{K}^{i}$. To prove this, suppose not. Then $\operatorname{Cor}_{K}(1) \neq \{\varnothing\} \bigcup \operatorname{D}_{K}^{i}. \text{ Therefore } \left(\operatorname{Cor}_{K}(1)\right)^{c} \neq \operatorname{D}_{K}^{f}. \text{ By Proposition 3.2.4,}$ $\operatorname{D}_{K}^{f} \subseteq \left(\operatorname{Cor}_{K}(1)\right)^{c}. \text{ Hence } \left(\operatorname{Cor}_{K}(1)\right)^{c} \cap \operatorname{D}_{K}^{i} \neq \emptyset.$

Case 1: $(\operatorname{Cor}_K(1))^C \cap \operatorname{D}_K^i$ has no lower bound in D_K^i . Let $y \in \operatorname{D}_K^i$ be arbitrary. Then there exists a $z \in (\operatorname{Cor}_K(1))^C \cap \operatorname{D}_K^i$ such that z < y. Thus $\infty < 1+z \le 1+y$. Then $y \in (\operatorname{Cor}_K(1))^C$. Therefore $\operatorname{D}_K^i \subseteq (\operatorname{Cor}_K(1))^C$, so $\operatorname{D}_K^f \cup \operatorname{D}_K^i \subseteq \operatorname{D}_K^f \cup (\operatorname{Cor}_K(1))^C = (\operatorname{Cor}_K(1))^C \subseteq K \setminus \{\infty\}$. Thus $K \setminus \{\infty\} = (\operatorname{Cor}_K(1))^C$. Hence $\operatorname{Cor}_K(1) = \{\infty\}$, a contradiction.

Case 2: $(\operatorname{Cor}_{K}(1))^{C} \bigcap \operatorname{D}_{K}^{i}$ has a lower bound in D_{K}^{i} . Since $(\operatorname{Cor}_{K}(1))^{C} \bigcap \operatorname{D}_{K}^{i} \subseteq K$ and K is complete, $(\operatorname{Cor}_{K}(1))^{C} \bigcap \operatorname{D}_{K}^{i}$ has a greatest lower bound. Let $\alpha = \inf((\operatorname{Cor}_{K}(1))^{C} \bigcap \operatorname{D}_{K}^{i})$. Then $\alpha > \infty$. We claim that α is an upper bound of $\operatorname{Cor}_{K}(1)$. To prove this claim, suppose not. Then there exists a $v \in \operatorname{Cor}_{K}(1)$ such that $\alpha < v$. If $\alpha \in ((\operatorname{Cor}_{K}(1))^{C}$, then $\infty < \alpha + 1 \leqslant v + 1$, a contradiction. Thus $\alpha \notin (\operatorname{Cor}_{K}(1))^{C}$. Since $\alpha = \inf((\operatorname{Cor}_{K}(1))^{C} \bigcap \operatorname{D}_{K}^{i}$, there exists a $v \in \operatorname{Cor}_{K}(1)^{C} \bigcap \operatorname{D}_{K}^{i}$ such that $\alpha < v < v$. Then $\infty < 1 + \alpha \leqslant u + 1 \leqslant v + 1 = \infty$, a contradiction. Hence we have the claim. Since $\operatorname{Cor}_{K}(1) \subseteq K$ and $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound. Let $v \in \operatorname{Cor}_{K}(1)$ Then $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound. Let $v \in \operatorname{Cor}_{K}(1)$ Then $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound. Let $v \in \operatorname{Cor}_{K}(1)$ Then $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound. Let $v \in \operatorname{Cor}_{K}(1)$ Then $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound. Let $v \in \operatorname{Cor}_{K}(1)$ Then $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound. Let $v \in \operatorname{Cor}_{K}(1)$ Then $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound. Therefore $v \in \operatorname{Cor}_{K}(1)$ has a least upper bound.

Subcase 2.1: $\beta < \alpha$. Then $\infty < \beta < \alpha$. If there exists a teK such that $\beta < t < \alpha$. Then $\infty < t$ and t+1 $\neq \infty$, so te $(\text{Cor}_K(1))^C \cap D_K^i$. Thus $\alpha < t$, a contradiction. Therefore there does not exist a teK such that $\beta < t < \alpha$(*)

 $\underline{\text{Subcase 2.1.1:}} \quad \alpha s < \alpha. \quad \text{By (*), } \alpha s \leqslant \beta < \alpha. \quad \text{Therefore}$ $\alpha \leqslant \beta s^{-1} < \alpha s^{-1}, \text{ so } \beta < \alpha \leqslant \beta s^{-1}. \quad \text{Thus } \beta s^{-1} + 1 \neq \infty. \quad \text{Then } \beta + s \neq \infty$ which implies that $1 + \beta^{-1} s \neq \infty$. Thus $\alpha \leqslant \beta^{-1} s$, so $\alpha s^{-1} \leqslant \beta^{-1}$. If $\beta + 1 \neq \infty, \quad \text{then } \beta \in \left(\text{Cor}_{K}(1)\right)^{C} \bigcap D_{K}^{i}. \quad \text{Therefore } \alpha \leqslant \beta,, \text{a contradiction.}$ Thus $\beta + 1 = \infty$, so $1 + \beta^{-1} = \infty$. Then $\beta^{-1} < \beta$. Therefore $\alpha s^{-1} \leqslant \beta^{-1} \leqslant \beta < \alpha$. Hence $\alpha < \alpha s$, a contradiction.

Subcase 2.1.2: $\alpha < \alpha s$. Then $\alpha s^{-1} < \alpha$ and use the same proof as in Subcase 2.1.1.

Subcase 2.2: $\beta = \alpha$.

Subcase 2.2.1: $\alpha \in (\operatorname{Cor}_K(1))^{\mathbf{C}} \cap \operatorname{D}_K^{\mathbf{i}}$. Then $\beta = \alpha \notin \operatorname{Cor}_K(1)$. Let $t \in \operatorname{D}_K^f \setminus \{1\}$. Then $\beta t \neq \beta$. Suppose that $\beta t < \beta$. Then there exists a $u \in \operatorname{Cor}_K(1)$ such that $\beta t < u < \beta$. Thus $\beta < ut^{-1}$, so $ut^{-1} + 1 \neq \infty$ which implies that $1 + u^{-1}t \neq \infty$. Therefore $\beta \leqslant u^{-1}t$, so $\beta t^{-1} \leqslant u^{-1}$. But we have that $u+1 = \infty$, this implies that $1+u^{-1} = \infty$. Thus $u^{-1} < \beta$. Therefore $\beta t^{-1} \leqslant \beta t$. Then $\beta \leqslant \beta t$, a contradiction. Therefore $\beta t^{-1} \leqslant \beta t$. Then $\beta t^{-1} \leqslant \beta t$ and use the same proof as the one just given to get a contradiction.

 that $v^{-1}w+1=\infty$. Therefore $v^{-1}w\leqslant\alpha$. Then $v^{-1}\leqslant\alpha w^{-1}$. But we have that $v+1\neq\infty$, this implies that $1+v^{-1}\neq\infty$. Thus $\alpha< v^{-1}$, it follows that $\alpha< v^{-1}\leqslant\alpha w^{-1}$. Hence $\alpha w<\alpha$, a contradiction. Therefore $\alpha w<\alpha$. Then $\alpha<\alpha w^{-1}$ and use the same proof as the one just given to get a contradiction.

Hence
$$Cor_{K}(1) = {\{\infty\}} U D_{K}^{i}$$
. #

From Theorem 3.2.5 we see that there are three type of complete ordered ∞ -skew semifields:

- (1) complete ordered ∞ -skew semifield K with $Cor_K(1) = {\infty}$,
- (2) complete ordered ∞ -skew semifield K with $Cor_{K}(1) = {\infty} D_{K}^{i}$,
- (3) complete ordered ∞-skew semifield K with Cor_K(1) = K.

Proposition 3.2.6. Let $(K,+,\cdot,\leqslant)$ be a type I ∞ -skew semifield. Then the following properties hold:

- (1) $(D_K^f,+,\cdot,\leqslant)$ is a complete ordered skew ratio semiring.
- (2) Suppose that 1+1 \neq 1. Then for every x, y ϵ D_K^i , x+y < ∞ implies that y is the unique element of the coset yD $_K^f$ such that x+y < ∞ .
- (3) Suppose that 1+1 \neq 1. Then for every y ϵ D_K^i and for every c, d ϵ D_K^f , y+c = y+d implies that c = d.
 - (4) Suppose that 1+1 \neq 1. Then for every c, d ϵ D_K^f and

for every $y \in D_K^i$, $c \neq d$ implies that $(y+c)D_K^f \cap (y+d)D_K^f = \emptyset$.

 $\underline{\text{Proof:}} \quad \text{To show (1), by Proposition 3.2.4, } (D_K^f,\leqslant) \text{ is a}$ complete ordered set. By Proposition 3.2.2 (4) and Proposition 3.2.3 (3), $(D_K^f,+,\cdot)$ is a skew ratio semiring. Hence $(D_K^f,+,\cdot,\leqslant)$ is a complete ordered skew ratio semiring.

To show (2), suppose that 1+1 \neq 1. By (1) and Theorem 2.18, $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant)$ or $(\mathbb{R}^+,+,\cdot,\leqslant_{\mathrm{opp}})$. Let $x,y\in D_K^i$ be such that $x+y<\infty$. We shall show that y is the unique element of yD_K^f such that $x+y<\infty$. Suppose not. Then there exists a $z\in(yD_K^f)\setminus\{y\}$ such that $x+z<\infty$. Thus z=yd for some $d\in D_K^f\setminus\{1\}$.

Case 1: 1 < d. Then d = 1+c for some $c \in D_K^f$. Therefore x+z $= x+yd = x+y(1+c) = x+y+yc. \qquad (*)$

Since x+y ϵ D_K^f and yc ϵ D_K^i , x+y+yc $\geqslant \infty$. Thus x+z $\geqslant \infty$, a contradiction.

Case 2: d < 1. Then 1 = d+a for some $a \in D_K^f$. Thus x+z = x(d+a)+yd= xd+xa+yd = (x+y)d+xa.(**)

Since $(x+y)d \in D_K^f$ and $xa \in D_K^i$, $(x+y)d+xa \geqslant \infty$. Thus $x+z \geqslant \infty$, a contradiction.

Hence there does not exist z ϵ (yD $_K^f$) \{y} such that x+z < ∞ .

To show (3), suppose that 1+1 \neq 1. By (1) and Theorem 2.18, $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant)$ or $(\mathbb{R}^+,+,\cdot,\leqslant_{opp})$. Let $y\in D_K^i$ and c, $d\in D_K^f$ be such that y+c=y+d. To show that c=d, suppose not. Then $c\neq d$. Without loss of generality, suppose that c< d. Then d=c+a for some $a\in D_K^f$. Thus y+c=y+d=y+(c+a)=(y+c)+a.

Since $(y+c)^{-1} > \infty$ and $a < \infty$, $(y+c)^{-1}a > \infty$. From (ii), we have that $1 > \infty$, a contradiction. Hence c = d.

To show (4), suppose that 1+1 \neq 1. By (1) and Theorem 2.18, $(D_K^f,+,\cdot,\leqslant)$ is isomorphic $(\mathbb{R}^+,+,\cdot,\leqslant)$ or $(\mathbb{R}^+,+,\cdot,\leqslant_{opp})$. Let c, d \in D_K^f be such that c \neq d. Let y \in D_K^i be arbitrary. To show that $(y+c)D_K^f \cap (y+d)D_K^f = \emptyset$, suppose not. Then $(y+c)D_K^f \cap (y+d)D_K^f \neq \emptyset$. Thus $(y+c)D_K^f = (y+d)D_K^f$. Therefore y+d = (y+c)a for some a \in D_K^f .

Case 1: c < d. Then d = c+b for some $b \in D_K^f$. Thus (y+c)a = y+d = y+(c+b) = (y+c)+b.(iii)

By $Cor_{K}(1) = \{\infty\}$ and Proposition 3.2.2 (4), $y+c \neq \infty$. From (iii), we have that $(y+c)^{-1}(y+c)a = (y+c)^{-1}(y+c)+(y+c)^{-1}b$ which implies that $a = 1 + (y+c)^{-1}b$(iv)

Since $(y+c)^{-1} > \infty$ and $b < \infty$, $(y+c)^{-1}b > \infty$. From (iv), we have that $a > \infty$, a contradiction.

Case 2: d < c. This proof is similar to the proof of Case 1. Therefore $(y+c)D_K^f \cap (y+d)D_K^f = \emptyset$. #

Theorem 3.2.7. Let $(K,+,\cdot,\leqslant)$ be a type I ∞ -skew semifield such that 1+1=1. Then $D_K^i=\emptyset$.

<u>Proof</u>: Assume that $D_K^i \neq \emptyset$. Let $x \in D_K^i$ be arbitrary. Since $(K \setminus \{\infty\}, \cdot)$ is a group, $x(K \setminus \{\infty\}) = K \setminus \{\infty\}$. Thus

 $D_K^i U D_K^f = x(D_K^f U D_K^i) = xD_K^f U xD_K^i. \qquad (*$

Ey Proposition 3.2.3 (4), $xD_K^f \subseteq D_K^i$. By (*), $D_K^f \subseteq xD_K^i$(**)

By Proposition 3.2.2 (4), zw $\in D_K^i$. By assumption, we have that $yw+zw \in D_K^i$. Then $(y+z)w \neq yw+zw$ which is a contradiction.

Case 2: There exist $x \in D_K^i$ and $y \in K \setminus \{\infty\}$ such that $x+y \notin D_K^i$. Let $a \in D_K^i$ and $b \in K \setminus \{\infty\}$ be such that $a+b \notin D_K^i$. Then $a+b \leqslant \infty$. By Proposition 3.2.2 (4), $a+b < \infty$.

Subcase 2.1: $b < \infty$. Then $\infty = \infty + b \le a + b$, a contradiction.

Subcase 2.2: ∞ < b. Then $\infty = \infty + (a+b) \le (a+b) + b = a + (b+b) = a+b$, a contradiction.

Therefore we get that $D_K^i = \emptyset$.

Theorem 3.2.8. Let $(K,+,\cdot,\leqslant)$ be a type I ∞ -skew semifield such that 1+1=1. Then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

- (1) ∞-skew semifield with the almost trivial addition of order 2.
 - (2) $(\mathbb{R}^+_{\infty}, \oplus , \cdot, \leqslant)$ where \cdot and \leqslant are the usual multiplication

and order and

$$x \oplus y = \begin{cases} \min\{x,y\} & \text{if } x \neq \infty \text{ and } y \neq \infty, \\ \\ \infty & \text{if } x = \infty \text{ or } y = \infty. \end{cases}$$

(3) ($\{2^n \mid n \in \mathbb{Z}\} \cup \{\infty\}, *., *, \leqslant$) where * and \leqslant are the usual multiplication and order and

- (4) $(\mathbb{R}^+_{\infty}, \max, \cdot, \leqslant)$.
- (5) $(\{2^n \mid n \in \mathbb{Z}\} \cup \{\infty\}, \max, \cdot, \leqslant)$.

Proof: The proof of theorem follows from Proposition 3.2.6,
Theorem 3.2.7, Theorem 2.5 and Theorem 2.6. #

Theorem 3.2.9. Let $(K, +, \cdot, \leqslant)$ be a type I ∞ -skew semifield such that $1+1 \neq 1$. Suppose that for every x, $y \in K$, $x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$. Then $(K, +, \cdot, \leqslant)$ is isomorphic to $(\mathbb{R}^+_{\infty}, +, \cdot, \leqslant)$ or $(\mathbb{R}^+_{\infty}, +, \cdot, \leqslant^*)$ where $\leqslant^* = \leqslant_{\text{opp}}$ on \mathbb{R}^+ and $x <^* \infty$ for all $x \in \mathbb{R}^+$.

Remark 3.2.10. Let $A = \{1, \infty, t\}$. Define \leq on A by $1 < \infty < t$ and define multiplication • on A by

There are two possible commutative binary operation + on A such that A is an \(\infty\)-semifield.

+	1	00	t		+				
1	8	8	®				00		
&	8	&	8		8	1			
t	۵	&	&		t		®	t	

Note that table (1) make $\{1,\infty,t\}$ into an ∞ -skew semifield with the trivial addition, table (2) make $\{1,\infty,t\}$ into an ∞ -skew semifield with the almost trivial addition.

Remark 3.2.11. Let $B_1 = \{(2^n, 0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(2^m, 1) \mid m \in \mathbb{Z}\}.$ Define + and • on B_1 by as follows:

$$z + \infty = \infty = z\infty = \infty z$$
 for all $z \in B_1$. Let

 $x, y \in \{2^n \mid n \in \mathbb{Z}\}$ be arbitrary. Define $(x,0) + (y,0) = (\min\{x,y\},0),$ $(x,1) + (y,1) = (\min\{x,y\},1),$ $(x,0) + (y,1) = \infty,$ (x,0)(y,1) = (xy,1), (y,1)(x,0) = (yx,1), (x,1)(y,1) = (xy,1),

(x,0)(y,0) = (xy,0).

Define \leq on B₁ by as follows: Let x, y ϵ {2ⁿ | n ϵ Z}} $(x,0) < \infty < (y,1),$ $(x,0) \leq (y,0) \text{ iff } x \leq y,$ $(x,1) \leq (y,1) \text{ iff } x \leq y.$

Then $(B_1,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield as is shown below.

Proof: Clearly, + and · are closed.

We shall show that + is associative. To prove this, let $(x,c_1), (y,c_2), (z,c_3) \in B_1 \text{ where } x, \ y, \ z \in \{2^n \mid n \in \mathbb{Z}\} \text{ and } c_1,c_2,c_3 \in \{0,1\}.$ We must show that $(x,c_1)+[(y,c_2)+(z,c_3)]=[(x,c_1)+(y,c_2)]+(z,c_3).$

Case 1: $c_1 = c_2 = c_3 = 0$. Then $(x,0)+[(y,0)+(z,0)] = (x,0)+(\min\{y,z\},0)$

= $(\min\{x,y,z\},0)$ and $(x,0)+(y,0)]+(z,0) = (\min\{x,y\},0)+(z,0)$

= $(\min\{x,y,z\},0)$. Thus (x,0)+[(y,0)+(z,0)] = [(x,0)+(y,0)]+(z,0).

Case 2: $c_1 = c_2 = 0$ and $c_3 = 1$. Then $(x,0)+[(y,0)+(z,1)] = (x,1)+\infty$ $= \infty$ and $[(x,0)+(y,0)]+(z,1) = (\min\{x,y\},0)+(z,1) = \infty$ so (x,0)+[(y,0)+(z,1)] = [(x,1)+(y,0)]+(z,1).

Case 3: $c_1 = c_3 = 0$ and $c_2 = 1$. Then $(x,0)+[(y,1)+(z,0)] = (x,0)+\infty$ $= \infty$ and $[(x,0)+(y,1)]+(z,0) = \infty+(z,0) = \infty$. Thus (x,0)+[(y,1)+(z,0)] = [(x,0)+(y,1)]+(z,0).

Case 4: $c_1 = 0$ and $c_2 = c_3 = 1$. Then $(x,0) + [(y,1) + (z,1)] = (x,0) + (min\{y,z\},1) = \infty$ and $[(x,0) + (y,1)] + (z,1) = \infty + (z,1) = \infty$. Thus (x,0) + [(y,1) + (z,1)] = [(x,0) + (y,1)] + (z,1).

Case 5: $c_1 = c_2 = c_3 = 1$. Then $(x,1)+[(y,1)+(z,1)] = (x,1)+(\min\{y,z\},1)$

= $(\min\{x,y,z\},1)$ and $[(x,1)+(y,1)]+(z,1) = (\min\{x,y\},1)+(z,1)$ = $(\min\{x,y,z\},1)$. Thus (x,1)+[(y,1)+(z,1)] = [(x,1)+(y,1)]+(z,1).

Case 6: $c_1 = 1$ and $c_2 = c_3 = 0$. Then $(x,1)+[(y,0)+(z,0)] = (x,1)+(\min\{y,z\},0) = \infty$ and $[(x,1)+(y,0)]+(z,0) = \infty+(z,0) = \infty$. Thus (x,1)+[(y,0)+(z,0)] = [(x,1)+(y,0)]+(z,0).

Case 7: $c_1 = c_2 = 1$ and $c_3 = 0$. Then $(x,1)+[(y,1)+(z,0)] = (x,1)+\infty$ $= \infty$ and $[(x,1)+(y,1)]+(z,0) = (\min\{x,y\},1)+(z,0) = \infty$. Thus (x,1)+[(y,1)+(z,0)] = [(x,1)+(y,1)]+(z,0).

Case 8: $c_1 = c_3 = 1$ and $c_2 = 0$. Then $(x,1) + [(y,0) + (z,1)] = (x,1) + \infty = \infty$ and $[(x,1) + (y,0)] + (z,1) = \infty + (z,1) = \infty$. Thus (x,1) + [(y,0) + (z,1)] = [(x,1) + (y,0)] + (z,1).

We shall show that • is associative. To prove this, let $(x,c_1),(x,c_2),(x,c_3) \in B_1 \setminus \{\infty\}$. Then $x,y,z \in \{2^n \mid n \in \mathbb{Z}\}$ and $c_1,c_2,c_3 \in \{0,1\}$.

Case 1: $c_1 = c_2 = c_3 = 0$. Then (x,0)[(y,0)(z,0)] = (x,0)(yz,0)= (xyz,0) and [(x,0)(y,0)](z,0) = (xy,0)(z,0) = (xyz,0). Thus (x,0)[(y,0)(z,0)] = [(x,0)(y,0)](z,0).

Case 2: $c_1 = c_2 = 0$ and $c_3 = 1$. Then (x,0)[(y,0)(z,1)] = (x,0)(yz,1)= (xyz,1) and [(x,0)(y,0)](z,1) = (xy,0)(z,1) = (xyz,1). Thus (x,0)[(y,0)(z,1)] = [(x,0)(y,0)](z,1).

Case 3: $c_1 = c_3 = 0$ and $c_2 = 1$. Then (x,0)[(y,1)(z,0)] = (x,0)(yz,1)= (xyz,1) and [(x,0)(y,1)](z,0) = (xy,1)(z,0) = (xyz,1). Thus (x,0)[(y,1)(z,0)] = [(x,0)(y,1)](z,0). Case 4: $c_1 = 0$ and $c_2 = c_3 = 1$. Then (x,0)[(y,1)(z,1)] = (z,0)(yz,0)= (xyz,0) and [(x,0)(y,1)](z,1) = (xy,1)(z,1) = (xyz,0). Thus (x,0)[(y,1)(z,1)] = [(x,0)(y,1)](z,1). Case 5: $c_1 = 1$ and $c_2 = c_3 = 0$. Then (x,1)[(y,0)(z,0)] = (x,1)(yz,0)= (xyz,1) and [(x,1)(y,0)](z,0) = (xy,1)(z,0) = (xyz,1). Thus (x,1)[(y,0)(z,0)] = [(x,1)(y,0)](z,0). Case 6: $c_1 = c_2 = 1$ and $c_2 = 0$. Then (x,1)[(y,0)(z,1)] = (x,1)(yz,1)= (xyz,0) and [(x,1)(y,0)](z,1) = (xy,1)(z,1) = (xyz,0). Thus (x,1)[(y,0)(z,1)] = [(x,1)(y,0)](z,1). $c_1 = c_2 = 1$ and $c_3 = 0$. Then (x,1)[(y,1)(z,0)] = (x,1)(yz,1)= (xyz,0) and [(x,1)(y,1)](z,0) = (xy,0)(z,0) = (xyz,0). Thus (x,1)[(y,1)(z,0)] = [(x,1)(y,1)](z,0). Case 8: $c_1 = c_2 = c_3 = 1$. Then (x,1)[(y,1)(z,1)] = (x,1)(yz,0)= (xyz,1) and [(x,1)(y,1)](z,1) = (xy,0)(z,1) = (xyz,1). Thus (x,1)[(y,1)(z,1)] = [(x,1)(y,1)](z,1). We shall show that $B_1 \setminus \{\infty\}$ is distributive. To prove this, let $(x,c_1),(y,c_2),(z,c_3) \in B_1 \setminus \{\infty\}$ be arbitrary. Then $x,y,z \in \{2^n \mid n \in \mathbb{Z}\}$ and $c_1, c_2, c_3 \in \{0, 1\}$. Case 1: $c_1 = c_2 = c_3 = 0$. Then $(x,0)[(y,0)+(z,0)] = (x,0)(\min\{y,z\},0)$ = $(\min\{xy,xz\},0)$ and (x,0)(y,0)+(x,0)(z,0) = (xy,0)+(xz,0)= $(\min\{xy,xz\},0)$. Thus (x,0)[(y,0)+(z,0)] = (x,0)(y,0)+(x,0)(z,0). Case 2: $c_1 = c_2 = 0$ and $c_3 = 1$. Then $(x,0)[(y,0)+(z,1)] = (x,0)^{\infty} = \infty$

and $(x,0)(y,0)+(x,0)(z,1) = (xy,0)+(xz,1) = \infty$. Thus

(x,0)[(y,0)+(z,1)] = (x,0)(y,0)+(x,0)(z,1).

Case 3: $c_1 = c_3 = 0$ and $c_2 = 1$. Then $(x,0)[(y,1)+(z,0)] = (x,0)^{\infty} = ^{\infty}$ and $(x,0)(y,1)+(x,0)(z,0) = (xy,1)+(xz,0) = ^{\infty}$. Thus (x,0)[(y,0)+(z,1)] = (x,0)(y,0)+(x,0)(z,1).

Case 4: $c_1 = 0$ and $c_2 = c_3 = 1$. Then $(x,0)[(y,1)+(z,1)] = (x,0)(\min\{y,z\},1) = (\min\{xy,xz\},1)$ and (x,0)(y,1)+(x,0)(z,1)= $(xy,1)+(xz,1) = (\min\{xy,xz\},1)$. Thus (x,0)[(y,1)+(z,1)]= (x,0)(y,1)+(x,0)(z,1).

Case 5: $c_1 = 1$ and $c_2 = c_3 = 0$. Then $(x,1)[(y,0)+(z,0)] = (x,1)(\min\{y,z\},0) = (\min\{xy,xz\},1)$ and $(x,1)(y,0)+(x,1)(z,0) = (xy,1)+(xz,1) = (\min\{xy,xz\},1)$. Thus (x,1)[(y,0)+(z,0)] = (x,1)(y,0)+(x,1)(z,0).

Case 6: $c_1 = c_3 = 1$ and $c_2 = 0$. Then $(x,1)[(y,0)+(z,1)] = (x,1)^{\infty} = ^{\infty}$ and $(x,1)(y,0)+(x,1)(z,1) = (xy,1)+(xz,0) = ^{\infty}$. Thus (x,1)[(y,0)+(z,1)] = (x,1)(y,0)+(x,1)(z,1).

Case 7: $c_1 = c_2 = 1$ and $c_3 = 0$. Then $(x,1)[(y,1)+(z,0)] = (x,1)^{\infty} = ^{\infty}$ and $(x,1)(y,1)+(x,1)(z,0) = (xy,0)+(xz,1) = ^{\infty}$. Thus (x,1)[(y,1)+(z,0)] = (x,1)(y,1)+(x,1)(z,0).

Case 8: $c_1 = c_2 = c_3 = 1$. Then $(x,1)[(y,1)+(z,1)] = (x,1)(\min\{y,z\},1)$ = $(\min\{xy,xz\},0)$ and (x,1)(y,1)+(x,1)(z,1) = (xy,0)+(xz,0)= $(\min\{xy,xz\},0)$. Thus (x,1)[(y,1)+(z,1)] = (x,1)(y,1)+(x,1)(z,1)Hence $B_1 \setminus \{\infty\}$ is distributive.

We shall show that $(B_1 \setminus \{\infty\}, \cdot)$ is a group. To prove this, let $(x,c) \in B_1 \setminus \{\infty\}$ be arbitrary. Now, we have that $(1,0), (x^{-1},c) \in B_1 \setminus \{\infty\}$.

Case 1: c = 0. Then (x,0)(1,0) = (x,0) = (1,0)(x,0) and $(x,0)(x^{-1},0) = (1,0) = (x^{-1},0)(x,0)$.

Case 2: c = 1. Then (x,1)(1,0) = (x,1) = (1,0)(x,1) and $(x,1)(x^{-1},1) = (1,0) = (x^{-1},1)(x,1)$.

Thus (1,0) is the identity of $B_1 \setminus \{\infty\}$ and (x^{-1},c) is an inverse of (x,c). Since • is associative, $(B_1 \setminus \{\infty\}, \bullet)$ is a group.

We shall show that for every $(x,c),(y,d) \in B_1$, $(x,c) \leqslant (y,d)$ implies that $(x,c)+(z,b) \leqslant (y,d)+(z,b)$ and $(x,c)(z,b) \leqslant (y,d)(z,b)$ for all $(z,b) \leqslant \infty$. To prove this, let $(x,c),(y,d) \in B_1$ be such that $(x,c) \leqslant (y,d)$. Let $(z,b) \leqslant \infty$. If $(z,b) = \infty$, then we are done. Suppose that $(z,b) < \infty$. Then b=0. If $(x,c) = \infty$ or $(y,d) = \infty$, then we are done. Suppose that $(x,c),(y,d) \in B_1 \setminus \{\infty\}$.

Case 1: c = 0. Then d = 0 or d = 1

Subcase 1.1: d = 0. Then $x \le y$.

 $\underline{\text{Subcase 1.1.1:}} \quad x \leqslant y \leqslant z. \quad \text{Then } (x,0) + (z,0) = \\ (\min\{x,z\},0) = (x,0) \text{ and } (y,0) + (z,0) = (\min\{y,z\},0) = (y,0). \quad \text{Thus} \\ (x,0) + (z,0) \leqslant (y,0) + (z,0). \quad \text{Now, we have that } (x,0)(z,0) = (xz,0) \\ \text{and } (y,0)(z,0) = (yz,0). \quad \text{It follows from } xz \leqslant yz \text{ that} \\ (x,0)(z,0) \leqslant (y,0)(z,0). \end{aligned}$

 $\underline{\text{Subcase 1.1.2}} : \quad x \leqslant z \leqslant y. \quad \text{Then } (x,0) + (z,0) = \\ (\min\{x,z\},0) = (x,0) \text{ and } (y,0) + (z,0) = (\min\{y,z\},0) = (z,0). \quad \text{Thus} \\ (x,0) + (z,0) \leqslant (y,0) + (z,0). \quad \text{The proof that } (x,0)(z,0) \leqslant (y,0)(z,0) \text{ is} \\ \text{similar to the one given in Subcase 1.1.1}.$

Subcase 1.1.3: $z \leqslant x \leqslant y$. This proof is similar to the proof of Subcase 1.1.1.

Subcase 1.2: d = 1. Then $(x,0)+(z,0) = (\min\{x,z\},0)$ and $(y,1)+(z,0) = \infty$. Thus $(x,0)+(z,0) \leqslant (y,1)+(z,0)$. Now, we have that (x,0)(z,0) = (xz,0) and (y,1)(z,0) = (yz,1). Thus $(x,0)(z,0) \leqslant (y,1)(z,0)$.

Case 2: c = 1. Then d = 1. Therefore $x \le y$. Then (x,1)+(z,0) = (y,1)+(z,0). Thus $(x,1)+(z,0) \le (y,1)+(z,0)$. Now, we have that (x,1)(z,0) = (xz,1) and (y,1)(z,0) = (yz,1). It follows from $xz \le yz$ that $(x,1)(z,0) \le (y,1)(z,0)$.

Lastly, a proof semilar to the one given in Remark 3.1.8 shows that B₁ is a complete. #

The proof of the following remarks is similar to the proof of Remark 3.2.11.

Remark 3.2.12. Let $B_2 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(2^m,1) \mid m \in \mathbb{Z}\}$. Define + and \cdot on B_2 as in Remark 3.2.11 and define \leq on B_2 by as follows: Let x, $y \in \{2^n \mid n \in \mathbb{Z}\}$. Define

$$(x,0) < \infty < (y,1),$$

 $(x,0) \le (y,0) \text{ iff } x \le y,$
 $(x,1) \le (y,1) \text{ iff } y \le x.$

Then $(B_2,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.13. Let $B_3 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(2^m,1) \mid m \in \mathbb{Z}\}$. Define • and \leq as in Remark 3.2.11. Let x, y $\in \{2^n \mid n \in \mathbb{Z}\}$. Define + on B_3 by follows:

$$(x,0)+(y,0) = (\max\{x,y\},0),$$

 $(x,1)+(y,1) = (\max\{x,y\},1),$
 $(x,0)+(y,1) = \infty.$

Then $(B_3,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.14. Let $B_4 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(2^m,1) \mid m \in \mathbb{Z}\}$. Define + and \cdot on B_4 as om Remark 3.2.13 and define \leqslant on B_4 as in Remark 3.2.12. Then $(B_4,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.15. Let $C_1 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(\sqrt{2^m},1) \mid m \in \mathbb{Z} \text{ is odd}\}$. Let x_1 , $x_2 \in \{2^n \mid n \in \mathbb{Z}\}$ and let y_1 , $y_2 \in \{\sqrt{2^m} \mid m \in \mathbb{Z} \text{ is odd}\}$. Define + and \cdot on C_1 as follows:

$$(x_{1},0)+(x_{2},0) = (\min\{x,y\},0),$$

$$(y_{1},0)+(y_{2},0) = (\min\{x,y\},0),$$

$$(x_{1},0)+(y_{1},0) = ^{\infty},$$

$$(x_{1},0)(x_{2},0) = (x_{1}x_{2},0),$$

$$(x_{1},0)(y_{1},1) = (x_{1}y_{1},1),$$

$$(y_{1},1)(x_{1},0) = (y_{1}x_{1},1),$$

$$(y_{1},1)(y_{2},1) = (y_{1}y_{2},0) \text{ and }$$

$$z+^{\infty} = ^{\infty} = z^{\infty} = ^{\infty}z \text{ for all } z \in C_{1}.$$

Define < on C₁ by as follows:

$$(x_1,0) < \infty < (y_1,1),$$

 $(x_1,0) \le (x_2,0) \text{ iff } x_1 \le x_2,$
 $(y_1,1) \le (y_2,1) \text{ iff } y_1 \le y_2.$

Then $(C_1,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifeild.

Remark 3.2.16. Let $C_2 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(\sqrt{2^m},1) \mid m \in \mathbb{Z} \text{ is odd}\}$. Define + and \cdot on C_2 as in Remark 3.2.15. Let x_1 , $x_2 \in \{2^n \mid n \in \mathbb{Z}\}$ and let y_1 , $y_2 \in \{\sqrt{2^m} \mid m \in \mathbb{Z} \text{ is odd}\}$. Define \leq on C_2 as follows:

$$(x_1,0) < \infty < (y_1,1),$$

 $(x_1,0) \le (x_2,0) \text{ iff } x_1 \le x_2,$
 $(y_1,1) \le (y_2,1) \text{ iff } y_2 \le y_1.$

Then $(C_2,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.17. Let $C_3 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(\sqrt{2^m},1) \mid m \in \mathbb{Z} \text{ is odd}\}.$ Define • and \leq on C_3 as in Remark 3.2.15. Let x_1 , $x \in \{2^n \mid n \in \mathbb{Z}\}$ and let y_1 , $y_2 \in \{\sqrt{2^m} \mid m \in \mathbb{Z} \text{ is odd}\}.$ Define + on C_3 as follows:

$$(x_1,0)+(x_2,0) = (\max\{x_1,x_2\},0),$$
 $(y_1,1)+(y_2,1) = (\max\{y_1,y_2\},1),$
 $(x_1,0)+(y_1,1) = \infty$ and
 $z+\infty = \infty$ for all $z \in C_3$.

Then $(C_3,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.18. Let $C_4 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(\sqrt{2^m},1) \mid m \in \mathbb{Z} \text{ is odd}\}$. Define + and • on C_4 as in Remark 3.2.17 and define \leqslant on C_4 as in Remark 3.2.16. Then $(C_4,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.19. Let $E_1 = (IR^+ \times \{0\}) \cup \{\infty\} \cup (IR^+ \times \{1\})$. Let $x, y \in IR^+$. Define + and \cdot by :

$$(x,0)+(y,0) = (x+y,0),$$

 $(x,0)+(y,1) = \infty,$

$$(x,1)+(y,1) = (x+y,1),$$

$$(x,0)(y,0) = (xy,0),$$

$$(x,0)(y,1) = (xy,1),$$

$$(y,1)(x,0) = (yx,1),$$

$$(x,1)(y,1) = (xy,0)$$

and $z+\infty = \infty = z^{\infty} = \infty z$ for all $z \in E_1$.

Define ≤ on E, as follows:

$$(x,0) < \infty < (y,1),$$

$$(x,0) \leqslant (y,0)$$
 iff $x \leqslant y$,

$$(x,1) \leqslant (y,1)$$
 iff $x \leqslant y$.

Then $(E_1,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.20. Let $E_2 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\})$. Define + and • on E_2 as in Remark 3.2.19. Let x, y $\in \mathbb{R}^+$. Define \leq on E_2 as follows:

$$(x,0) < \infty < (y,1)$$

$$(x,0) \leqslant (y,0)$$
 iff $x \leqslant y$,

$$(x,1) \leqslant (y,1)$$
 iff $y \leqslant x$.

Then $(E_{2},+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.21. Let $E_3 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\})$. Define + and • on E_3 as in Remark 3.2.19. Let x, y $\in \mathbb{R}^+$. Define \leq on E_3 as follows:

$$(x,0) < \infty < (y,1),$$

$$(x,0) \leqslant (y,0)$$
 iff $y \leqslant x$,

$$(x,1) \leqslant (y,1)$$
 iff $x \leqslant y$.

Then $(E_3,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.22. Let $E_4 = (IR^+ \times \{0\}) \cup \{\infty\} \cup (IR^+ \times \{1\})$. Define + and • on E_4 as in Remark 3.2.19. Let x, y $\in IR^+$. Define \leq on E_4 as follows:

$$(x,0) < \infty < (x,1),$$

 $(x,0) \leqslant (y,0) \text{ iff } y \leqslant x,$
 $(x,1) \leqslant (y,1) \text{ iff } y \leqslant x.$

Then $(E_{4},+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.23. Let $E_5 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\})$. Define • and \leq on E_5 as in Remark 3.2.19. Let x, $y \in \mathbb{R}^+$. Define + on E_5 as follows:

 $(x,0)+(y,0) = (\max\{x,y\},0),$

 $(x,1)+(y,1) = (\max\{x,y\},1),$

 $(x,0)+(y,1) = \infty$

and $z+\infty=\infty$ for all $z \in E_5$.

Then $(E_5,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.24. Let $E_6 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\})$. Define + and • on E_6 as in Remark 3.2.23 and define \leq on E_6 as in Remark 3.2.20. Then $(E_6,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.25. Let $E_7 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\})$. Define • and on E_7 as in Remark 3.2.19. Let x, $y \in \mathbb{R}^+$. Define + on E_7 as follows:

 $(x,0)+(y,0) = (\min\{x,y\},0),$

 $(x,1)+(y,1) = (\min\{x,y\},1),$

 $(x,0)+(y,1) = \infty$

and $z+\infty = \infty$ for all $z \in E_7$.

Then $(E_7,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Remark 3.2.26. Let $E_8 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\})$. Define + and • on E_8 as in Remark 3.2.25 and define \leq on E_8 as given in Remark 3.2.20. Then $(E_8,+,\cdot,\leqslant)$ is a complete ordered ∞ -skew semifield.

Proposition 3.2.27. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Then $(D_K^f,+,\cdot,\leqslant)$ is a complete ordered skew ratio semiring.

Proof: Assume that $(K,+,\cdot,\leqslant)$ is a type II ∞ -skew semifield. Then $\text{Cor}_K(1) = \{\infty\} \cup D_K^i$. By Proposition 3.2.3 (6), $(D_K^f,+,\cdot,\leqslant)$ is an ordered skew ratio semiring. By Proposition 3.2.4 (1), (D_K^f,\leqslant) is a complete. Hence $(D_K^f,+,\cdot,\leqslant)$ is a complete ordered skew ratio semiring. #

Theorem 3.2.28. Let K be a type II ∞ -skew semifield. Suppose that for every x, y ϵ K, x \leqslant y implies that x+z \leqslant y+z for all z ϵ K. If $D_K^i \neq \emptyset$, then there exists a t ϵ D_K^i such that $K = D_K^f \cup \{\infty\} \cup \{\infty$

Now, we have that $K \setminus \{ \infty \} = D_K^f \cup D_K^i = D_K^f \cup (\bigcup_{K \in D_K^i} X D_K^f)$. Since $D_K^f \cap D_K^i = \emptyset$ and $D_K^f \cap (\bigcup_{K \in D_K^i} X D_K^f) = \emptyset$ and $D_K^f \cap D_K^f = \emptyset$, $D_K^f \cap D_K^f = D_K^i$. Suppose that there are two disjoint cosets contained in D_K^i . Let $VD_K^f \cap D_K^f = D_K^f$ be distinct cosets of D_K^i . Then $V \in W$ or $V \in V$. Without loss of generality, suppose that $V \in V$. Let $V \cap V$ and let $V \in V$. Then $V \cap V$ is and let $V \in V$. Then $V \cap V$ is an $V \cap V$ in $V \cap V$. By Proposition 3.2.3, $V \cap V \cap V$ in $V \cap V$. Therefore $V \cap V \cap V$ ince $V \cap V$ ince V

Hence the number of cosets in D_K^i is 0 or 1. If the number of coset in D_K^i is 0, then $D_K^i = \emptyset$, a contradiction. Therefore the number of coset in D_K^i is 1. Thus $K = D_K^f \cup \{\infty\} \cup D_K^f$ for some ted.

Then $K = tK = tD_K^f \cup \{\infty\} \cup t^2D_K^f$ which implies that $t^2D_K^f = D_K^f$. Therefore $t^2 \in D_K^f$.

Theorem 3.2.29. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that for every x, y ϵ K, x \leqslant y implies that x+z \leqslant y+z for all z ϵ K. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\{2^n \mid n \in \mathbf{Z}\},\min,\cdot,\leqslant)$, then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

- (1) $(\{2^n \mid n \in \mathbb{Z}\} \cup \{\infty\}, *, *, \leqslant)$ as in (3) of Theorem 3.2.8.
- (2) (B₁,+,•,≼) as in Remark 3.2.11.
- (3) $(B_{2},+,\cdot,\leqslant)$ as in Remark 3.2.12.
- (4) $(C_1,+,\cdot,\leqslant)$ as in Remark 3.2.15.

(5) $(C_2,+,\cdot,\leqslant)$ as in Remark 3.2.16.

Since $rz \in D_K^i = zD_K^f$, rz = zs for some $s \in D_K^f$. From (*), we have that $(zr)^2 = z(zs)r = z^2sr \in D_K^f$.

Since $\operatorname{rz} \in \operatorname{D}_K^i = \operatorname{zD}_K^f$, $\operatorname{rz} = \operatorname{zw}$ for some $\operatorname{w} \in \operatorname{D}_K^f$. From (***), we have that $\operatorname{z}^2 r < \operatorname{z}(\operatorname{zw}) = (\operatorname{zz}) \operatorname{w} = \operatorname{z}^2 \operatorname{w}$, it follows that $r < \operatorname{w}$. Therefore $\operatorname{r+w} = r$, so $\operatorname{zr+zw} = \operatorname{zr}$. Then $\operatorname{zr+rz} = \operatorname{zr}$. Thus $\operatorname{rz}(\operatorname{zr}) + \operatorname{rz}(\operatorname{zr}) = \operatorname{zr}(\operatorname{zr})$

Finally, from (****), we have that zrzr = zzrr. Then $z^{-1}(zrzr) = z^{-1}(zzrr), \text{ hence } rzr = zrr. \text{ Therefore } (rzr)r^{-1} = (zrr)r^{-1}.$ Thus rz = zr. Therefore we get that zr = rz for all $r \in D_K^f$.

Using a proof similar to the proof of (i) we can show that $ts = st \text{ for all } s \in D_K^f. \qquad (iii)$ Now, we have that $t2 \neq t$. Then t2 > t or t2 < t.

Subcase 1.1: t2> t. Now, we shall show that the following properties hold:

- (a) $t2^{n+1} > t2^n$ for all $n \in \mathbb{Z}^+$,
- (b) For every m, $n \in \mathbf{Z}^+$, m < n implies that $t2^m < t2^n$,
- (c) For every m, n ϵ Z⁻, m < n implies that $t2^m$ < $t2^n$.

To show (a), let $n \in \mathbf{Z}^+$ be arbitrary. We shall prove this by using induction on $n \in \mathbf{Z}^+$. If n = 1, then we are done. Suppose that (a) is true for some $n-1 \geqslant 1$. Then $t2^n > t2^{n-1}$. Thus $(t2^n)2 > (t2^{n-1})2$, so $t2^{n+1} > t2^n$. Hence $t2^{n+1} > t2^n$ for all $n \in \mathbf{Z}^+$.

To show (b), let m, n ϵ \mathbf{Z}^+ be such that m < n. Then there exists an ℓ ϵ \mathbf{Z}^+ such that m+ ℓ = n. It follows from (a) that $t2^m < t2^{m+1} < \ldots < t2^{m+\ell} = t2^n.$

To show (c), let m, n \in Z be such that m < n. Now, we have that $t2^{-1} < t$. A proof similar to the proof of (a) shows that $t2^n < t2^{n+1}$ for all n \in Z . Since m < n, m+ ℓ = n for some ℓ \in Z . Thus $t2^m < t2^{m+1} < \ldots < t2^{m+\ell} = t2^n$. From (b) and (c), we have that for every m, n \in Z, m < n implies that $t2^m < t2^n$(iv)

Let $B_1 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(2^m,1) \mid m \in \mathbb{Z}\}$. Define +, • and \leq as are given in Remark 3.2.11. Define $f \colon K \to B_1$ in the following way: $f(\infty) = \infty$. Let $x \in K \setminus \{\infty\}$. If $x \in D_K^f$, then $x = 2^n$ for some $n \in \mathbb{Z}$. Define f(x) = (x,0). If $x \in D_K^i$, then by (i), x = tr for some $r \in D_K^f$. Define f(x) = (r,1). Clearly, f is well-defined and f is a bijection.

(I) To show that for every x, y ϵ K, x \leqslant y implies that $f(x) \leqslant f(y)$, let x, y ϵ K be such that x \leqslant y.

Case I.1: $x \le y < \infty$. This case is clear.

Case I.2: $x < \infty < y$. Then y = tr for some $r \in D_K^f$. Now, we have that f(x) = (x,0) and f(y) = (r,1). Therefore f(x) = (x,0) < (r,1) = f(y).

Case I.3: $\infty < x \le y$. Then by (i), x = tr for some $r \in D_K^f$ and y = ts for some $s \in D_K^f$. Thus f(x) = (r,1) and f(y) = (s,1). Then there are n, $m \in Z$ such that $r = 2^n$ and $s = 2^m$. Therefore $t2^n = x \le y = t2^m$. If m < n, then by (iv), $t2^m < t2^n$, a contradiction. Thus $n \le m$. Therefore $r = 2^n \le 2^m = s$, hence $(r,1) \le (s,1)$. Therefore $f(x) \le f(y)$.

(II) To show that f(x+y) = f(x)+f(y) for all x, y ϵ K, let x, y ϵ K be arbitrary. If $x = \infty$ or $y = \infty$, then we are done. Suppose that x, y ϵ K \{ ∞ \}.

Case II.1: $x \leqslant y < \infty$. This case is clear.

Case II.2: $x < \infty < y$. Then y = tr for some $r \in D_K^f$. Thus f(x) = (x,0) and f(y) = (r,1). Therefore $f(x)+f(y) = (x,0)+(r,1) = \infty$. Since $x < \infty < y$, $\infty \leqslant x+y \leqslant \infty$. Then $x+y = \infty$. Thus $f(x+y) = f(\infty) = \infty$. Hence f(x+y) = f(x)+f(y).

Case II.3: $\infty < x \le y$. Then $x = \text{tr for some } r \in D_K^f$ and $y = \text{ts for some } s \in D_K^f$. Thus $x+y = \text{tr+ts} = \text{t(r+s)} = \text{t(min\{r,s\})}$. Thus $f(x+y) = (\min\{r,s\},1)$. Now, we have that f(x) = (r,1) and f(y) = (s,1). Then $f(x)+f(y) = (r,1)+(s,1) = (\min\{r,s\},1)$. Hence f(x+y) = f(x)+f(y).

(III) To show that f(xy) = f(x)f(y) for all x, y ϵ K, let x, y ϵ K be arbitrary. If $x = \infty$ or $y = \infty$, then we are done. Suppose that x, y ϵ K \{ ∞ \}.

Case III.1: $x \le y < \infty$. This case is clear.

Case III.2: $x < \infty < y$. Then y = tr for some $r \in D_K^f$. By Proposition 3.2.3 (4), $xy \in D_K^i$. Thus $xy = tr_1$ for some $r_1 \in D_K^f$. By (iii), $xr = r_1$. Then $f(xy) = (r_1,1) = (xr,1) = (x,0)(r,1) = f(x)f(y)$.

Case III.3: $y < \infty < x$. This proof is similar to the proof of Case III.2.

Case III.4: $\infty < x \le y$. Then x = tr for some $r \in D_K^f$ and y = ts for some $s \in D_K^f$. By (iii), $xy = t^2rs = rs$. Therefore f(xy) = (r,0) = (r,1)(s,1) = f(x)f(y).

Therefore f is an isomorphism. Hence $(K,+,*,\leqslant)$ is isomorphic to (2).

Subcase 1.2: t2< t. Now, we shall show that the following

properties hold:

- (d) $t2^{n+1} < t2^n$ for all $n \in \mathbb{Z}^+$,
- (e) For every m, n ϵ \mathbb{Z}^+ , m < n implies that $t2^n < t2^m$,
- (f) For every m, n ϵ \mathbf{Z}^{-} , m < n implies that $t2^{n} < t2^{m}$.

To show (d), let n ϵ \mathbb{Z}^+ be arbitrary. We shall prove this by using induction on n ϵ \mathbb{Z}^+ . If n = 1, then we are done. Suppose that (d) is true for some n-1 \geqslant 1. Then $t2^n < t2^{n-1}$. Thus $(t2^n)2 < (t2^{n-1})2$, so $t2^{n+1} < t2^n$. Hence $t2^{n+1} < t2^n$ for all n ϵ \mathbb{Z}^+ .

To show (e), let m, n ϵ Z⁺ be such that m < n. Then there exists an ℓ ϵ Z⁺ such that m+ ℓ = n. From (d), we have that $t2^n = t2^{m+} < ... < t2^{m+1} < t2^m.$

To show (f), let m, n \in Z⁻ be such that m < n. Now, we have that t < t2⁻¹. A proof is similar to the proof of (d) shows that t2ⁿ⁺¹ < t2ⁿ for all n \in Z⁻. Since m < n, m+ ℓ = n for some ℓ \in Z⁺. Thus t2ⁿ = t2^{m+ ℓ} < ... < t2^{m+2} < t2^{m+1} < t2^m. From (e) and (f), we have that for every m, n \in Z, m < n implies that t2ⁿ < t2^m.(v)

Let $B_2 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\emptyset\} \cup \{(2^m,1) \mid m \in \mathbb{Z}\}$. Define +, • and \emptyset as are given in Remark 3.2.12. Define F: $K \to B_2$ in the following way: $F(\infty) = \infty$. Let $x \in K \setminus \{\infty\}$. If $x \in D_K^f$, then $x = 2^n$ for some $n \in \mathbb{Z}$. Define F(x) = (x,0). If $x \in D_K^i$, then x = tr for some $r \in D_K^f$. Define F(x) = (r,1). Clearly, F is well-defined and F is a bijection.

To show that for every x, y ϵ K, x \leqslant y implies that $F(x) \leqslant F(y)$, let x, y ϵ K be such that x \leqslant y. If x, y ϵ D_K^f , then we are done. If x $< \infty <$ y, then $F(x) < \infty <$ F(y). Suppose that $\infty <$ x \leqslant y. Then by (i), x = tr for some r ϵ D_K^f and y = ts for some s ϵ D_K^f . Thus F(x) = (r,1) and F(y) = (s,1). Then there are n, m ϵ 2 such that $r = 2^n$ and $s = 2^m$. Therefore $t2^n = x < y = t2^m$. If n < m, then

by (v), $t2^m < t2^n$, a contradiction. Therefore $m \le n$. Thus $s = 2^m < 2^n = r$. Then $(r,1) \le (s,1)$. Hence $F(x) \le F(y)$.

Using a proof similar to the one used in Subcase 1.1 we can show that F is a homomorphism. Therefore we get that F is an isomorphism. Hence $(K,+,\cdot,\leqslant)$ is isomorphic to (3).

Case 2: $z^2 = 2^N$ for some N \in \mathbb{Z}_{odd} . Then $z^2 = 2^{2m-1}$ for some m \in \mathbb{Z} . Thus $z^2(2^{2m})^{-1} = 2^{-1}$. By (i), $(z2^{-m})^2 = 2^{-1}$. Let $w = z2^{-m}$. Then $w \in D_K^i$ and $w^2 = 2^{-1}$ and $wD_K^f = z2^{-m}D_K^f = zD_K^f = D_K^i$. Now, we have that $w2 \neq w$. Then w2 > w or w < w2.

Subcase 2.1: w2 > w. Using a proof similar to the proof of (iv) in Subcase 1.1 we get that for every m, n ϵ Z, m < n implies that $w2^m < w2^n$(vi)

Let $C_1 = \{(2^n,0) \mid n \in \mathbb{Z}\} \cup \{\infty\} \cup \{(\sqrt{2^m},1) \mid m \in \mathbb{Z} \text{ is odd}\}$. Define +, • and \leqslant as are given in Remark 3.2.15. Define $g\colon K \to C_1$ in the following way: $g(\infty) = \infty$. Let $x \in K \setminus \{\infty\}$. If $x \in D_K^f$, then $x = 2^n$ for some $n \in \mathbb{Z}$. Define g(x) = (x,0). If $x \in D_K^i$, then x = wr for some $r \in D_K^f$. Then $r = 2^m$ for some $m \in \mathbb{Z}$. Define $g(x) = (\sqrt{2^{2m-1}},1)$. Clearly, g is well-defined and g is a bijection.

(I) To show that for every x, y ϵ K, x \leqslant y implies that $g(x) \leqslant g(y)$, let x, y ϵ K be such that x \leqslant y.

Case I.1: $x \leqslant y \leqslant \infty$. This case is clear.

Case I.2: $x < \omega < y$. Then y = wr for some $r \in D_K^f$. Thus $r = 2^m$ for some $m \in \mathbb{Z}$. Therefore $g(y) = (\sqrt{2^{2m-1}}, 1)$. Now, we have that $x = 2^n$ for some $n \in \mathbb{Z}$. Thus $g(x) = (2^n, 0)$. Hence $g(x) = (2^n, 0) < \omega < (\sqrt{2^{2m-1}}, 1) = g(y)$.

Case I.3: $\infty < x < y$. Then x = wr for some $r \in D_K^f$ and y = ws for some $s \in D_K^f$. Thus $r = 2^m$ for some $s \in D_K^f$. Thus $r = 2^m$ for some $m \in \mathbb{Z}$ and $s = 2^n$ for some $n \in \mathbb{Z}$. Therefore $g(x) = (\sqrt{2^{2m-1}}, 1)$ and $g(y) = (\sqrt{2^{2n-1}}, 1)$. Now, we have that $w2^m < w2^n$. If n < m, then by (vi), $w2^n < w2^n$, a contradiction. Therefore m < n, it follows that $\sqrt{2^{2m-1}} < \sqrt{2^{2n-1}}$. Hence $g(x) = (\sqrt{2^{2m-1}}, 1) < (\sqrt{2^{2n-1}}, 1) = g(y)$.

(II) To show that g(x+y) = g(x)+g(y) for all x, y ϵ K, let x, y ϵ K. If $x = \infty$ or $y = \infty$, then we are done. Suppose that x, y ϵ K \{ ∞ }.

Case II.1: x, $y \in D_K^f$. This case is clear.

Case II.2: $x \in D_K^f$ and $y \in D_K^i$. Then by Theorem 3.2.25, $x+y = \infty$. Now, we have that $x = 2^m$ for some $m \in \mathbb{Z}$ and y = wr for some $r \in D_K^f$. Then $r = 2^n$ for some $n \in \mathbb{Z}$. Thus $g(x) = (2^m, 0)$ and $g(y) = (\sqrt{2^{2n-1}}, 1)$. Thus $g(x)+g(y) = (2^m, 0)+(\sqrt{2^{2n-1}}, 1) = \infty$. Hence $g(x+y) = g(\infty) = \infty = \infty$ g(x)+g(y).

Case II.3: $x \in D_K^i$ and $y \in D_K^f$. This proof is similar to the proof of Case II.2.

Case II.4: $x \in D_K^i$ and $y \in D_K^i$. Then x = wr for some $r \in D_K^f$ and y = ws for some $s \in D_K^f$. Thus $r = 2^m$ for some $s \in \mathbb{Z}$ and $s = 2^n$ for some $s \in \mathbb{Z}$. Without loss of generality, suppose that $s \in \mathbb{Z}$. Then $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Therefore $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Therefore $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Therefore $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Then $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Therefore $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Then $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Then $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Then $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$. Then $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and $s \in \mathbb{Z}$ are $s \in \mathbb{Z}$ and

Hence g(x+y) = g(x)+g(y).

(III) To show that g(xy) = g(x)g(y) for all x, $y \in K$, for x, $y \in K$ be arbitrary. If $x = \infty$ or $y = \infty$, then we are done. Suppose that x, $y \in K \setminus \{\infty\}$.

Case III.1: x, $y \in D_K^f$. This case is clear.

Case III.2: $x \in D_K^f$ and $y \in D_K^i$. Then $x = 2^m$ for some $m \in \mathbb{Z}$ and $y = w2^n$ for some $n \in \mathbb{Z}$. Using a proof similar to the proof of (i) we can show that wd = dw for all $d \in D_K^f$. Thus $xy = w2^{m+n}$. Thus $g(xy) = (\sqrt{2^{2(m+n)-1}}, 1)$. Now, we have that $g(x) = (2^m, 0)$ and $g(y) = (\sqrt{2^{2n-1}}, 1)$. Therefore we get that $g(x)g(y) = (2^m, 0)(\sqrt{2^{2n-1}}, 1)$ $= (2^m \sqrt{2^{2n-1}}, 1) = (\sqrt{2^{2m+2n-1}}, 1)$. Hence g(xy) = g(x)g(y).

Case III.3: $x \in D_K^i$ and $y \in D_K^f$. This proof is similar to Case III.2.

Case III.4: $x \in D_K^i$ and $y \in D_K^i$. Then $x = w2^m$ for some $m \in \mathbb{Z}$ and $y = w2^n$ for some $n \in \mathbb{Z}$. Using a proof similar to the proof of (i) we can show that wb = bw for all $b \in D_K^f$. Then $xy = w^22^{m+n} = 2^{m+n-1}$. Thus $g(xy) = (2^{m+n-1}, 0)$. Now, we have that $g(x) = (\sqrt{2^{2m-1}}, 1)$ and $g(y) = (\sqrt{2^{2m-1}}, 1)$. Then $g(x)g(y) = (\sqrt{2^{2m-1}}, 1)(\sqrt{2^{2n-1}}, 1) = (\sqrt{2^{2m+2n-2}}, 0) = (\sqrt{2^{2(m+n-1)}}, 0) = (2^{m+n-1}, 0)$. Hence g(xy) = g(x)g(y).

Thus g is an isomorphism. Hence $(K,+,\cdot,\leqslant)$ is isomorphic to (4).

Subcase 2.2: w2 < w. Using a proof similar to the proof of Subcase 2.1 we get that $(K,+,\cdot,\leqslant)$ is isomorphic to (5). #

Theorem 3.2.30. Let (K,+,•,<) be a type II ∞-skew semifield.

Suppose that for every x, y ϵ K, x \leqslant y implies that x+z \leqslant y+z for all z ϵ K. If $(D_{K}^{f},+,\cdot,\leqslant)$ is isomorphic to $(\{2^{n}|n\ \epsilon\ Z\},\ \max,\cdot,\leqslant)$. Then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

- (1) $(\{2^n \mid n \in \mathbb{Z}\} \cup \{\infty\}, \max, \cdot, \leqslant).$
- (2) $(B_3,+,\cdot,\leqslant)$ as in Remark 3.2.13.
- (3) $(B_4,+,\cdot,\leqslant)$ as in Remark 3.2.14.
- (4) $(C_3,+,\cdot,\leqslant)$ as in Remark 3.2.15.
- (5) $(C_4,+,\cdot,\leqslant)$ as in Remark 3.2.16.

The proof of Theorem 3.2.30 is similar to the proof of Theorem 3.2.29.

Theorem 3.2.31. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that for every x, $y \in K$, $x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\{1\},+,\cdot,\leqslant)$. Then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

- (1) ∞-skew semifield with the almost trivial addition of order 2.
- (2) $_{\infty}$ -skew semifield with the almost trivial addition of order 3.

Proposition 3.2.32. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that for every x, y ϵ K, x \leqslant y implies that x+z \leqslant y+z for all z ϵ K and suppose that $D_K^i \neq \emptyset$. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant)$, then for every a, b ϵ D_K^i , a < a+b or for every c, d ϵ D_K^i , c+d < c.

Case 1: t < 2t. We shall show that for every a, b ϵ D_K^i , a < a+b.

Step 1.1. We shall show that for every m, n \in Z⁺, m < n implies that mt < nt. We claim that for every n \in Z⁺, nt < (n+1)t. Let n \in Z⁺. We shall prove this by using induction on n \in Z⁺. If n = 1, then we are done. Suppose that the claim is true for some n-1 \geqslant 1. Then (n-1)t < nt. Therefore (n-1)t+t \leqslant nt+t, it follows that nt \leqslant (n+1)t. If nt = (n+1)t, then n = n+1, a contradiction. Thus nt \leqslant (n+1)t, so we have the claim.

. Suppose that m, n ϵ Z are such that m < n. Then m+l = n for some l ϵ Z . Therefore mt < (m+1)t <...< (m+n)t = nt.

Step 1.2. We shall show that for every r, s ϵ Φ^+ , r < simplies that rt < st. To prove this, let r, s ϵ Φ^+ be such that r < s. Then $r = \frac{m}{n}$ and $s = \frac{p}{q}$ for some m, n, p, q ϵ Z^+ . Thus $\frac{m}{n} < \frac{p}{q}$, it follows that qm < np. By Step 1.1, qmt < npt. Therefore $\frac{m}{n}$ t < $\frac{p}{q}$ t. Hence rt < st.

Step 1.3. We shall show that $t\varphi^+$ has no lower bound in D_K^i . To prove this, suppose not. Then $t\varphi^+$ has a lower bound in D_K^i . Since K is complete and $D_K^i \subseteq K$, $t\varphi^+$ has an infimum in D_K^i . Let $z = \inf(t\varphi^+)$. Then $\infty < z$. Therefore $z \leqslant rt$ for all $r \in \varphi^+$. Thus $z \leqslant \frac{r}{2}$ t for all $r \in \varphi^+$, so $2z \leqslant rt$ for all $r \in \varphi^+$. Then 2z is a lower bound of $t\varphi^+$. Thus $2z \leqslant z$.

Similarly, $z \leqslant 2rt$ for all $r \in \mathbb{Q}^+$. It follows that $2^{-1}z \leqslant z$. Thus $z \leqslant 2z$. From (1), we have that z = 2z which implies that 1 = 2, a contradiction. Hence $t\mathbb{Q}^+$ has no lower bound in \mathbb{D}_K^i .

Step 1.4. We shall show that t < t+dt for all d ϵ D $_K^f$. Let r ϵ Q $^+$ be arbitrary. Then 1 < 1+r. By Step 1.2, t < (1+r)t = t+rt. Hence t < t+rt for all r ϵ Q $^+$.

Suppose that $d \in D_K^f$ is arbitrary. Then $dt \in D_K^i$. By Step 1.3, dt is not a lower bound of tQ^+ . Then there exists an $r \in Q^+$ such that $r_dt < dt$. Thus $t + r_dt \leqslant t + dt$. From (2) we have that t < t + dt.

Now, we shall show that for every x, y ϵ D_K^i , x < x+y. Let x, y ϵ D_K^i be arbitrary. Then x = ct and y = dt for some c, d ϵ D_K^f . Thus c^{-1} d ϵ D_K^f . By Step 1.4, t < t+ c^{-1} dt which implies that ct < ct+dt. Hence x < x+y.

Case 2: 2t < t. Using a proof similar to the one used in Case 1 we can show that x+y < x for all x, y ϵ D_K^i .

Hence, the theorem is proved. #

Theorem 3.2.33. Let (K,+,•,<) be a type II ∞-skew semifield.

Suppose that for every x, y ϵ K, x \leqslant y implies that x+z \leqslant y+z. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant)$, then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

- (1) $(\mathbb{R}^+,+,\cdot,\leqslant)$.
- (2) $(E_{1},+,\cdot,\leqslant)$ as in Remark 3.2.19.
- (3) $(E_2,+,\cdot,\leqslant)$ as in Remark 3.2.20.

Proof: Assume that $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant)$. Now, we have that $K=D_K^f\cup\{\varnothing\}\cup D_K^i$. If $D_K^i=\emptyset$, then $(K,+,\cdot,\leqslant)$ is isomorphic to (1).

Suppose that $D_K^i \neq \emptyset$. By Theorem 3.2.28, there exists a $z \in D_K^i$ such that $K = D_K^f \cup \{\infty\} \cup zD_K^f$ and $z^2 \in D_K^f$. For simplicity, we shall assume that $D_K^f = \mathbb{R}^+$. Then $z^2 = a$ for some $a \in \mathbb{R}^+$. Thus $a = b^2$ for some $b \in \mathbb{R}^+$. Therefore $z^2 = b^2$. Using a proof similar to the proof of (i) in Theorem 3.2.29 we can show that $(zb^{-1})^2 = 1$. Let $t = zb^{-1}$. Then $t \in D_K^i$ and $t^2 = 1$ and $tD_K^f = (zb^{-1})D_K^f = z(b^{-1}D_K^f)$ $= zD_K^f = D_K^i$. (*)

Using a proof similar to the proof of (i) in Theorem 3.2.29 we can show that tr = rt for all $\text{r} \in D_K^f$(**)

Now, we have that $2t \neq t$. Then either t < 2t or 2t < t.

Case 1: t < 2t. Then by the proof of Proposition 3.2.32, a < a+b for all a, $b \in D_K^i$. Let $E_1 = ((\mathbb{R}^+ \times \{1\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\}), +, \cdot, <)$ be given as in Remark 3.2.19. Define $F: K \to E_1$ in the following way: $F(\infty) = \infty$. Define F(x) = (x,0) for all $x \in D_K^f$. Let $y \in D_K^i$. By (*), y = ts for some $s \in D_K^f$. Define F(y) = (s,1). Clearly, F is well-defined and F is a bijection.

(1.1) To show that for every x, y ϵ K, x \leqslant y implies that $F(x) \leqslant F(y)$, let x, y ϵ K be such that x \leqslant y. If x = y, then we are done. Suppose that x \leqslant y.

Subcase 1.1.1: $x < y \le \infty$. This case is clear.

Subcase 1.1.2: $x \leq \infty < y$. This case is clear.

Subcase 1.1.3: $\infty < x < y$. Then x = tr for some $r \in D_K^f$ and y = ts for some $s \in D_K^f$. Thus tr < ts. If s < r, then there exists a $u \in D_K^f$ such that s+u = r. Therefore ts+tu = tr. Then ts+tu < ts and ts, $tu \in D_K^i$, a contradiction. Hence $r \leqslant s$. Therefore $(r,1) \leqslant (s,1)$. Then $F(x) \leqslant F(y)$.

This shows that for every x, y ϵ K, x \leqslant y implies that $F(x) \leqslant F(y)$.

(1.2) To show that for every x, y ϵ K, F(x+y) = F(x)+F(y) and F(xy) = F(x)F(y), let x, y ϵ K be arbitrary. If $x = \infty$ or $y = \infty$, then we are done. Suppose that x, y ϵ K $\{\infty\}$.

Subcase 1.2.1: $x \in D_K^f$ and $y \in D_K^f$. This case is clear.

Subcase 1.2.2: $x \in D_K^f$ and $y \in D_K^i$. Then by (*), y = tr for some $r \in D_K^f$. By Proposition3.2.3(7), $x+y = \infty$. Thus $F(x+y) = F(\infty)$ $= \infty$ and $F(x)+F(y) = (x,0)+(r,1) = \infty$. Hence F(x+y) = F(x)+F(y). From (**), we have that xy = txr. By Proposition 3.2.3 (4), $xy \in D_K^i$. By (*), $xy = tr_1$. Hence $xr = r_1$. Therefore we get that $F(xy) = (r_1,1) = (xr,1) = (x,0)(r,1) = F(x)F(y)$.

Subcase 1.2.3: $x \in D_K^i$ and $y \in D_K^f$. This proof is similar to the proof of Subcase 1.2.2.

F(x+y) = (r+s,1) = (r,1)+(s,1) = F(x)+F(y). By (**), $xy = t^2rs = rs$ Therefore F(xy) = (rs,0) = (r,1)(s,1) = F(x)F(y).

Therefore F is an isomorphism. Hence $(K,+,\cdot,\leqslant)$ is isomorphic to (2).

Case 2: 2t < t. Then by the proof of Proposition 3.2.32, a+b < a for all a, b \in D_K^i . Let $E_2 = ((R^+ \times \{0\}) \cup \{\infty\} \cup (R^+ \times \{1\}), +, \cdot, \leqslant)$ be given as in Remark 3.2.20. Using a proof similar to the proof of Case 1 we can show that $(K,+,\cdot,\leqslant)$ is isomorphic to (3).

Hence, the theorem is proved. #

Theorem 3.2.34. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that for every x, y \in K, x \leqslant y implies that x+z \leqslant y+z for all z \in K. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,+,\cdot,\leqslant_{opp})$, then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

- (1) $(\mathbb{R}^+_{\infty},+,\cdot,\leqslant^*)$ where + and \cdot are the usual addition and multiplication, respectively and $\leqslant^* = \leqslant_{\mathrm{opp}}$ on \mathbb{R}^+ and $x < \infty$ for all $x \in \mathbb{R}^+$.
 - (2) $(E_3,+,\cdot,\leqslant)$ as in Remark 3.2.21.
 - (3) $(E_4,+,\cdot,\leqslant)$ as in Remark 3.2.22.

The proof of Theorem 3.2.34 is similar to the proof of Theorem 3.2.33.

<u>Proposition 3.2.35</u>. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that for every x, y ϵ K, x \leqslant y implies that x+z \leqslant y+z for

all $z \in K$ and suppose that $D_K^i \neq \emptyset$. If $(D_K^f, +, \cdot, \leqslant)$ is isomorphic to $(R^+, \max, \cdot, \leqslant)$, then for every a, b $\in D_K^i$, a \leqslant a+b or for every c, d $\in D_K^i$, c+d \leqslant d.

<u>Proof</u>: Assume that $D_K^i \neq \emptyset$ and suppose that $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\max,\cdot,\leqslant)$. By Theorem 3.2.28, $D_K^i = tD_K^f$ and $t^2 = 1$ for some $t \in D_K^i$. For simplicity, we shall assume that $D_K^f = \mathbb{R}^+$. Now, we have that $2t \neq t$. Then either 2t < t or t < 2t.

Case 1: t < 2t. We shall show that for every a, b ϵ D_K^i , a \leqslant a+b. First, we shall show that $t \leqslant t+dt$ for all $d \epsilon$ D_K^f . Let $d \epsilon$ D_K^f be arbitrary.

Subcase 1.1: $d \leq 1$. Then t = (1+d)t = t+dt.

Subcase 1.2: 1 < d. Then there exists an m ϵ \mathbf{Z}^+ be such that $2^m \leqslant d < 2^{m+1}$. Since $2^m t < 2^{m+1} t$, $2^m t + dt \leqslant 2^{m+1} t + dt$. Then $(2^m + d)t \leqslant (2^{m+1} + d)t$. Thus $dt \leqslant 2^{m+1} t$(1)

Let $2^{-(m+1)} \leqslant b \leqslant 2^{-m}$ be arbitrary. Then $2^m \leqslant 2^{2m+1} b \leqslant 2^{m+1}$.

From (1), we have that $2^{2m+1} bt \leqslant 2^{m+1} t$, it follows that $bt \leqslant 2^{-m} t$.

Now, we have that $2^{-(m+1)} < d^{-1} < 2^{-m}$. By (2), $d^{-1}t \leqslant 2^{-m}t$, so $d^{-1}t < t$. Therefore t < dt. Hence $t = t + t \leqslant t + dt$.

Therefore we get that t \leqslant t+dt for all d ϵ $D_K^f.$ Now, we shall show that a \leqslant a+b for all a, b ϵ $D_K^i.$ Let a, b ϵ D_K^i be arbitrary. Then a = rt for some r ϵ D_K^f and b = st for some s ϵ $D_K^f.$ Since $r^{-1}s \; \epsilon \; D_K^f, \; t \; \leqslant \; t+r^{-1}st. \;\; \text{Then rt} \; \leqslant \; rt+st. \;\; \text{Hence a} \; \leqslant \; a+b.$

Case 2: 2t < t. We shall show that for every c, d ϵ D_K^i , c+d \leqslant d.

We shall first show that t+ut \leqslant ut for all u \in D_K^f . Let u \in D_K^f be arbitrary.

Subcase 2.1: $1 \le u$. Then t+ut = (1+u)t = ut.

Therefore we get that t+ut \leqslant ut for all u ϵ $D_K^f.$ Now, we shall show that c+d \leqslant d for all c, d ϵ $D_K^i.$ Let c, d ϵ D_K^i be arbitrary arbitrary. Then c = rt for some r ϵ D_K^f and d = st for some s ϵ $D_K^f.$ Since $r^{-1}s$ ϵ D_K^f , t+r^{-1}st \leqslant r^{-1}st. Then rt+st \leqslant st. Hence c+d \leqslant d. $_{\#}$

Proposition 3.2.36. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that for every x, $y \in K$, $x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$ and suppose that $D_K^i \neq \emptyset$. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\min,\cdot,\leqslant)$, then for every a, $b \in D_K^i$, $a+b \leqslant a$ or for every c, $d \in D_K^i$, $c \leqslant c+d$.

The proof of Proposition 3.2.36 is similar to the proof of Proposition 3.2.35.

Theorem 3.2.37. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that $x, y \in K$, $x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\max,\cdot,\leqslant)$, then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

(1) $(\mathbb{R}^+, \max, \cdot, \leqslant)$.

- (2) $(E_5,+,\cdot,\leqslant)$ as in Remark 3.2.23.
- (3) $(E_6,+,\cdot,\leqslant)$ as in Remark 3.2.24.

<u>Proof</u>: Assume that $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\min,\cdot,\leqslant)$. Now, we have that $K=D_K^f\cup\{\varpi\}\cup D_K^i$. If $D_K^i=\emptyset$, then $(K,+,\cdot,\leqslant)$ is isomorphic to (1).

Suppose that $D_K^i \neq \emptyset$. For simplicity, we shall assume that $D_K^f = \mathbb{R}^+$. By Theorem 3.2.28, there exists a t ϵ D_K^i such that $D_K^f = tD_K^f$ and $t^2 = 1$ for some t ϵ D_K^i . Using a proof similar to the proof of (i) in Theorem 3.2.29 we can show that tr = rt for all r ϵ D_K^f(*) Now, we have that $2t \neq t$. Then either t < 2t or 2t < t.

Case 1: t < 2t. Then by the proof of Proposition 3.2.30, a \leqslant a+b for all a, b ϵ D_K^i .

Let $E_5 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{1\})$ be given as in Remark 3.2.23. Define $F: K \to E_5$ in the following way: $F(\infty) = \infty$. F(x) = (x,0) for all $x \in D_K^f$. Let $y \in D_K^i$. Then y = tr for some $r \in D_K^f$. Define F(y) = (r,1). Clearly. F is well-defined and F is a bijection.

(1.1) To show that for every x, y ϵ K, F(x+y) = F(x)+F(y) and F(xy) = F(x)F(y), let x, y ϵ K be arbitrary. If $x = \infty$ or $y = \infty$, then we are done. Suppose that x, y ϵ K \{ ∞ \}.

Subcase 1.1.1: $x \in D_K^f$ and $y \in D_K^f$. This case is clear.

 $xy = tr_1$. Hence $xr = r_1$. Therefore we get that $F(xy) = (r_1, 1)$ = (xr, 1) = (x, 0)(r, 1) = F(x)F(y).

Subcase 1.1.3: $x \in D_K^i$ and $y \in D_K^f$. This proof is similar to the proof of Subcase 1.1.2.

Subcase 1.1.4: $x \in D_K^i$ and $y \in D_K^i$. Then x = tr for some $r \in D_K^f$ and y = ts for some $s \in D_K^f$. Then x+y = t(r+s). Without loss of generality, suppose that $r \leqslant s$. Thus x+y = ts. Then $F(x+y) = (s,1) = (\max\{r,s\},1) = (r,1)+(s,1) = F(x)+F(y)$. By (*), $xy = t^2rs = rs$. Therefore F(xy) = (rs,0) = (r,1)(s,1) = F(x)F(y).

(1.2) To show that for every x, y ϵ K, x \leqslant y implies that F(x) < F(y), let x, y ϵ K be such that x < y. If x = y, then we are done. Suppose that x < y.

Subcase 1.2.1: $x < y \le \infty$. This case is clear.

Subcase 1.2.2: $x \leq \infty < y$. This case is clear.

Subcase 1.2.3: $\infty \leqslant x < y$. If $x = \infty$, then by Subcase 1.2.2 we are done. Suppose that $\infty < x < y$. Then x = tr for some $r \in D_K^f$ and y = ts for some $s \in D_K^f$. Thus tr < ts. If s < r, then s + r = r. Thus ts + tr = tr. Therefore ts + tr < tr and tr, $ts \in D_K^i$ which contradicts (**). Then $r \leqslant s$, so $(r,1) \leqslant (s,1)$. Hence $F(x) \leqslant F(y)$.

Therefore we get that F is an isomorphism. Hence $(K,+,\cdot,\leqslant)$ is isomorphic to (2).

Case 2: 2t < t. Using a proof similar to the proof of Case 1 we can show that $(K,+,\cdot,\leqslant)$ is isomorphic to (3).

Theorem 3.2.38. Let $(K,+,\cdot,\leqslant)$ be a type II ∞ -skew semifield. Suppose that x, $y \in K$, $x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$. If $(D_K^f,+,\cdot,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\min,\cdot,\leqslant)$, then $(K,+,\cdot,\leqslant)$ is isomorphic to exactly one of the following ∞ -skew semifields:

- (1) $(\mathbb{R}_{m}^{+}, +, \cdot, \leq)$ as in (2) of Theorem 3.2.8.
- (2) $(E_7,+,\cdot,\leqslant)$ as in Remark 3.2.25.
- (3) $(E_8,+,\cdot,\leqslant)$ as in Remark 3.2.26.

The proof of Theorem 3.2.38 is similar to the proof of Theorem 3.2.37.

We cannot classify type III ∞-skew semifields. We close this section by giving some examples.

Example 3.2.39. Let $H_1 = (\{2^n \mid n \in \mathbb{Z}\} \times \{0\}) \cup \{\infty\}$. Define +, • and \leq as follows: Let x, y $\in \{2^n \mid n \in \mathbb{Z}\}$ be arbitrary. Define

$$(x,0)+(y,0) = \infty,$$

$$(x,0)+\infty = \infty.$$

Define $(x,0)(y,0) = \infty$,

$$(x,0)^{\infty} = \infty = \infty(x,0).$$

Define $(x,0) < \infty$,

$$(x,0) \leqslant (y,0)$$
 iff $x \leqslant y$.

Then $(H_1,+,\cdot,\leqslant)$ is a type III ∞ -skew semifield.

Example 3.2.40. Let $H_2 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\}$. Define +, • and \leq on H_2 is as in Example 3.2.24.

Then $(H_2,+,\cdot,\leqslant)$ is a type III ∞ -skew semifield.

Example 3.2.41. Let $H_3 = (\{2^n \mid n \in \mathbb{Z}\} \times \{0\}) \cup \{\infty\} \cup (\{2^n \mid n \in \mathbb{Z}\} \times \{1\})$.

Define • and \leq on H_3 as are given in Remark 3.2.11. Define + on H_3 as follows:

Let x, y ε {2ⁿ|n ε Z} be arbitrary. Define $(x,0)+(y,0) = \infty,$ $(x,0)+(y,1) = \infty,$ $(x,1)+(y,1) = \infty$ and $x+\infty = \infty$ for all $z \varepsilon H_3$. Then $(H_3,+,\cdot,\leqslant)$ is a type III ∞ -skew semifield.

Example 3.2.42. Let $H_4 = (\mathbb{R}^+ \times \{0\}) \cup \{\infty\} \cup (\mathbb{R}^+ \times \{\infty\})$. Define +, • and < on H_4 as in Example 3.2.26.

Then (H₄,+,•,≼) is a type III ∞-skew semifield.

Example 3.2.43. An ordered ∞-skew semifield with the trivial addition of order 2 and 3 are type III ∞-skew semifield.

ทุนยวทยทรพยากร ฟาลงกรณ์มหนวิทยาลัย