CHAPTER 1II

SKEW RATIO SEMIRINGS

} ,’%,fy complete ordered skew ratio

cla551fy those complete

In this chapter,
semirings up to isomo
; -perty that 1+1 = 1.

ordered skew ratio

Then we shall consi

Definition 2.1. : J 1ﬁ: '~“¢' ed an ordered skew ratio

z €D,

for all 2 e 'D.

If equatlons (1) and (ii) hold for an order on D, then we say

e ft gn'gnqq%w SR A Faipitcasion.
M AR THARAINES @"ng- s

has a m imum element or a minimum element iff lD|

Proposition 2.3. (D,+,*,<) is an ordered skew ratio semiring iff

(D,+,° op ) is an ordered skew ratio semiring.
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Proof: Assume that (D,+,°*,<) is an ordered skew ratio
semiring. By Remark 1.16, (D,+,<) is an ordered semigroup iff
(D,+,\<°pp) is an ordered semigroup. By Remark 1.18, (D,*,<) is an
ordered group iff (D,',sopp) is an ordered group. The propogition is

proved. #

Proposition 2.4. Lety s //&ted group.” Then (D,min, *,<)
and (D,max, *,<) arc@e ati fngs. Furthermore, if

(D,*) is an abelia

.‘(D,mln, ; ) and

(D,max, *,<) » (D,

Proof: ) are semigroup. Thus
we have that (D, e order skew ratio semirings.
Assume that (D i '; i p. By Remark 1.18,

(B8] MAD,*,5. ). ,<) is isomorphic to

opp -
(D’mn,l’\<°pp) a (D,m’ 74 1 - 325 S tO;(D,max,-»Sopp) - #
Theorem 2.5. Leti(b,+; . ete complete ordered skew ratio

semiring such that #+4,= 1. Then (D,+,*,<) is isomorphic to exactly

one o sne Barleinhe 3 %LE;L%‘ESN 8N 7T

(1) ({1},+,

9 H S AU INYIa Y

(3) ({ann e Z},max,*,<).

Proof: It IDI = 1 then (D,+,*,<) A ({1},+,+,<). Suppose
that IDI > 1. Let g be the immediate successor of 1. Then by
Proposition 1.25 and Theorem 1.26, (D,+,<) ~ (Z,+,<) and g generates

D,*).
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Let x € D and I(x) = {y e D | x+y = x}. Since 141 = 1,

X+X = X. Thus x € I(x), it follows that I(x) # @ for all x e D.

Case 1: gze I(g). Thus g2+ g = g which implies that g+1 = 1. We
claim that gn+1 = 1 for all n ¢ z:; We shall prove this by using
induction on n € Z;. Let n € z'. Ifn-= 0,1 then done. Assume that
the clalm is true for n—%"lk/ ey g =g, it follows gn+ g+ 1
= g+1. We get that gh\_ﬂ 4 -

the claim.
R i}

msayms n. So n-m € Z:.

- min(n,m)

ﬁ'

Let m, n
We have that gn+ . Therefore we

get that (D,+,*,%

Case 2: g2¢ I(é).

Suppose that 1+ 9< g
Since 1 < g, < ; ) £ 14+g < g which implies that

Thus g < 1+g. We have that

R 4+ 1< 141 = 1 which
is a contradicti(j."--so , ot -occur.
Subcase 2.&- 1 e I(g). us g+1 = g. We claim that
oo - bl ) T A i
s Let n € z . If n=0 and 1, en done. e that the

cm’rii P RER TR M ’% PEAAY o o

thatg+g g.Thereforeg+g+1 g+1. Thusg+g gn+1.

So g(gn_1+1) = gn+ 1. Then by assumption we have that g(gn-1)= gn+ 1,

so gn= gn+ 1. Hence we have the claim. Let m, n e Z:. So we have

that m < nor n < m, say m £ n. Therefore n-m ¢ Zz. By the claim we
m, n-m n max(n,m)

getthatg+g g(g +1)-g(g )i =g =g . Hence we

have that (D,+,*,<) 2 (Z,max,+,<).
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Lastly, we must show that (1),(2) and (3) are not isomorphic
to each other. Clearly (1) is neither isomorphic to (2) nor (3).
To show that (2) is not isomorphic to (3), suppose that (2)is isomorphi.q
phic to (3). Let £: ({2”|neZ,min,*,<)~( {2" |nez,max, *,<) be an isomorphism

and we let x, y € {2n|nez} be such that x < y. Thus x+y = X, SO

’#/; f(y). Therefore f(x)+£(y)=1f(y)

contradiction. Thus (2) is

not isomorphic

toi‘ﬂ*ﬂ--—‘
Hence, c{

L
N,
oWete ordered skew ratio

semiring such tha » <) is isomorphic to exactly

(1

J1.31 (0,49 & ®Y,-,9).

Let x € D and Ig {y " Sj&e 141 = 1, x+4x = x. Thus
I(x) # ¢ ‘ €D, in particldar I(1) # §. We shall show that
I(x) = X°aﬁ - ag %anﬁxw ﬂm ary and let y e x+I(1).
The tﬁ exist. z € 6 sucht tha® y = xz. Thus x+y = X+Xz =
TN S AR AR o .

other h.and, let y € I(x). Therefore x+y = x. So we have that 1+x_1y=1.

Thus x—1y € I(1) which implies that y € x*I(1), hence I(x) C x°I(1).
So we get that I(x) = x*I(1).

Suppose that I(x) = D. Therefore x*I(1) = D, it follows that
I(1) = x_1D = D. Thus for every y € D,I(y) = y*I(1) = y*D = D. Let

a, b € D be such that a # b. So we have that a € I(b) and b € I(a),
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it follows that a+b = b and a+b = a. Hence a = b which contradicts
a#b. Therefore we get that § C I(x) C D for all x € D, in particular
§ C 1I(1) CD. Suppose that x, y € I(1) are such that x < y. We shall
prove that x < z < y implies that z € I(1). Let z € D be such that

X <z <y. Thus 1 = 14x £ 14z < 1+y = 1. Therefore 1+z = 1, so we have

have that z € I(1). "{/
Let d € I(1). K &1(1) for all n € Z'. We shall

_———

shall prove this ?

then done. Assume

.Letnez Ifn="1;

"'s\_uw n-1 > 1. Therefore

ik t aMd = d. So a2+d+1

a € I(1). Thus

= d+1 and so d"+1 : N Hence we have the claim.

Case 1: I(1) has sis I(1) Ahas a least

upper bounded. Le P ; i Be I(1)5:01% 2.

11 prove that {teD|t > 1} = I(1).

) such that z > v > 1.

Let w € {tsDIt > 1./ By Proposition 1.25,

tha v>wanda€ I(1). Now we have
that v" a Y {teD|t > 1} ©I(1).
RN -1 | IV AT A
that gﬁ there
SAESNDTYRA AL o

have that {seD|s < 1} € I(1). Therefore D = {teD|t > 1}U {sep|s < 1}

e

there exists an :& Z+ suc ¥

C I(1) which implies that I(1) = D, a contradiction. Hence {teD|t > 1}
= I(1). Let de D be arbitrary. Now we shall show that d°I(1) =
{beD|b > d}. To prove this, let z € d*I(1). Thus S ma I

{teD|t > 1}. Therefore a'z > 1. So z > d. Hence z € {beD|b > d}.

rd
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Therefore we get that d+I(1)C {beDIb > d}. oOn the other hand, let

z e {beD|b > d}. So z > 4 and so a2 > 1. Thus we have that
= a@ '2) e a-{tep|t 3 1} = @*I(1). Hence {beD|b > d} C a-I(1).

z

We showed that d+I(1) = {bed|b > d}.

Let x, y € D be arbitrary. So x { yor y £ X, say X £ Y.

,/ {beD|b > x}. Thus y € I(x).

{x ,v}. Therefore

Therefore we get that I(x)

- It follows that x+y =
—

x+y = min{x,y} forpe

Subcase = {1}. Therefore
Ttx) = x*I1(1) =
a # b. Thus a+b
We get that d+b = have that b € I1(d) = {d}.
Hence b = 4, a con Y 1) # {1}. Hence there

z = sup (I(1)) which is a
contradiction. t {reD]r £ 1} = I(1). Let
'Ws{reDlr £ 1} bearbitrary. Thu . By Proposition 1.25, there
exists an n € Z

Hence {repD|r < 1} ? 413 Suppose that {reD|r < 1} # I(1). Then there

exists an ﬂeuEJ!a Qﬁ&]% ‘ﬁ-w ﬂsﬁa ﬂﬁj) a contradiction.

Hence we ha the claim.

QR P 3 18 G = v

Simllgrly proof as before we get that y-{rler £ 1} = {ceD[c < vl.

Therefore I(y) = y*I(1) y-{reDlr <l = {clec < y}. Hence x & Ily).

It follows that x+y = y = max{x,y}. We get that x+y = max {x,y} for all

X, Y. € Di

Case 2: I(1) has no upper bound. Then for every x > 1 there exists

aye I(1) such that y > x. Thus x € I(1). Therefore we get that
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{tep|t > 1} 1(1).

Subcase 2.1. {teDlt > 1} = I(1). Using the same proof as

before we get that x+y = min{x,y} for all x, y € D.

Subcase 2.2. {teD|t > 1} C I(1). Then there exists a

z

z € I(1) such that z < 1. Sro <z which implies that ale Il

g
A~ (R ,min,*,<) or

(D,+,°,<) > (IR+,max

Lastly, " fto, 3! > ,xen in Theorem 2.5 shows
’ i 7
{

that (1) is not i

"""r‘.;.’. .
Since we have jf:!ff: all complete ordered skew ratio

_,.-;..-‘;-""" j 3
semiring such at _1+1 n to the case where 1+1 #1.

In [2] it was semiring of such a skew

ratio semiring wgh

addition and multiplication. pfirst problem is to shown how many

orsers e ‘UE&L’MHS,J ECTTTC I

mult lplucatton

ama\ﬂnm URIAINYIAY

Propos:Ltlon 2:7: The only orders on Q compatible w1th the usual

tﬂqf with the usual

addition and multiplication are the usual order and the opposite of

the usual order.

*
Proof: Let £ be an order on Q+ compatible with the usual
' *
addition and multiplication. Since 1, 2 € Q+ and 1 # 2, 1 < 20or

2<%
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* *
Case 1: 1 < 2. We shall show that in this case < is the usual order
*
on Q+. First, we claim that for every n e z*, n < n+1. We shall
prove this by using induction on n € Z+, let ne 2" be arbitrary.

*
If n = 1, then we are done by assumption. Suppose that n-1 < n.

Therefore (n-1)+1 s*n+1. If (n-1)+1 = n+1 then n = n+1 which is a

iff m < n. Suppose ‘ ere exist an £ € Zz' such that
n = m+l. We sha}&p!?”"#f . \using i tion on 2. If 2 =1,

*
< m+(2-1). Therefore,

we have the claim.

contradiction. Thus n <

Let m,n € Z , we shall show that m < n

then by the clai
by the claim, we = m+f = n. Hence m <*n.
On the other hand 1 E? m o show that m < n, suppose
that n < m. If n R i:’égm proof as before n <*m, a

contradiction. If n ontradiction. Thus we get

that m < n. This shows~fbpiJf92
N A
Let x - e are p,q,r,s € z+ such

that x = -2— and "D: s—< rq iff ps < rq iff

*
% < E-. We proved; At X< y 1ff < y. Hence £ 1is the usual order.
Case 2: % 1. Us1ng a proof s1m11ar to the one used in €Case 1 we

. Q“W‘iﬁ Qﬂﬁfﬁﬂﬁﬂﬂ ik 2

The proposition is proved.

It follows from Proposition 2.3 that, if P is a prime skew
ratio semiring of such a skew ratio semiring D then P is isomorphic
to Q+ with the usual addition, multiplication an order or P is

- isomorphic to Q+ with the usual addition and multiplication and the
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opposite of the usual order.
Notation: Let D be a skew ratio semiring. Let n €42+ and x € D.

Then we shall denote x+X+...+x (n times) by nx. Also for simplicity

we shall denote 1+1+...+1 (n times) by n.

Definition 2.8. Let ed skew ratio semiring such

that 1+1 # 1. D_1swt median iff for every x, y €D,

x <y implies th

s if P is isomorphic to @

with the usual =8d ---_"_,"",up--;gg r.
« A ' | \‘,‘
(ii) b))% > 1s isomorphic to Q

with the usual a#dltlon and multlpllcat1on and the opposite of the

°rdﬂumwmwmm
=RRIAN ﬁ‘ﬁﬂéﬁ%‘i%"rﬁﬁﬁﬂ v

such Qhat 1+1 # 1 then D 1s Archimedian.

Proof: Assume that x, y € D are such that x < y, let P be

the prime skew ratio semiring of D.

Case 1: P is isomorphic to Q+ with the usual order. To show that

there exists an n € Z' such that nx > y, suppose that nx £ y for all
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nez'. Let L = {nx|n € 2'}. Therefore y is an upper bound of L.
Since L € D and D complete, we get that L has a least upper bound.
Let z = sup(L) and let k € Z' be arbitrary. Therefore 2kx € L, it
follows that 2kx < z. Thus kx £ 2-12 for all k € Z' which implies

= - -1
that 2 1z is an upper bound of L. We get that z £ 2 1z. Hence 1£2 ,

nyxat there exists an n € 2zt such
Z,
4 | —

a contradiction. Therefors |

that nx:- > y. —_y
=

Case 2: P is is \{li: e site of the usual order.
Using a proof simil sed in- ase 1 we can show that

there exists an m €

This sh

Proposition 2.11. -hi lan ordered skew ratio semiring
b 4
such that 141 # 1 and P

the usua

AT
= AN

a

isomorphic to Q’Swith
-

Eﬁf'u Ej‘ﬁ ngﬁ%‘{ﬁyﬂ “1 ﬂ‘? claim that there

exists an Mle Z° such that M > 4" . To prove this, suppose that

AR I QNI NG TaY -

then fi+1 > m = @~ ', a contradiction. Thus n~ '< d for all n ¢ zt.

Let M € 2+, so M < d°1. Therefore, by hypothesis, there exists
an £ € Z' such that &M > d-1 , a contradiction. Hence we have the
claim. Now, we can choose N € Z’+ such that N > d_1. Let n e Z+ be

1

such that n > N which implies that n~ g N '< d. The proposition is

proved.
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Proposition 2.12. Let D be a complete ordered skew ratio semiring

such that 1+1 # 1 and P € D, the prime skew ratio semiring of D is

isomorphic to Q+ with the usual order. Then 1 = inf{1+n_1|n &y,

Proof : Let P be the prime skew ratio semiring of D. We

claim that for every M € P there exists an N € z* such that n >N
; : 2 -1
implies that n"(2n+1) g&\ ; this, let M € P be arbitrary.
{1 - s
, Let N = 4(r+s).

>
> N which implies that

Then there exists an.‘\._%‘-__a

Therefore N € Z

b (ris) (142n) . | Thus

e (r+s) > g M,

n > N = 4(r+s)
n > n-1(r+s)(1+
so we have the
n-1ln € 2°}. Let

s 1 as a lower bound. By

o

hypothesis we get that é;h&s al- est lower bound, say z. Thus

1 s z. "';'#;:j'__‘-' ;,' T e

Suppose “thati- 11 n e 3*. Ssince
z < zz, there e%f}ts ‘an N j = < 22. It follows that
for all n e 31 aanfor allm > N, 1+m < (14n 1)2. et (D)
ﬂ 4§ ’Wl 5 ‘iﬂ“‘i %%Qﬂ@ c 7" mch that
n>N 1mp1 es that n (1+2ng > m. Thus (142n)n"2 m- for all
ﬂﬁf]ﬁoﬂ Dii mﬂ)w’] IQM EJ:-] a EJ m- Hence

n % gnciy 1< 14 S Yor wl N . Thus we have that (14n~ 1)2$1+m-1

/

for all n > Nm which contradics (1). Therefore we get that z = 1.#

Proposition 2.13. Let D be a complete ordered skew ratio semiring

such that 1+41 # 1 and P C D, the prime skew ratio semiring of D is

11090585 F
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isomorphic to Q+ with the usual order. Then for every x, y € D,

X < y implies that there exists an n € 7' such that ny > nx+1.

Proof: Let x, y € D be such that x < y. To show that there

exists an n € 2% such that ny > nx+1, suppose that ny < nx+1 for all

‘Wallnez+. PR PR Ry G e (1)

. Therefore mx < m. By

+ =~

n € Z' . Thus yx—1 < 14+(nx)

Case 1: x < 1. Let m

Proposition 2.10, so

T ne S B

ar

such that 2mx > m. Thus
e So by equation (1)
we have that yx_ Proposition 2.12, we get

that yx | < 1.

Case 2: 1 £ x. nx, for akln & ich implies that
e S FHET )4

14(nx) " < 14n”
we get that yx_1$ %= : = ‘contradiction.

We havew hown ; .
f:f i #

Proposition 2.1413 Let D plete ordg}ed skew ratio semiring

such that cD, the{me skew ratio semiring of D is

immﬂ Jti) mm NEaAS.
3 BRE) G464 £ 9515 B4 5] Fippens o v

there exists an r € P such that x < r < y. By Proposition 2.13, let
n € 7' be such that ny > nx+1. We claim that for every k 2 n,
ky > kx+1.
If n = %, then we are done. Suppose that k > n. Then there
exists an £ € 2" such that k = n+2. Therefore we get that ky = (n+48)y

= ny+2y > (nx+1) + &y = nx+(14+2y) = nx+28y)+1 > (nx+X)+1 = (n+2)x+1

-
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= kx+1. Hence ky > kx+1 for all k > n. If there exists a k1> n such
that k1y = k1x+1, then y = x+k;1. Since k1> n, k;1 < n_1, it follows
that x+k;1 < xén" ) therefore ¥y £ x+n~ 1. So we have that ny < nx+1,
a contradiction. Therefore we get that ky > kx+1 for all kX > n, 8o
we have the claim. Since D is an Archimedian, there exists an m ¢ Z

\ w/ > 1 for all p e Z'. We can

m. Thus qy > gx+1 and

such that mx > 1.

choose p ¢ 2" such

gx > 1. Since D i ists an r € 2 such that

r > gx. Let r, such that r°> gx, it

follows that ry which implies that

=1 -1
> 4
ay ax+1 2 (ro L q ro> x and q r € P,

so done.

#
Notation: Let D be/ rder f_“f:ffa:.o semiring and P €D, the
prime skew ratio semiriﬁgfggﬁlygif 'h z ¢ D, we shall denote
A = {ace Pla

Proposition 2.15. ‘ Let (D,+,°*,<) be a complete ordered skew ratio

semiring sﬁ [ehst] Q °{] &LSA%‘ o \che paifd §ew ratio semiring

of D is iso rphlc to Q wnip the usua order. up(A ) =

- QPR FRI I EJWTW]EI’]G d

Proof : Let z € D be arbitrary. Since z2 1< z < 2z, by

Proposition 2.14, there are r, s € P such that 22-1< Bi<. 2 Cr < 22:
Thus Az # @ and BZ # #. Clearly z is an upper bound of Az and z is a
lower bound of Bz' Since D complete, Az has a least upper bound and

Bz has a greatest lower bound. So we have that sup(Az) £ z<L inf(Bz).
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Suppose that sup(Az) < z. By Proposition 2.14, so there
exists an r € P such that sup(Az) S oW . Thus r € Az which is a
contradiction. Hence we have that sup(Az) Pl A Similarly, we can

show that inf(B ) = z.
z #

Proposition 2.16. Let D

# ete ordered skew ratio semiring

such that 1+1 # 1 and he ew ratio semiring of D is

._‘

@A+A=A for all
—— X y X+y

isomorphic to Q+ wi

X5 Y e D

Proof: o show that Ax+ Ay: A 5

X+y
suppose that r- a+b for some a € Ax and
b e Ay, it follo “ W\ Proposition 2.14, there

exists s, t € P su { % t < y. Since a,b,s,t € P,

a+b < s+t which implies “that » s4b £ X+y. Sor € Ax+y' Hence

' : < y
hat. p € Ax+y Thus p X+y

By PropositionA - 7 @' that p < u < x+y. Now,
we have that p = (ue e - =u px +u py.
Since p < u, u_ 1t follows that u~ px < x and u_ py <y. By
pmposmﬁi umm;m SUEbi gk w7 < v < ama
u- <w< y, hence p uex+u v + w. Now, we have that

’Q RIANDIAUURIIN LD oo

Slnce P<V+w, (Viw)~ p < 1. It follows that (v+w)~ pv <v<x
and (v+w)_1pw < w < y. Thus we get that (v+w)-1pv e A and

G :
(v+w) 'pw € A . Therefore p € A_+ A . Hence A C A_+ A_. We have
Vi X Y Xty moX Uy

shown that A + A = A .
Xy xX+y “#
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Proposition 2.17. Let D be a complete ordered skew ratio semiring.

Let P be the prime skew ratio semiring of D and suppose that P is
isomorphic to Q+ with the usual order. If © is an order map of D into

itself such that for all b € P, 6(b) = b, then © is the identity map

of D.

Proof: Let z ‘ ‘ﬁ By Proposition 2.15,
sup(Az) =z, Let : Var?it.@erefore z > b. Since © is
an order map, ©(z ‘--nggbihat ©(z) is an upper bound
fo A_ which implie "ﬁéhce z < 6(z). If z <6(z),
then there exist P ich ‘ 3a7 . 6(z). Now, z < r and © is
an order map. : ) f'rv’ ) Eg's a contradiction. Therefore

©(z) = z. Hence

Theorem 2.18. -'F’ - e omplete ordered skew ratio semiring

ﬁ ﬂ?ﬂﬂﬂﬁﬂﬂﬂﬂi

Pr £ Let P be té;e prime skew ratio semlrlng of D.

~ANIALAINIBIANL IR ... -«

be an order isomorphism. Define F: D~ R* in the following way:

Let x € D be arbitrary. By Proposition' 2.15, Xu= sup(Ax) = inf(Bx).
Clearly r < x for every r ¢ Ax. Since x < 2x, by Proposition 2.14,
there exist s € P such that x < s < 2x. Thus r < s for every r € .Ax.
Since f is an order isomorphicm, f(r) < f(s) for all f(r) € f(Ax).

Therefore f(s) is an upper bound of F(Ax). By hypothesis, f(Ax)
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has a least upper bound. Define F(x) = sup(f(Ax)). Clearly F is

well-defined.

Step 1: We shall show that F is extension of f. Assume that b g P.

Thus b is an upper bound of Ab which implies that f(b) is an upper

p(f(Ab)) = F(b). Suppose that
/ h that f(b) > q > F(b).
Since f is surjecﬁ.%\end x@ such that f(c) = g, hence

(b)Y > fle) The;gg--—-i : ‘5‘a~hh~22: we get that
s .

= f(c) & £(n), factithat q > F(b) = sup(f(Ab)).

bound of f(Ab)' Therefore

£(b) > F(b). Thus there

Step 2. We shal -f__!f ) = sup(f(Ax)). Now, we have
that r < x < s for r “c 5 ;i'“i : € Bx' Since f is an order

isomorphism, f(r) < wald /A end for all s e B . Using the

- sup(f(A ))<3inf(f(B ).
If sup(£(a))) <‘ij _on 2.15 there exists an

g Q such that g&p(f(A )) < £ < 1nf(f(B )i s

2 # £(x). ﬁ%&] ’J%ﬁ%‘j Wﬁ)ﬁfﬂ ﬁjumque h ¢ P such

that f(h) = 2 Now, we haﬂ? that f(r) sup(f(A )) < f(h) < 1nf(f(B ))

Q‘W'}@*&ﬂ T A1) T B e o

n order map, we see that r < h < s for all r e A and for all

We can assume that

s € Bx' Furthermore, h # x.
Case 1: h < x. Thus h € Ax which implies that h < h, a contradiction.

Case 2: ' x< h..“Thus: h € Bx which implies that h < h, a contradiction.
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Step 3: We shall show that F ig an injective order map. Assume that
X, y € D are such that x < y. It suffices to show that F(x) < F(y).
By Proposition 2.14, so there are r, s € P such that o 10 0 S <vy.
It follows that r € Bx and s € Ay’ so f(r) € f(Bx) and f(s) ¢ f(Ay).

By step 2, F(x) = inf(f(Bx)) £ f(r) < f(s) sup(f(A )) = F(y). Hence

iy,

Step 4: We shall show that F is a on. Assume that r e Rr*,

‘NeG --Dby G(r)

we have that F(x) < F(y).

let g: Q+ - P is
G(r) = sup(g(Ar)).

G is an extension o G(F(b)) = G(F(b))

= G(f(b)) = g(f(b)) Thus GeF is the

identity map on P. “is the identity map of
‘1JHJJ‘

D. Using a similar prgof wéal"% Fo G is the identity map

+

of R'". Hence G : a ! ion and therefore a surjection.
Step 5: We shal Fisa homomorphysm. Let x, y € D be
arbitrary. Firstﬂ\;"é"‘ oW . ﬂAF(x)‘ Suppose that

s € E‘( )* Therefoge s € Q and s < F(x). Then there exists an r ¢ P

o e 81 ARBBT WY ARG oo simee 7 50 o

order map, r < X. Thus r € % which 1m ies that s (r) € f(A ).

mf.]. AR b Wi} I 6l 4 b/ bnd IR AY. o

u € f( ). Then there exists an r € A such that u = £f(r). Now, we
have that r < x. By step 3, F(r) < F(x). Therefore u = f(r) = F(r)

= F(r) < F(x), hence u € A

F(x)" Thus

We get that f(Ax) = AF(x)'

f(Ax) = AF(x)'
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Next, we shall show that F(x+y) = F(x)+F(y). By Proposition

2.12, Ax+y = A+ Ay. Therefore F(x+y) = sup(f(Ax+y)) = sup(f(A_+ Ay))

= SUP(f(Ax)+f(Ay)) = sup(a )) = sup(A A proof

F(x) PR (y F(x)+F(y) )"

similar to the one given in Prop951tlon 2.15 shows that suP(AF(x)+F(y)

F(x) + F(y). Thus F(x+y) = F(x) + F(y).

//) = F x)F(y). LetreA and
;::‘:::!ep 25 F(rs) < F(xy)

Finally, we must s

s € Ay be arbitrary.

]
0]
c
o
+h
>
z\

Thus f(r) < sup( € f(Ay) is arbitrary,
sup(f(Ay)) < su
f(s) (sup(f(Ay

Sup(f(Ax)) £ (su T sl . \ n8kefore sup(f(Ax))sup

Let u € Bx and v - —- - Thus xy < uv. By Step3,
m J "

e e rouy.

inf(f(Bx)), if follows

F(xy) < arﬂ argument,

(inf(f(B‘ )aﬂﬂrjfﬁﬂqﬂj Wgﬁwﬂtﬁt sup(£(a, ) =

that (inf(£(B))) T

By the s

Ch) Wm" TR

Thus F is an order isomorphism map, as required.

Case 2: P is isomorphic to Q+ with the opposite of the usual order.
Let f: (P,+,+,<) ~ (Q e op ) be an order isomorphism and let
g: (P'+’.'Sopp) -~ (P;+,.,$) and h: (Q »*+,° )-’(Q sty ® ) be the

identity maps. Clearly, g and h are anti-isomorphisms. Therefore we

f(rs) = F(rs) < sup(f(Axy

3

)).
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get that hef og is a bijection map. To show that he f e g is an order
map, let x, y € (P,+,°*,& ) be such that x\opp y. Since g is an
anti-isomorphisrﬁ, gly) £ g(x), it follows that f(g(y)) \<opp f(g(x)).
Since h is an anti-isomorphism, h(f(g(x))) < h(f(g(y))). Thus

ho f og is an order map, hence (P,+," ) ~ (Q s*#3°:<). By

Proposition 2.3 and Case 1 of J / proof , (D’+"’\<opp) % (IR+»+:':S)-

") and (|R+:+:';<)

D,+, ’\Opp

Clearly, (D,+,*,<) is ant
is anti-isomorphic he identity maps gives
anti-isomorphisms that we just used above

we get that (D,+

ﬂ‘iJEJ’JVIEWIﬁWEJ’]ﬂ‘i
QW']Nﬂ‘iﬂJﬁJW‘I’JVIEJ'mEJ



	Chapter 2 Skew Ratio Semirings

