PRELIMINARIES

In this chapter we shall give some notations, definitions and theorems used in this thesis. Our notations are :

- Z is the set of all integers,
- Z⁺ is the set of all positive integers,
- Z is the set of all negative integers,
- Q is the set of all rational numbers ,
- is the set of all positive rational numbers,
- IR is the set of all real numbers,
- R⁺ is the set of all positive real numbers,
- $Z_0^+ = Z^+ \cup \{0\},$
- $Q_0^+ = Q^+ \cup \{0\},$
- $IR_0^+ = IR^+ \cup \{0\},$
- $\mathbb{R}^+_- = \mathbb{R}^+ \cup \{\infty\},$
- $mZ = \{mn \mid n \in Z\}, m \in Z^+,$

 \mathbb{Z}_{n} , n $\in \mathbb{Z}^{+}$ is the set of congruence classes modulo n in \mathbb{Z} ,

A will denote the cardinality of the set A,

 $(\mathbb{Z},+,\bullet,\leqslant)$, $(\mathbb{Q}^+,+,\bullet,\leqslant)$, $(\mathbb{Q}_0^+,+,\bullet,\leqslant)$, $(\mathbb{R}^+,+,\bullet,\leqslant)$, $(\mathbb{R}_0^+,+,\bullet,\leqslant)$,

 $(\mathbb{R}^+_{\infty},+,\cdot,\leqslant)$, $(\mathbb{R},+,\cdot,\leqslant)$, $(\mathbb{m}\mathbb{Z},+,\cdot,\leqslant)$ where \mathbb{m} $\in \mathbb{Z}^+_0$ will mean that \mathbb{Z} , \mathbb{Q}^+ , \mathbb{Q}^+_0 , \mathbb{R}^+ , \mathbb{R}^+_0 , \mathbb{R}^+_0 , \mathbb{R}^+ , \mathbb{R}^+_0 , \mathbb{R}^+ , \mathbb{R}^+_0 , \mathbb{R}^+ , \mathbb{R}^+_0 , \mathbb{R}

 $(Z^+,\min,\cdot,\leqslant),(\{2^n\mid n\in Z\},\min,\cdot,\leqslant),\ (Q^+,\min,\cdot,\leqslant),\ (R^+,\min,\cdot,\leqslant)$ will mean that $Z^+,\ \{2^n\mid n\in Z\},\ Q^+,\ R^+$ have the usual multiplication

and order and $x+y = \min \{x,y\}$ (minimum of x,y).

 $(\mathbb{Z}^+,\max,\cdot,\leqslant), \ (\{2^n\mid n\in \mathbb{Z}\},\max,\cdot,\leqslant), \ (\{2^n\mid n\in \mathbb{Z}\}\cup\{0\},\max,\cdot,\leqslant)$ $(\{2^n\mid n\in \mathbb{Z}\}\cup\{\infty\},\max,\cdot,\leqslant), \ (\mathbb{Q}^+,\max,\cdot,\leqslant), \ (\mathbb{R}^+,\max,\cdot,\leqslant), \ (\mathbb{R}^+\cup\{\infty\},\max,\cdot,\leqslant)$ will mean that \mathbb{Z}^+ , $\{2^n\mid n\in \mathbb{Z}\}, \ \{2^n\mid n\in \mathbb{Z}\}\cup\{0\}, \ \{2^n\mid n\in \mathbb{Z}\}\cup\{\infty\}, \ \mathbb{Q}^+, \mathbb{R}^+$ have the usual multiplication and order and x+y = max $\{x,y\}$ (maximum of x,y).

Definition 1.1. A binary relation ≤ on a nonempty set X is called an order on X iff for every a, b, c ∈ X:

- (i) $a \leqslant a$,
- (ii) $a \le b$ and $b \le a$ implies that a = b,
- (iii) a ≤ b and b ≤ c implies that a ≤ c,
- (iv) a < b or a = b or a > b where a < b will mean that $a \le b$ and $a \ne b$, and a > b means that b < a.

An ordered set X ia a set X with an order \leqslant on X. We shall denote it by (X, \leqslant) .

<u>Definition 1.2</u>. Let (X, \leqslant) be an ordered set. Then the <u>opposite</u> order on X, denoted by \leqslant_{opp} is defined by $x \leqslant_{opp} y$ iff $y \leqslant x$ for all $x, y \in X$.

Definition 1.3. Let (X, \leq) be an ordered set and $B \subseteq X$ a nonempty set. Then be B is a minimum (maximum) of B iff $b \leq x$ ($x \leq b$) for all $x \in B$, we denote this by $b = \min (B)$ (max (B)).

- Definition 1.4. Let (X, \leq) be an ordered set and $x \in X$. Then:
- (i) $y \in X$ is called an <u>immediate predecessor</u> (successor) of x iff y < x (x < y) and there does not exist $z \in X$ such that y < z < x (x < z < y), we shall denote it by $x^-(x^+)$,
- (ii) x is called <u>lower</u> (upper) <u>discrete</u> iff either x is a minimum (maximum) or x has an immediate predecessor (successor),
- (iii) x is called <u>discrete</u> iff x is both lower and upper discrete,
- (iv) X is called lower (upper) discrete iff for every x ε X, x is lower (upper) discrete,
 - (v) X is called discrete iff for every x ε X, x is discrete.
- Definition 1.5. Let (X, \leq) be an ordered set and $x \in X$. Then:
- (i) x is called <u>lower</u> (upper) <u>dense</u> iff x is not a lower(upper) discrete,
 - (ii) x is called dense iff x is both lower and upper dense,
- (iii) X is called <u>lower</u> (upper) <u>dense</u> iff for every $x \in X$, x is lower (upper) dense,
 - (iv) X is called dense iff for every $x \in X$, x is dense,
- (v) A nonempty subset B of X is called dense in X iff for every x, y ϵ X, x < y implies that there exists a t ϵ B such that x \leq t \leq y.
- (vi) A nonempty subset B of X is called $\underline{strongly}$ dense in X iff for every x, y \in X, x < y implies that there exists

a t ε B such that x < t < y.

<u>Definition 1.6</u>. Let (X, \leq) be an ordered set and $B \subseteq X$ a nonempty set. Then

- (i) An <u>upper</u> (lower) <u>bound</u> of B in X is an element b ε X such that $x \le b$ (b $\le x$) for every $x \varepsilon B$,
- (ii) If the set of upper (lower) bounds of B in X has a minimum (maximum) element, then this element is called the Least upper bound (greatest lower bound) of B in X, it is also called the supremum of B in X (abbreviated sup (B) (inf(B))).

Proposition 1.7. Let (X, \leq) be an ordered set. Then the following are equivalent:

- (i) every subset of X which has an upper bound has a supremum,
- (ii) every subset of X which has a lower bound has an infimum.

Proof: We shall show that (i) implies (ii). Suppose that (i) holds. Let $A \subseteq X$ be a nonempty set having a lower bound. To show that A has an infimum, let t be a lower bound of A. Let $C = \{x \in X \mid x \text{ is a lower bound of A}\}$. Then $C \neq \emptyset$ since $t \in C$. Fix a ϵ A. Then a is an upper bound of C. By assumption, C has a supremum. Let $z = \sup(C)$. If a ϵ A, then a is an upper bound of C, so $z \leqslant a$. Hence z itself is a lower bound for A. For any lower bound b of A we have that b ϵ C and therefore b ϵ z. This shows that z is the infimum of A.

We have thus shown that (i) implies (ii), and obviously a similar argument will prove that (ii) implies (i). $_{\sharp}$

<u>Definition 1.8.</u> An ordered set is called <u>complete</u> iff it has either property (i) or (ii) in <u>Proposition 1.7</u>.

Theorem 1.9. Let (X, \leq) be a complete discretely ordered set. Then the following properties hold:

- (i) every set A in X which has an upper bound has a maximum,
- (ii) every set B in X which has a lower bound has a minimum.

Proof: To show (i), suppose that A \subseteq X has an upper bound. By Proposition 1.7, A has a supremum. Let $z = \sup(A)$. To show that $z \in A$, suppose not. Then $z \notin A$. Thus a < z for all $a \in A$. Therefore $a \le z^- < z$ for all $a \in A$. Then z^- is an upper bound of A, hence $z \in z^-$, a contradiction. Therefore $z \in A$. This shows that z is a maximum of A. Hence (i) holds and obviously a similar argument will prove that (ii) holds. #

<u>Definition 1.10</u>. Let (X, \leq) and (Y, \leq^*) be ordered sets and $f: X \to Y$ be a map. Then f is called an <u>order map</u> iff for every x, y ϵ X, x \leq y implies that $f(x) \leq^* f(y)$.

If an order map is an injection, we call it an <u>order</u> injection.

If an order map is a surjection, we call it an order surjection.

If an order map is a bijection, we call it an <u>isomorphism</u>. f is called an <u>anti-order map</u> iff for every x, y ϵ X, x \leqslant y implies that $f(y) \leqslant^* f(x)$, <u>anti-order injection</u>, <u>surjection</u> and <u>isomorphism</u> are defined similarly.

<u>Proposition 1.11</u>. Let (X, \leq) be an ordered set. Then (X, \leq) and (X, \leq_{opp}) are anti-isomorphic.

<u>Proposition 1.12</u>. Let (X, \leq) and (Y, \leq^*) be ordered sets. Let $f: X \to Y$ be an isomorphism. Then X is complete iff Y is complete.

<u>Proposition 1.13.</u> Suppose that (X, \leqslant) , (Y, \leqslant^*) and (Z, \leqslant^{**}) are ordered sets. Let $f: X \to Y$ and $g: Y \to Z$ be anti-isomorphisms. Then $g \circ f: X \to Z$ is an isomorphism.

Definition 1.14. Let (X, ≼) be an ordered set.A <u>cut</u> in X is a nonempty proper subset A of X such that

- (i) if $a \in A$ and x < a, then $x \in A$,
- (ii) if $b \in A$, then there exists a t ϵ A such that b < t.

Definition 1.15 A system $(S,+,\leqslant)$ is called an <u>ordered semigroup</u> iff (S,+) is a semigroup and \leqslant is an order on S satisfying the property that for every x, $y \in S$, $x \leqslant y$ implies that $x+z \leqslant y+z$ and $z+x \leqslant z+y$ for all $z \in S$.

Remark 1.16 (S,+, \leq) is an ordered semigroup iff (S,+, \leq opp) is an ordered semigroup.

<u>Definition 1.17.</u> An ordered semigroup (G, \bullet, \leqslant) is called an <u>ordered</u> group iff (G, \bullet) is a group.

Remark 1.18 (G, •, \leq) is an ordered group iff (G, •, \leq opp) is an ordered

group. Furthermore,

- (i) For any x, y ε G, x < y iff xz < yz and zx < zy for allz ε G,
 - (ii) For any x, y ϵ G, x < y iff $y^{-1} < x^{-1}$,
- (iii) If (G, \cdot) is an abelian group, then (G, \cdot, \leq) is isomorphic to $(G, \cdot, \leq_{\text{opp}})$.

Proposition 1.19 Let (G, \cdot, \leq) be an ordered group and let x, y ϵ G be such that x < y. Then the following properties hold:

- (1) $x^n < y^n$ for all $n \in \mathbb{Z}^+$,
- (2) 1 < x implies that $1 < x^n$ for all $n \in \mathbb{Z}^+$,
- (3) For every m, n ϵ 2, m < n iff z^m < z^n for all z > 1.

Proof: Assume that x, y ϵ G are such that x < y. To show (1), let $n \in \mathbb{Z}^+$ be arbitrary. We shall prove this by using induction on n. If n = 1, then we are done. Suppose that (1) is true for $n-1 \geqslant 1$. Therefore $x^{n-1} < y^{n-1}$. By Remark 1.18 (i), $x(x^{n-1}) < x(y^{n-1})$. By assumption, $x(y^{n-1}) < yy^{n-1} = y^n$. Thus $x^n < y^n$. Hence $x^n < y^n$ for all $n \in \mathbb{Z}^+$.

The proof of (2) is obvious and the proof of (3) follows from (2). #

Proposition 1.20 Let (G, \cdot, \leq) be an ordered group. If |G| > 1 then G has no maximum element and no minimum element.

Proof: Assume that |G| > 1. Now, we shall show that G has no maximum element. Let $x \in G$ be arbitrary. It suffices to show that

there exists a y ϵ G be such that x < y. If x < 1, then we are done. If 1 < x, then by Remark 1.18 (i), x < x^2 , so we are done. Suppose that x = 1. Let y ϵ G \{1\}. If y > 1, then done. If y < 1, then $y^{-1} > 1$ so we are done.

Similary, we can show that G has no minimum element.

Proposition 1.21 Let (G, \cdot, \leq) be an ordered group. If there is $x \in G$ such that either x is lower dense or x is upper dense, then (G, \leq) is densely ordered. (Hence if $x \in G$ is either lower discrete or upper discrete, then (G, \leq) is discretely ordered.)

<u>Proof:</u> Assume that there is $x \in G$ such that x is lower dense or x is upper dense. Suppose that x is upper dense. Let $g \in G$ be arbitrary. First, we shall show that g is upper dense. Let $y \in G$ be such that g < y. We must show that there exists a $z \in G$ such that g < z < y. By Remark 1.18 (i), $g(g^{-1}x) < y(g^{-1}x)$. Thus $x < yg^{-1}x$. Since x is upper dense, there is a $z \in G$ such that $x < z < yg^{-1}x$ which implies that $g < zx^{-1}g < y$. Therefore g is upper dense.

Next, we shall show that x^{-1} is lower dense. Let $s < x^{-1}$. By Remark 1.18 (ii), $x < s^{-1}$. Since x is upper dense, there exists a $v \in G$ such that $x < v < s^{-1}$ which implies that $s < v < x^{-1}$. Therefore x^{-1} is lower dense.

Finally, we shall show that g is lower dense. Let t ϵ G be such that t < g. Then by Remark 1.18 (i), $t(g^{-1}x^{-1}) < g(g^{-1}x^{-1})$. Thus $tg^{-1}x^{-1} < x^{-1}$. Since x^{-1} is lower dense, there exists a w ϵ G such that $tg^{-1}x^{-1} < w < x^{-1}$. By Remark 1.18 (i), $tg^{-1}x^{-1}(xg) < w(xg) < x^{-1}(xg)$ which implies that t < wxg < g.

Therefore q is lower dense.

This shows that g is dense element in G. Since g ϵ G is arbitrary, (G, \leq) is densely ordered. If x is lower dense we can use a similar proof to show that (G, \leq) is densely ordered.

Using the same proof that we just used above we get that if there is an $x \in G$ which x is either lower discrete or upper discrete then (G, \leqslant) is discretely ordered. #

Remark 1.22 Let $(G, \cdot, <)$ be an ordered group. Fix $g_0 \in G$. Then g_0 is upper dense or upper discrete. We see that (G, <) is either densely ordered or discretely ordered.

Proposition 1.23 Let (G, \cdot, \leq) be an ordered group and x, y \in G \setminus {1} be such that x < y. Then the following are equivalent:

- (i) there exists $n \in \mathbb{Z}$ such that $x^n > y$,
- (ii) there exists $m \in \mathbb{Z}$ such that $y^m < x$.

Proof: To show (i) implies (ii), suppose that (i) holds. We must show that there exists an m ϵ Z such that $y^m < x$.

Case 1: 1 < x < y. Then by Remark 1.18 (ii), $y^{-1} < x^{-1} < 1 < x$, so we are done.

Case 2: x < 1 < y. Then by assumption, $x^n > y$ for some $n \in \mathbb{Z}^-$. By assumption again, $y^m > x^n$ for some $m \in \mathbb{Z}$. Therefore $y^{-m} < x^{-n}$ and $-n \in \mathbb{Z}^+$, it follows that $y^{-m} < x^{-n} < x$.

Case 3: x < y < 1. This proof is similar to the proof of Case 2.

We have thus ckecked that (i) implies (ii), and obviously the same argument, will prove that (ii) implies (i). #

Definition 1.24 An ordered group of order > 1 is called Archimedean iff it has either property (i) or (ii) in Proposition 1.23.

Proposition 1.25. Let (G, \cdot, \leq) be a complete ordered group of order > 1. Then (G, \cdot, \leq) is Archimedean.

Proof: Assume that x, y \in G \{1} are such that x < y. Suppose that $y^m \not< x$ for all $m \in \mathbb{Z}$. We must show that there exists an $n \in \mathbb{Z}$ such that $x^n > y$. To prove this, suppose not. Then $x^n \le y$ for all $n \in \mathbb{Z}$. Let $L = \{x^n \mid n \in \mathbb{Z}\}$. Then y is an upper bound of L. Since $L \subseteq G$ and G is complete, L has a least upper bound. Let $z = \sup(L)$.

Case 1: x < 1. Now, we have that $x^n < z$ for all $n \in \mathbb{Z}$. Let $m \in \mathbb{Z}$. Then $m-1 \in \mathbb{Z}$. Thus $x^{m-1} < z$, it follows that $x^m < zx$. Therefore $x^m < zx$ for all $m \in \mathbb{Z}$, so zx is an upper of L. Thus z < zx. By Remark 1.18 (i), $(z^{-1})z < (z^{-1})zx$ which implies that 1 < x, a contradiction.

Case 2: 1 < x. This proof is similar to the proof of Case 1. Therefore we get that (G, \cdot, \leq) is Archimedean.

Theorem 1.26 Let (G, \cdot, \leqslant) be an Archimedean discretely ordered group. Then (G, \leqslant) is complete and (G, \cdot, \leqslant) is isomorphic to $(\mathbb{Z}, +, \leqslant)$.

<u>Proof:</u> We shall show that (G, \cdot, \leqslant) is isomorphic to $(\mathbb{Z}, +, \leqslant)$. Since (G, \leqslant) is discretely ordered set and |G| > 1 there exists a $g \in G$ such that g > 1 and there does not exists a $z \in G$ such that g > z > 1.

We claim that $G = \langle g \rangle$ where $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$. To prove the claim, let $x \in G$ be arbitrary. We shall show that $x \in \langle g \rangle$. If x = g, then $x \in \langle g \rangle$, so we are done. Suppose that $x \neq g$. Either x < g or g < x.

Case 1: x < g. By (*), x < 1 < g. If x = 1, then $x = 1 = g^0 \varepsilon < g > .$ Suppose that $x \ne 1$. Then x < 1 < g. Since G is Archimedean, $g^{m_0} < x$ for some $m_0 \varepsilon \mathbb{Z}^-$. Let $A = \{m \varepsilon \mathbb{Z}^- \mid g^m < x\}$. Then $m_0 \varepsilon A$, so $A \ne \emptyset$. Let $N = \max(A)$. If N = -1, then $g^{-1} < x < 1$. Thus 1 < xg < g which contradicts (*). Then N < -1, so $N+1 \varepsilon \mathbb{Z}^-$. Therefore $x < g^{N+1}$. If $x < g^{N+1}$, then $g^N < x < g^{N+1}$. Thus $(g^{-N})g^N < (g^{-N})x < (g^{-N})g^{N+1}$. Then $1 < g^{-N}x < g$ which contradicts (*). Therefore we get that $x = g^{N+1}$. Hence $x \varepsilon < g > .$

Case 2: g < x. A proof similar to the proof of Case 1 shows that $x \in \langle g \rangle$.

Therefore we get that $G \subseteq \langle g \rangle$. Clearly, $\langle g \rangle \subseteq G$. Thus $G = \langle g \rangle$, so we have the claim. Hence (G, \cdot) is a cyclic group. By Proposition 1.19(3), m < n implies that $g^m \langle g^n$. Then (G, \cdot, \leqslant) is an ordered infinite cyclic group. Hence (G, \cdot, \leqslant) is isomorphic to $(\mathbb{Z}, +, \leqslant)$. It follows from Proposition 1.12 that (G, \leqslant) is complete.

Lemma 1.27 Let (G, \cdot, \leq) be an ordered group and a, b \in G. Then the following properties hold:

(i) If $a^m \le b^n$ and $\frac{m}{n} = \frac{m}{n_1}$ where m, $m_1 \in \mathbb{Z}$ and n, $n_1 \in \mathbb{Z}^+$, then $a^m \le b^n$,

(ii) If $a^m > b^n$ and $\frac{m}{n} = \frac{m_1}{n_1}$ where m, $m_1 \in \mathbb{Z}$ and n, $n_1 \in \mathbb{Z}^+$, then $a^m > b^n$.

The proof of (ii) is similar to the proof of (i). #

Theorem 1.28. Let (G, \cdot, \leqslant) be an Archimedean densely ordered group. Then (G, \cdot, \leqslant) can be embedded into $(\mathbb{R}, +, \leqslant)$.

Proof: Since $G \neq \{1\}$ we can fix an a > 1. Let b ϵ G be arbitrary.

Let $V_b = \{\frac{m}{n} \in \mathbb{Q} \mid a^m \leq b^n \text{ and } n > 0\}$ and $U_b = \{\frac{m}{n} \in \mathbb{Q} \mid a^m > p^n \text{ and } n > 0\}.$

Step 1. We shall show that $V_b \neq \emptyset$ and $U_b \neq \emptyset$.

Case 1: a = b. Then $1 \in V_b$, so $V_b \neq \emptyset$. Since 1 < a, $b = a < a^2$.

Thus 2 ε U_b . Therefore $U_b \neq \emptyset$.

Case 2: a < b. Then 1 ϵ V_b , so $V_b \neq \emptyset$. By the Archimedean property $a^n > b$ for some $n \epsilon$ **Z**. Thus $n \epsilon$ U_b . Then $U_b \neq \emptyset$.

Case 3: b < a. This proof is similar to the proof of Case 2. Therefore $V_b \neq \emptyset$ and $U_b \neq \emptyset$.

Step 2. We shall show that $V_b \cap U_b = \emptyset$. To prove this, suppose not. Then $V_b \cap U_b \neq \emptyset$. Let $t \in V_b \cap U_b$. Then $t \in V_b$ and $t \in U_b$. There are m, $r \in \mathbb{Z}$ and n, $s \in \mathbb{Z}^+$ such that $t = \frac{m}{n}$ and $t = \frac{r}{s}$ and $a^m \leq b^n$ and $a^r > b^s$.

By (1) and Proposition 1.19 (1), $a^{ms} \le b^{ns}$ and $b^{ns} < a^{nr}$, it follows that $a^{ms} < a^{nr}$. But we have that ms = nr, this implies that $a^{ms} < a^{ms}$, a contradiction. Hence $V_b \cap U_b = \emptyset$.

Step 3. We shall show that for every $s \in V_b$ and for every $t \in U_b$, s < t. Let $s \in V_b$ and $t \in U_b$. Then $s = \frac{m}{n}$ and $t = \frac{\ell}{q}$ for some ℓ , $m \in \mathbb{Z}$ and n, $q \in \mathbb{Z}^+$. Therefore $a^m \le b^n$ and $a^\ell > b^q$. By Proposition 1.19 (1), $a^{mq} \le b^{nq} < a^{\ell n}$. By 1 < a and Proposition 1.19 (3), $mq < \ell n$. Thus $\frac{m}{n} < \frac{\ell}{q}$. Hence s < t.

Step 4. We shall show that $\sup(V_b) = \inf(U_b)$. Let $t_0 \in U_b$. By Step 3, $s < t_0$ for all $s \in V_b$. Then t_0 is an upper bound of V_b . Thus $\sup(V_b) < t_0$. Since $t_0 \in U_b$ is arbitrary, $\sup(V_b) < \inf(U_b)$. If $\sup(V_b) < \inf(U_b)$, then there exists an $r \in \mathbb{Q}$ such that $\sup(V_b) < r < \inf(U_b)$. Thus $r \notin V_b$ and $r \notin U_b$ which is a contradiction. Therefore we get that $\sup(V_b) = \inf(U_b)$.

Define F: $G \to \mathbb{R}$ by $F(b) = \sup(V_b)$ for all $b \in G$. Clearly, F is well-defined.

Step 5. We shall show that F is an order map. Let x, y ϵ G be such that x < y. We claim that $V_x \subseteq V_y$. To prove the claim, let w ϵ V_x . Then w = $\frac{m}{n}$ for some m ϵ Z and for some n ϵ Z⁺. Therefore $a^m \leqslant x^n$. By Proposition 1.19 (1), $a^m \leqslant x^n \leqslant y^n$. Thus w = $\frac{m}{n} \epsilon$ V_y . Hence $V_x \subseteq V_y$, so we have the claim. Therefore $\sup(V_x) \leqslant \sup(V_y)$. Hence $F(x) \leqslant F(y)$.

Step 6. We shall show that (G, \cdot) is an abelian group. Let a, b ϵ G be arbitrary. We claim that for every $x \epsilon$ G, x > 1 implies that there is a z ϵ G such that x > z > 1 and $z^2 < x$. To prove the claim, let $x \epsilon$ G be such that x > 1. Since (G, \cdot) is densely ordered, x is a lower dense. Then there exists a $y \epsilon$ G such that x > y > 1. Thus $1 < y^{-1}x < x$(2)

If $(y^{-1}x)^2 < x$, then let $z = y^{-1}x$ and we have the claim by (2). Suppose that $x \le (y^{-1}x)^2$. Then $x \le y^{-1}xy^{-1}x$, so $1 < y^{-1}xy^{-1}$. Thus $y < xy^{-1}$ which implies that $y^2 \le x$. Let z = y, so we have the claim.

Suppose that $ab \neq ba$. Without loss of generality, suppose that ba < ab. Then $1 < aba^{-1}b^{-1}$. Let $x = aba^{-1}b^{-1}$. By the claim, there exists a $z \in G$ such that 1 < z < x and $z^2 < x$(3) By Proposition 1.25, $(G, \cdot, <)$ is Archimedean. Then there are m, $n \in \mathbb{Z}$ such that $z^m < a < z^{m+1}$ and $z^n < b < z^{n+1}$(4) From (4), we have that $a^{-1} < z^{-m}$ and $b^{-1} < z^{-n}$. Therefore $x = aba^{-1}b^{-1} < (z^{m+1})(z^{n+1})(z^{-m})(z^{-n}) = (z^{(m+n)+2})(z^{-(m+n)}) = z^2$ which contradicts (3). Thus ab = ba for all a, $b \in G$. Hence (G, \cdot)

is an abelian group.

Step 7. We shall show that F(xy) = F(x) + F(y) for all x, y ε G. Let x, y ε G be arbitrary. We shall show that the following properties hold:

- (i) $V_x + V_y \subseteq V_{xy}$ where $V_x + V_y = \{s+t \mid s \in V_x \text{ and } t \in V_y\}$.
- (ii) $U_x + U_y \subseteq U_{xy}$ where $U_x + U_y = \{v+w \mid v \in U_x \text{ and } w \in U_y\}$.

To show (i), let $w \in V_x + V_y$. Then w = s+t for some $s \in V_x$ and $t \in V_y$. Then $s = \frac{m}{n}$ and $t = \frac{\ell}{n}$ for some $n \in \mathbb{Z}^+$. By Lemma 1.27, $a^m \leq x^n$ and $a^\ell \leq y^n$ which implies that $a^{m+\ell} \leq x^n a^\ell \leq x^n y^n \dots$ (5) By Step 6, $x^n y^n = (xy)^n$. From (5), we have that $a^{m+\ell} \leq (xy)^n$. Therefore $\frac{m+\ell}{n} \in V_{xy}$, so $w = \frac{m}{n} + \frac{\ell}{n} \in V_{xy}$. Hence $V_x + V_y \subseteq V_{xy}$.

The proof of (ii) is similar to the proof of (i). From (i), we have that $\sup(V_x + V_y) \leqslant \sup(V_{xy})$. (6)

From (6), we have that $\sup(V_x) + \sup(V_y) \leq \sup(V_{xy})$. Thus

 $F(x) + F(y) \le F(xy)$. (7)

From (ii), we have that $\inf(U_x + U_y) \geqslant \inf(U_{xy})$(8)

From (8), we have that $\inf(U_x) + \inf(U_y) \geqslant \inf(U_{xy})$. Thus

 $F(x) + F(y) \ge F(xy)$. (9)

By (7) and (9), F(xy) = F(x) + F(y).

Step 9. We shall show that F is an injection. We want to show that $\ker(F) = \{1\}$. Suppose not. Then $\ker(F) \neq \{1\}$. Let b $\epsilon \ker(F) \setminus \{1\}$. Then b < 1 or 1 < b.

Case 1: b < 1. Then b < 1 < a. By the Archimedean property, $a^m < b$ for some $m \in \mathbb{Z}^-$, so $a^m < b < 1$. By the Archimedean property again, $b^n < a^m$ for some $n \in \mathbb{Z}^+$. Therefore $\frac{m}{n} \in U_b$ and $\frac{m}{n} < 0$. But we have that $b \in \ker(F)$, this implies that $F(b) = 0 = \sup(V_b) = \inf(U_b)$. Thus $0 < \frac{m}{n}$, a contradiction.

Case 2: 1 < b. Then 1 < a < ab and 1 < b < ab. By the Atchimedean property, ab < a^m for some m ϵ \mathbb{Z}^+ . Thus 1 < b < ab < a^m. By the Archimedean property, a^m < bⁿ for some n ϵ \mathbb{Z}^+ . Thus $\frac{m}{n} \epsilon$ V_b and $\frac{m}{n} > 0$. But we have that b ϵ ker(F), this implies that F(b) = 0 = sup(V_b). Thus $\frac{m}{n} \leqslant 0$, a contradiction.

Therefore we get that $ker(F) = \{1\}$. Hence F is an injection.

This show that F is an order monomorphism. #

Lemma 1.29. Let (G, \bullet, \leqslant) be a densely ordered group and let $f: (G, \bullet, \leqslant) \to (\mathbb{R}, +, \leqslant)$ be an order monomorphism. Suppose that $x \in \mathbb{R} \setminus \{0\}$ is arbitrary. Then the following properties hold:

- (i) If 0 < x, then there exists a g ϵ G such that 0 < f(q) < x.
- (ii) If x < 0, then there exists a h $\mathfrak E$ G such that x < f(h) < 0.

<u>Proof</u>: To show (i), suppose that 0 < x. We shall show that there exists a g ϵ G such that 0 < f(g) < x. Suppose not. Then there does not exist a g ϵ G such that 0 < f(g) < x. Let $A = \{a \epsilon \mathbb{R}^+ | \text{ there does not exist g } \epsilon \text{ G such that } 0 < f(g) < a\}.$ A $\neq \emptyset$ since $x \epsilon A$.

We shall show that A has an upper bound. Let $g \in G$ be such that g > 1. Then f(g) > f(1) = 0. Since (G, \leq) is densely ordered, 1 is upper dense. Thus there exists an h ϵ G such that 1 < h < g. Then 0 = f(1) < f(h) < f(g). Therefore $f(g) \notin A$. We claim that f(g)is an upper bound of A. Suppose not. Then f(g) < b for some $b \in A$. Thus 0 < f(g) < b, a contradiction. Hence we have the claim. Since IR is complete, A has a supremum. Let $z = \sup(A)$. If $z \notin A$, then there exists a y ϵ G such that 0 < f(y) < z. Thus there exists an $r \in A$ such that f(y) < r < z, it follows that 0 < f(y) < r. Thus r $\not\in$ A, a contradiction. Therefore z \in A. Since $\frac{3}{2}$ z > z, $\frac{3}{2}$ z $\not\in$ A. Then there exists a t ε G such that $\frac{3}{2}$ z > f(t) > 0 which implies that $\frac{3}{2} z > f(t) \geqslant z.$ If f(t) = z, then f(t) > 0 = f(1). Thus t > 1. Since (G, \leq) is densely ordered, 1 is upper dense. Then there exists an s & G such that t > s > 1. Therefore 0 = f(1) < f(s) < f(t) = z. Thus $z \notin A$, a contradiction. Then $f(t) \neq z$. From (1), we have that $\frac{3}{2}z > f(t) > z > 0$ Now, we shall consider the sequence $((\frac{n+1}{n})z)_{n\in\mathbb{Z}^+}$ in \mathbb{R}^+ . Note that $\lim_{n \to \infty} (\frac{n+1}{n} z) = z$. By (2), (0, f(t)) is an open set containing z. Then there exists an N ϵ Z⁺ such that n \geqslant N implies that $(\frac{n+1}{n})z \in (0, f(t))$. Let n = N. Therefore $(\frac{N+1}{N})z \in (0, f(t))$, so $f(t) > (\frac{N+1}{N})z > 0$. Now, we have that $(\frac{N+1}{N})z > z$. By (2) and (3), $\frac{3}{2}z > f(t) > (\frac{N+1}{N})z > z$.

Since $(\frac{N+1}{N})z \notin A$, there exists a $v \in G$ such that $(\frac{N+1}{N})z > f(v) > 0$. (5)

Case 1: f(v) = z. Then f(v) > 0 = f(1), so v > 1. Since (G, \le) is densely ordered, 1 is upper dense. Then there exists a $w \in G$ such that v > w > 1. Thus f(v) > f(w) > f(1) = 0, so z > f(w) > 0. Then $z \notin A$, a contradiction.

Case 2: f(v) < z. Then 0 < f(v) < z by (5). Thus $z \not\in A$, a contradiction.

Case 3: z < f(v). From (4) and (5), we have that

 $\frac{3}{2} z > f(t) > (\frac{N+1}{N})z > f(v) > z. \text{ Thus } \frac{3}{2} z - z > f(t) - f(v) > 0,$ so $\frac{1}{2} z > f(t) - f(v) > 0.$ (6)

Since f is homomorphism, $0 = f(1) = f(vv^{-1}) = f(v) + f(v^{-1})$.

Thus $f(v^{-1}) = -(f(v))$(7)

From (6) and (7), we have that $\frac{1}{2}z > f(t) + f(v^{-1}) > 0$ which implies that $\frac{1}{2}z > f(tv^{-1}) > 0$. Therefore $z > \frac{1}{2}z > f(tv^{-1}) > 0$. Hence $z \not\in A$, a contradiction.

This show that there exists a g ϵ G such that 0 < f(g) < x.

(ii) follows easily from (i) so we have proven the lemma. #

Theorem 1.30. Let (G, \cdot, \leq) be a densely ordered group and let $f: (G, \cdot, \leq) \rightarrow (IR, +, \leq)$ be an order monomorphism. Then f(G) is strongly dense in IR.

<u>Proof:</u> Assume that y, z \in R are such that y < z. We shall show that there exists a g \in G such that y < f(g) < z. If y = 0 or z = 0, then by Lemma 1.29, so we are done. Suppose that y \neq 0 and z \neq 0.

Case 1: y < 0 < z. Then y < f(1) < z.

Case 2: 0 < y < z. Then 0 < z-y, it follows that $0 < \frac{1}{n} < z-y$ for some $n \in \mathbb{Z}^+$. By Lemma 1.29, there exists a $g \in G$ such that $0 < f(g) < \frac{1}{n}$. (1)

By the Archimedean property, there exists an m $_{\epsilon}$ Z⁺ such that mf(g) > y. Let A = {l ϵ Z⁺ | lf(g) > y}. A \neq Ø since m ϵ A. Let N = min(A). If N = 1, then y < f(g). From (1), we have that y < f(g) < $\frac{1}{n}$ < z-y < z, so we are done. Suppose that N > 1. Then N-1 ϵ Z⁺. Thus 0 < (N-1)f(g) < y which implies that -y < -(N-1)f(g) < 0. Therefore we get that Nf(g)-y < Nf(g)-(N-1)f(g) = f(g) < $\frac{1}{n}$ < z-y. Hence Nf(g) < z. But we have that y < Nf(g), this implies that y < Nf(g) < z. Hence y < f(g^N) < z.

Case 3: y < z < 0. This can be easily proven using Case 2.

Hence f(G) is strongly dense in ${\rm I\!R.}$

Theorem 1.31. Let (G, \cdot, \leqslant) be a complete densely ordered group. Then (G, \cdot, \leqslant) is isomorphic to $(\mathbb{R}^+, \cdot, \leqslant)$.

<u>Proof</u>: We have that $(\mathbb{R},+,\leqslant)$ is isomorphic to $(\mathbb{R}^+,\cdot,\leqslant)$. By Proposition 1.25 and Theorem 1.28, (G,\cdot,\leqslant) can be embedded into $(\mathbb{R}^+,\cdot,\leqslant)$. Let $F\colon G\to\mathbb{R}^+$ be an order monomorphism. By Theorem 1.30,

F(G) is strongly dense in \mathbb{R}^+ .

We shall show that F is a surjection. Let b ε IR be arbitrary. We must show that there exists a $g_0\varepsilon$ G such that $F(g_0)=b$. Suppose not. Let $g\varepsilon$ G be arbitrary. Then $F(g)\neq b$, so F(g)< b or b< F(g). We claim that there exists an h ε G such that F(h)< b. If F(g)< b, then we have the claim. If b< F(g), then by the Archimedean property, there exists an m ε Z such that F(g)0 be a But we have that F is homomorphism, this implies that $F(g^m)< b$ 1, so we have the claim.

Let $A = \{h \in G \mid F(h) < b\}$. By the claim, $A \neq \emptyset$. A proof similar to the proof of claim we can show that there exists a w \in G such that b < F(w). Thus h < w for all $h \in A$. Then A has an upper bound, so A has a supremum. Let $z = \sup(A)$. Clearly, $F(z) \neq b$

Case 1: F(z) < b. Then $z \in A$. By (*), there exists a $v \in G$ such that F(z) < F(v) < b. Thus $v \in A$. By F is an order injection, z < v. Then $v \not\in A$, a contradiction.

Case 2: b < F(z). A proof similar to the proof of Case 1 gives a contradiction.

Therefore there exists a g ϵ G such that F(g) = b. Thus F is a surjection. Hence F is isomorphism. #

Definition 1.32. A triple (S,+, •) is called a semiring iff

- (i) (S,+) is a commutative semigroup,
- (ii) (S, •) is a semigroup

and (iii) $x \cdot (y+z) = x \cdot y + x \cdot z$ and $(x+y) \cdot z = x \cdot z + y \cdot z$ for all $x,y,z \in S$. The operations + and \cdot are called the addition and

multiplication of the semiring, respectively.

Definition 1.33. A semiring (D,+,*) is called a <u>skew ratio semiring</u> iff (D,*) is a group.

Theorem 1.34. ([2]) If (D,+,•) is a skew ratio semiring, then the smallest skew ratio semiring of D (called the prime skew ratio semiring of D) is either isomorphic to

- (1) $(Q^+,+,\cdot)$ if $1+1 \neq 1$
- or (2) $(\{1\},+,\cdot)$ if 1+1=1.

Definition 1.35. A semiring $(K,+,\cdot)$ is said to be a skew semifield iff (K,\cdot) is a group with zero.

Theorem 1.36. ([2]) Let K be a skew semifield and a ϵ K be such that (K \{a}, \cdot) is a group. Then either a is an additive identity or a is an additive zero.

(The proof of this theorem in [2] does not use the commutativity of multiplication.)

Remark 1.37. Let K be a skew semifield and let a ϵ K be as in Theorem 1.36,

- (1) if a is an additive identity, then we shall denote it by 0 and we shall call K a 0-skew semifield,
- (2) if a is an additive zero, then we shall denote it by $^\infty$ and we shall call K an $^\infty$ -skew semifield.

Example 1.38. If $K = \{0,1\}$ is a 0-skew semifield, then K must have the multiplication table $\begin{array}{c|c} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 0 & 1 \end{array}$

and one of the following two addition tables;

K with the addition in table (1) is the field \mathbf{Z}_2 and K with the addition in table (2) is called the Boolean semifield.

If $K = \{1,\infty\}$ is an ∞ -skew semifield, then K must have the multiplication table $\begin{array}{c|c} \cdot & 1 & \infty \\ \hline & 1 & 1 & \infty \\ \hline & \infty & \infty \end{array}$

and one of the following two addition tables;

K with the addition in table (3) is called the <u>∞-skew</u>

<u>semifield with the trivial addition</u> of order 2 and K with the addition in table (4) is called the <u>∞-skew semifield with the almost trivial</u> addition of order 2.

Theorem 1.39. ([2]) If K is a 0-skew semifield, then the smallest 0-skew semifield of K (called the prime 0-skew semifield of K) is either isomorphic to Φ_0^+ with the usual addition and multiplication or

 $\mathbf{Z}_{\mathbf{D}}$ where p is a prime number or the Boolean semifield.

(The proof of this theorem in [2] does not use the commutativity multiplication.)

Definition 1.40. Let K be an ∞ -skew semifield. If $x+y = \infty$ for all x, $y \in K$ we say that K has the <u>trivial</u> addition. If

 $x+y = \begin{cases} \infty & \text{when } x \neq y \\ x & \text{when } x = y \end{cases}$ we say that K has the <u>almost trivial</u> addition.

Definition 1.41.A semiring (R,+,*) is called a skew ring iff (R,+) is a group.

คูนยาทยทวพยากว ฟาลงกรณ์มหาวิทยาลัย