CHAPTER 1

PRELIMINARIES

and theorems used in this thesis ur notations are :

integers,

tegers,

AN m

O\ el
AY ’

numbers ,

R i set of a. itive real numbers,

ﬂ’iﬂﬂ“ﬂﬂﬂﬂ‘ﬁﬂmﬂ‘ﬁ

L, hE 7" is t?e set of congruence classes modulo n in Z,
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(ZJ+I ’\<)‘ (Q )+) ls)) (Qo)+‘ ,\<)} (R )+) IS)) (|R01+).»)\<))
; +
(IR:,+.°,$), (R,+,*,<), (mZ,+,*,<) where m € Z’; will mean that Z, @ ,

Q;, IR+ 0, IR , IR , mZ where m € 20 have the usual addition,

multiplication and order.
\ ; . + .
(z*,min,*,<),{2"%|n ¢ 2}, min,-,Q), (@ ,min,*,<), (R",min,*,<)

will mean that Z+, {2n|n e 7, Q+, IR+ have the usual multiplication



and order and x+y = min {x,y} (minimum of x,y).
+ n PR
(z ,max,'.,\<), ({2 |n € 2},!!\6)&,',\(), ({2 'ln € Z}U {0}:max:':$)
({2nln e Z}U {°°},m'axu;\<). (Q+lmax).)\<)l (R+:max:°:$): (R+U {w},max,°,\<)
will mean that Z*, {2"|n e 2}, {2|n e 2}u {0}, {2%|n e B}U (=}, ", R"
have the usual multiplication and order and x+y = max {x,y} (maximum of

X,Y) .

Definition 1.1.

—J
B : @a nonempty set X is called
an order on % / “ O

, order < on X. We shall

denote it !

g ¢ o
Defi 18- ’J ﬂW%ﬂg‘Tﬂ it. Then the opposite
is defined by x
PP

order q » denoted by < y iff y € x for all

’QW"Tﬂﬁﬂ‘iﬂJ UA1INYA Y

Definition 1.3. Let (X, <) be an ordered set and B €& X a nonempty

set. Then be B is a minimum (maximum) of B iff b £ x (x £ b) for

all x € B, we denote this by b = min (B) (max (B)).



Definition 1.4. Let (X, £) be an ordered set and x € X. Then:

(i) ye X is called an immediate predecessor (successor) of

x iff y < x (x < y) and there does not exist z € X such that y < z < x

(x < z < y), we shall denote it by x-(xf),

(ii) Lower] per) discrete iff either x is a

minimum (maximum)

(iii) i 11 led di se: - is both lower and upper
di screte,
(iv) a1l iex rh diserete iff for every x € X,

x is lower (u

(v) X4 alle cete iff very X € X, X is'discrete.

Definition 1.5.

1) (%

(upper) disca

1 ordered set and x € X. Then :

de iff x is not a lower

(ii) x is called dense iff x is both lower and upper dense,
_ o W
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(v) A nonempty subset B of X is called demse in X-
iff for every x, y € X, x < y implies that there exists a t € B such

that x < t < y.

(vi) A nonempty subset B of X is called strongly

dense in X iff for every x, y ¢ X, x < y implies that there exists



a t € B such that x < t < y.

‘Definition 1.6. Let (X, <) be an ordered set and B € X a nonempty

set. Then

(i) An upper (lower) bound of B in X is an element b € X

'y x € B,

&r) bounds of B in X has a

such that x < b (b <
(ii) 1If

minimum (maxim ent is cailed the least
upper bound X, it is also called the
supremum of nf(B))).

Proposiition red set. Then the following

k) 5 t of X which has an upper bound has a supremum,
G, ver N é‘f' has a. lower bound has an infimum.

=

iplies (ii). Suppose that

(i) holds. et A S X be a nonempty set having a lower bound. To show

N ﬂﬁ?ﬁﬂﬂ?ﬂ‘gﬂﬂ“ﬁ“ ey

X is a lower bound of Then C # gisincest EiC. Bix
AP ST s <
Supremum. Let z = sup(C). If a € A, then a is an upper bound of C, so
z £ a. Hence z itself is a lower boupd for A. For any lower bound
b of A we have that b € C and therefore b < z. This shows that z is
the infimum of A.
We have thus shown that (i) implies (ii), and obviously a

similar argument will prove that (ii) implies (i). "



Definition 1.8. An ordered set is called complete iff it has either

property (i) or (ii) in Proposition 1.7+

Theorem 1.9. Let (X, <) be a complete discretely ordered set. Then

the following properties hold:

(i) every set A,

,'vhich has an upper bound has a maximum,

(ii) 'has a lower bound has a minimum.

- By Propositi sup(A). To show that

z € A, suppose for all a € A. Therefore

A. Hence (i) "*‘ y imilar argument will prove that
ii) holds.
(ii) holds "
+ ordered sets and f: X = Y
h'ff for every x, Y € X, X £V

implies that ﬁgx) f(y)

ﬂfﬂ $H3 E}%‘i"ﬁ“&fﬂ A% =

1nject1 -

A8 ARG Y 2 e

surjectlon.

If an order map is a bijection, we call it an isomorphism.

f is called an anti-order map iff for every X, y € Koy S Y

implies that f(y) S* f(x), anti-order injection, surjection and

isomorphism are defined‘similarly.



Proposition 1.11. Let (X, <) be an ordered set. Then (X, <) and

(X, £ ) are anti-isomorphic.
opp

*
Proposition 1.12. Let (X, <) and (Y, < ) be ordered sets. Let

f: X 7 Y be an isomorphism hen X is complete iff Y is complete.

*x * *
(Y, £ ) and (Z, £ ) are

ordered sets. 7 Ne anti -isomorphisms. Then
gofy X =+ Z i n_g 1S

Definition 1 $ <) be ‘ i set.A cut in X is a

Proposition 1.13.

(i) wif b e

xists a.t € A such that b < t.

Definition 3 415 A s : 7] 1' d an ordered semigroup

iff (s, +) ism semigroup and < is an orar on S sat;sfying the
propert ﬁﬂevery x, vy €8, x £ y implies that x+z < y+z and
m\ﬁuﬂlﬂﬂﬂiﬂﬂﬂﬁi
ARIAIAINURIINEDAL... ..

ordered semigroup.

Definition 1.17. An ordered semigroup (G,s,<) is called an ordered

group iff (G,e¢) is a group.

Remark 1.18 (G,*,<) is an ordered group iff (G,',\<°pp) is an ordered



group. Furthermore,

(i) For any x, ye G, x <y iff xz < yz and zx < zy for all

z £-G,
% 2 -1 -1
1Y) For anw %, ¥ €6, x <y iff 9y <x 3,
(iix) 1If 165*) is : lian Qroup, then (G,*,<) is isomorphic
to (G, '\opp
Proposition 1.ﬂ!.-.--- ,? »<) be an ed group and let x, y € G
~be such that x < he|following properties hold:
(1)
(2) orjall n ¢ 27,
(3) 2" < z” for all z > 1.
Proof are such that x < y. To show (1),
let n € Z thi's by using induction on n.

-

Ifin =9, :th§ is true for n-1 2> 1.

i
“S“‘”“‘qﬂﬂﬁ‘vm RS
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Therefore x™ < yo-1, By Remark 1.18 (i

n- 1)

x(x™” ) < x(y . By

Proposition 1.20 Let (G,+,<) be an ordered group. If |G| > 1 then

G has no maximum element and no minimum element.

Proof: Assume that 1G) > 1. Now, we shall show that G has

no maximum element. Let x € G be arbitrary. It suffices to show that



there exists a y € G be such that x < y. If x < 1, then we are done.
If 1 < x, then by Remark 1.18 (i), x < xz, so we are/ done. Suppose

that x = 1. Let ye g {1}. If y > 1, then done. If y < 1, then
=1

y > 1 so we are done.

Similary, we can shov‘[ at G has no minimum element. "

Proposition 1.21 i beﬁed group. If there is

x € G such that e

or X is upper dense, then

(G, <€) is densely re : ' ib"':gﬁ G is either lower discrete

such that x is lower dense

or x is upper dens : PP : _ & oper dense. Let g € G be

arbitrary. First,

such that g < y. “— ere exists a z € G such that
~ ; 3

#4'x). Thus x < yg_1x.

Since x is uppeink'e’ se,

which implies that.g < zx < ‘& Therefore g is upper dense.
p % g b 4

iatky Eﬁ‘“’ﬂl‘l"}ﬂ LRI LIt SRR

By Remark *I18 (Ai) x <8 ‘ Since x is upper de , there exists

: vq R 7 A DA E*Ja’]ﬂ Bk

There ore x is lower dense.

G suﬂm that x < z < yg-1x

Finally, we shall show that g is lower dense. Let t € G be

such that t < g. Then by Remark 1.18 (i), t(g_1x-1) 4 c_;(g_1x-1

Thus tg-1x‘1< x~'. since x~' is lower dense, there exists awe G

such that tg—1x_1< w < x_1. By Remark 1.18 (i),

tg—1x-1(xg) < wixg) < %! (xg) which implies that t < wxg < g.
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Therefore g is lower dense.

This shows that g is dense elemenf in G. Since g € G is
arbitrary, (G, <) is densely ordered. If x is lower dense we can use
a similar proof to show that (G, <) is densely ordered.

Using the same proof that we just used above we get that if

there is an x € G whic lower discrete or upper discrete

Remark 1.22 / an ordered group. Fix gq¢ G. - Then 9o

~is upper dens hat (G, <) is either densely

ordered or dis

(ii -xistsiwm € 2 suc : X

Proof J To hw 1) 1mp11es (um suppose that (i) holds.

=L ﬁﬁﬁﬂeﬂﬁfw HRe

Case 1: 1<x<y. Th%nbyRemar 118(11), <x <1<x, so we
Case 2: x < 1 < y. Then by assumption, x" >y for some n € Z . By

< L M -m
assumption again, y > x for some m € Z. Therefore y < x and

-n e z¥, it follows that y "<x "< x.

Case 3: X <y < 1. This proof is similar to the proof of Case 2s
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We have thus ckecked that (i) implies (ii), and obviously the

same arqument, will prove that (ii) implies (i). "

Definition 1.24 An ordered group of order > 1 is called Archimedean

iff it has either property (i) or (ii) in Proposition 1.23.

J

Proposition 1.25.

order > 1. Then

Proof : e such that x < y.

Suppose that y = « how that there exists

ann € Z such ppose not. Then X" Ly

for all n € Z. is an upper bound of L.

Since L € G and e f , least upper bound. Let

z = sup(L).

Case 1: x < il all ne Z. Let me Z.

Then m-1 € Z.‘ xm < zx. Therefore

m ¥ : ;
x < zx for all m € Z, so zxXx 1s an upper O

LR L52 k)t In e

contradiction.

ARVAIATUUNITNYIEY o

Therefore we get that (G,*,<) is Archimedean. "

s Thus 2:.< 2x.- By

Theorem 1.26 Let (G,*,<) be an Archimedean discretely ordered

group. Then (G, <) is complete and (G,*,<) is isomcrphic to (Z,+,5).
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Proof: We shall show that (G,*,<) is isomorphic to (Z,+,<).
Since (G, <) is discretely ordered set and lGI > 1 there exists a

g € G such that g > 1 and there does not exists a z € G such that

g >z S e i e (*)

= {gnl ne 7}.  To prove the claim,

We claim that G = <g> where

let x € G be arbitrary that x € <g>. If x = g, then

X € <g>, so we are ¢ 5
—

Case 1: x<g/

Suppose that x #1.

for some m,€ Z-

Let N = max(A). Thus 1 < xg < g which

contradicts (*). Therefore x £ gN+1. If

x < gN+1, then gN < )x < (g N) N+1 . Then
———— - _N+1

1% x < g which con ot Therefore we get that x = g 5

Case 2: e p;ﬁ)f of Case 1 shows that

e xg
«ﬂr%ﬁ AN HRTHER Tz o

=cg>, so we have the claim. Hence $*) ¥s.a C)ﬁ.hc group. By

’Q KR ERTE T mna b0 53 an

ordered infinite cyclic group. Hence (G,*,<) is isomorphic to

x € <g>.

(Z,+,<). It follows from Proposition 1.12 that (G, <) is complete.#

Lemma 1.27 Let (G,*,<) be an ordered group and a, b € G. Then the

following properties hold:
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()~ Tf a@ < b" and where m, m_€ Z and n, n_€ 2+.

1 1

::I'__B

513
n
-

i G5
thema b ,

: m
(13) I am>b,nand£n-=—1 where m, m, € Z and n, n €2+.
X n n1 1 1
m n
then a : > b !
Proof R and-'5=— where
- n- n,
m, m € Z and n, 9 (1), we have that
(@™ < M e R et
nm, nn,
Now, we have that ave that a S o o
m, n
so (a ) (b )4F FF S AR S.... LSRR gt ey (2)
n, m n, n m, n
If b " <'a ) < (a ') which

‘»f of (i). 4

Theorem 1.28. Lei» G,*,<) be an chlmedean densely ordered group.

Sy fcryie STRhe
qﬁﬁa\iﬂﬁnﬁwﬁ?ﬂmé‘ﬂ“”

Let -V ':eglamsbnandn>0}and

o
I
s
|

U = {%team>Dnandn>0}.
Step 1. We shall show that Vb # ¢ and Uy # 9.

Case 1: a = b. Then 1 st, so Vb;é @g. Since 1 <a, b=ac<a.
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Thus 2 € Ub. Therefore Ub # 0.

Case 2: a < b. Tnen 1 ¢ Vb’ so Vb # §. By the Archimedean property

a” > b for some n € Z. Thus n € Ub' Then Ub £ 0.

Case 3: b < a. This proof 1s 51m11ar to the proof of Case 2.

7
. U&prove this, suppose not.

€ Vp and t € U, . There are

m.s b" and

Therefore Vb ' and.

Step 2. We shall

Then V, N U, # ay

m, r'ec 2 and n, &8
aF 5 % . ' e N R iyl

By (1) and Proposi anr, it follows

: e T A ms _ _ms
that a"° < anr.' : ~this implies that & < a ,

a contradiction.

Step 3. We s 3&1 and for every t € Ub’

s < t. Let s € o1s = £-for some £,m € Z

and n, g € zt. .erefore am bn and al > ﬁg] By Proposition 1.19 (1),

e B /] 9B PG < e

£. Hence gt

ﬁl‘mﬂﬁﬂim URIAINYA Y

Step 4 . We shall show that sup(V Yo 1nf(U ). ~Let ty€ Uy - By -

SIE

Step 3, s < t, for all s ¢ Vi,- Then t; is an upper bound of V-

Thus sup(Vb) <ty Since tge Uy is arbitrary, sup(Vb) < inf(Ub).
If sup(Vb) < inf(Ub), then there exists an r € @ such that

sup(Vb) <TE inf(Ub). Thus r ¢ Vb and r ¢ U_ which is a contradiction.

b
Therefore we get that sup(Vb) = inf(Ub).
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Define F: G =R Dby = sup(Vb) for all b € G. Cflearly,

F‘is well-defined.

.Step 5. We shall show that F is an order map. Let x, y € G be such

that x < y. We claim that V € V . To prove the claim, let we V_.

m m n
Then w = = for some m E: nd for some n € 7. Therefore a R i

By Proposition . . Thus w =

=R -]

€ V . Hence
y

v » SO Wi [ e !__ﬂ.aluu-ﬁulfore sup(Vx) < sup(Vy). Hence

abelian group. Let a, be G
€ G, x > 1 implies that there
x. To prove the claim, let

x € G be suc ) is densely ordered, x is a lower.
dense. Then gl G such thak x> y > 1. Thus

1 % e x_<x.’_“':,,,.' A heson vrhsenhi)

~ and we have the claim by (2).

, 4 yﬂxy-1x, so 1 % y-1xy-1. Thus

Suppose thg

<ﬁ o which=implies thatlﬁy2 x. Let z =y , so we have the claim.

WELI LN INELIR Do somesise, mmvone

Cab.: Then We ma il 16t % = ablF b V. By the claim,

f-na hmmmmmm&a. ............

By Proposition 1.25, (G,*,<) is Archimedean. Then there arem, n € 2

such that 2" £ ac< zm+1 and z" £ b < zn+1. ..................... (4)

From (4), we have that a”l < 5™ and b"1 < z . Therefore

X = aba-1b-1 < (z

m+1) (m+n)+2)(z-(m+n)) Lt

T o e

which contradicts (3). Thus ab = ba for all a, b e G. Hence (G,*) .

016437
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is an abelian group.

Step 7. We shall show that F(xy) = F(x) + F(y) for all x, y € G.

Let x, y € G be arbitrary. We shall show that the following properties

hold:

V = {s+t | s € V and t € V }.

g{VﬂrlveU andwt-:U}

s+t for some s E V

(i) Vx+ vyc v
(ii) U +uU
X

To show

and t € vy. Then € Z . By Lemma 1.27,

m n )

a £ x and a s

2

By Step 6, xnyn that P (xy)n.

Therefore E%f € V

c 5
ence Vx+ Vy__ ny
4-‘ = b :
The proof of (ii)-is similar to the proof of (i). From (i),

we have that sup(

From (6), we

F(x) + F(y) < F(xy)

(..)ﬂugcmgmwmm ..... C Laihd
AR TSI N g

F(x) + F(y) 3 xy SR R e e e R L e S s (9
By (7) and (9), F(xy) = F(x) + F(y).
Step 9. We shall show that F is an injection. We want to show that

ker (F) = {1}. Suppose not. Then ker(F) # {1}. Let b e ker(F)~ {1}.

Theni‘b. <. 1 or-1 < b
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Case 1: b < 1. Then b < 1 < a. By the Archimedean property, am < b.
fc;r some me Z , so & <b< 1. By the Archimedean property again,
b” < a™ for some ne 7 . Therefére % € Ub and !rﬂl < 0. But we have
that b ¢ ker(F), this implies that F(b) = 0 = sup(Vb) = inf(Ub).

Thus 0 < n’ a contradiction.

Case 2: 1 < b.

'% < b < ab. By the Atchimedean

<b<ab<a. By the

- property, ab < a
m
Thus — € V and-—> 0.
n n

Archimedean propﬁ' X

But we have that b , implies that F(b) = 0 = sup(Vb).

;I‘his show . J ‘ onomorphi sm.

is arbitrary. 'ﬁen't :

crtied| hold :
<0 QUETTETSNE AT ™
QAT AR

Proof: To show (i), suppose that 0 < x. We shall sﬁow that
there exists a g € G such that 0 < f(g) < x. Suppose not. Then there
does not exist a g € G such that 0 < f(g) < x. Let

{a € R"| there does not exist g € G such that 0 < f(g) < al.

A # @ since x € A.
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We shall show that A has an upper bound. Let g € G be such
that g > 1. Then f(g) > £(1) = 0. Since (G, <) is densely ordered,
1 is upper dense. Thus there exists an h € G such that 1 < h < g.
Then 0 = £(1) < f(h) < f(g). Therefore f(g) ¥ A. We claim that f(g)

is an upper bound of A. Suppose not. Then f(g) < b for some b € A.

‘ p Hence we have the claim. Since
L % sup(A). I1f z ¢ A, then

. Thus there exists an

Thus 0 < f(g) < b, a contr

R is complete, A has a sup

there exists a y € G.such that .0

r € A such that ty 8

r ¢ A, a contradicti . ] —f  Since % z.> Z, % z ¢ A.

that 0 < f(y) < r. Thus

Then there exists

densely ordered, 1 i ) . Then there exists an s ¢ G such
that + >'s > 15

a contradiction

—;-z>f(t) >z>@ - R e i R Y. e st st e (2)

Now, we shﬁ ﬁ gﬂﬁw W%JWTE}?T ﬂ j,n R*. Note that

n+1 ZATBY (2) (0 f(t)) 1s an open set contalnlng 2

menaamax'm AURIINHIRY

(-ril)z € (0, f(t)). Let n = N. Therefore (——-)z € 60 £(€)), so

f(t)>(-bﬂ)z 0. BN s S S R (3)

Now, we have that (-I-\J;—1)z > 2By (27 and 3, §z>f(t) >(§1-1-)z>z
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Since (N—;J—)z ¢ A, there exists a v € G such that (iz-l)z> f(v)>0.

Case 1: f(v) = z. Then f(v) >0 = £(1), so v > 1. Since (G, £) is

densely ordered, 1 is upper dense. Then there exists a w € G such

that v > w > 1. Thus f(v) > (1) =0, so z > f(w) > 0. Then

Z2 ¥R, & conttadictio

Case 2: f(v) <z . Thus z.d;A, a

contradiction.:

Case 3: z < f(v) , . lave that
-g-z > f(t) > (N%) - ATy A A, > f(t) - f(v) >0,

PR S e NI GRS

so%z > f(t) - f(v

Since f is homomorphism, -8 =E (W) aET Y

PRl s il?)

Thus £(v™1) = =
From (6) and (7) ) > 0 which implies

that = 1 z > f(tv_ )f 0. Therefore z > -1- A f(tv ) > 0. Hence

Lo acﬂ,umwamwmn‘a‘

Thls show that therefexists a gee G such that 0 < f(g) < x.

AWIANN U NN TIVIE TR E

(ii) follows easily from (i) so we have proven the lemma. "

Theorem 1.30. Let (G,*,<) be a densely ordered group and let

f: (G,*,<) = (R,+,<) be an order monomorphism. Then £(G) is strongly

dense in IR.
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Proof: Assume that y, z € R are such that y < z. We shall
show that there exists a g € G such that y < f(g) < z. If y =0 or
z = 0, then by Lemma 1.29, so we are done. Suppose that y # 0 and

Z#05

Case 1: y < 0 < z. Then

Case 2: 0 <y<z. IOWS that 0 < H < z-y for
some n€ Z'. By L '  th g € G such that

B ; ' '
0 < flg <= . ’ N g T TR (1)

mf (g) > y. . _. . > \ d @ since me A. Let

y < f(g) < % < z-F lwe ared ne. Suppose that N > 1. Then

o O hich implies that -y< -(N-1)f(g) < 0.

Therefore we ge = f(g) < ;11- < z-y.

Hence Nf(g) < z is implies that

y < Nf(g) < z. Ence y

w=r AYHIRBNTHEIAT ==

RTINS A Y

Theorém-1.31. - Let (G,+,<) be a complete densely ordered group.

Then (G, ,<) is isomorphic to (IR+,-,\<).

Proof: We have that (R,+,<) iS isomorphic to (IR+,°,\<). By

Proposition 1.25 and Theorem 1.28, (G,*,<) can be embedded into

(IR+, »<). Let F: G — R* be an order monomorphi sm. By Theorem 1.30,



" F(G) is strongly dense in R'.
We shall show that F is a surjection. Let b € R* be arbitrary.
. We must show that there exists a goe G such that F(go) = b. Suppose
not. Let g € G be arbitrary. Then F(g) # b, so F(g) < b or b < F(g).
We claim that there exists an h € G such that F(h) < b. If F(g) < b,

~then we have the claim. Q\\‘#/%/E then by the Archimedean property,

there exists an me Z ‘that m b. But we have that F is

<

homomorphi sm, this i 1 ;
: Let A = G|

similar to the

so we have the claim.

claim, A # §. A proof’

there exists a we G
~such that b < F(

bound, so A has a

Case 1: F(z) < b Ve AV B there exists a v ¢ G such

that F(z) < F(v) < b.- ! S 'y F is an order injection, z < v.

ot
=t

ction. ’

2
=

Then v ¢ A, a iolntrad)_

Case 2: b < F(ﬁ emroof of Case 1 gives a

contradiction.

‘o v
Tﬁ%euﬂhgemm ‘jew ﬂﬂtﬂtﬁ(g) = b. Thus F is
@ surjection. Hence F is igomor

AT TIAINgaY

Definition 1.32. A triple (S,+,*) is called a semiring iff

(i) (s,+) is a commutative semigroup,
(i1) (S,+) is a semigroup
and (1ii1) xe(y+z) = x°*y + x°z and (x+y)*z = x+z + y-z for all

X,yY,2 € S. The operations + and * are called the addition and
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multiplication of the semiring, respectively.

Definition 1.33. A semiring (D,+,°*) is called a skew ratio semiring

iff (D,*) is a group.

Theorem 1.34. ([21]) N ys a skew ratio semiring, then the
smallest skew ratio semiring of @d the prime skew ratio :

semiring of D) is‘either is D

or (2)

-Definition 1.35. id to be a skew semifield

iff (K,*) is a grou

Theorem 1.36. ([21) Det K

. skew semifield and a € K be such
AN

that (K\ {a} ”_) i an additive identity

Vo d

or a is an additive

(The proof of this theorem in [ 2 ]ﬂ,es not use the
T UTINENINEINT
PRI IR INa e -

(1) if a is an additive identity, then we shall denote it

by 0 and we shall call K a O-skew semifield,

(2) if a is an additive zero, then we shall denote it by ®

and we shall call K an «-skew semifield.
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Example 1.38. 1f X = {0,1} is a 0-skew semifield, then K must

have the multiplication table 10 1
0j0 0
110 1

and one of the following two addition tables;

K with e field 22 and K with

the addition i an semifield.

1f K= hen K must have the

multiplication

addi tion of order 2;

Theorem 1.39. (l2]) 1If Kis a O-skew semifield, then the smallest

O0-skew semifield of K (called the prime O-skew semifield of K) is

ei ther isomorphic to QE with the usual addition and muitiplication or
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Zb where p is a prime number or the Boolean semifield.

‘(The proof of this theorem in [ 2] does not use the

commutativity multiplication.)

Definition 1.40.

If x+y = @ for all

X, y € K we say that K | e tris If

addition.

Definition 1.41.A d a skew ring iff (R,+)

is a group.

ﬂ‘lJEl’J'VIEWIﬁWEI'm‘i
amaﬂﬂmumawmaﬂ
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