CHAPTER IV

EFFECTIVE ACTION FOR ADIABATIC PROCESS

In this chapter we shail be iiﬁterested in the path integral frame work in
topological structure asstimd!’éted by‘i the recent discovery of the quantum adiabatic
theorem. The problem 1s smte¢ as }ollows Kuratsuji and Iida find this way of
formulating the Boryéppenheime.r l.dca much more appropriate, and easier to
generalize, than the ygual ffﬁrmulatlo fm terms of fast and slow variables. The
connection between theﬁwo is as follow,s’ Transitions to states separated by a large
energy gap require large chaqgcs m frequq;cy, and are therefore associated with fast
variables. Rapid oscxllatlons m tlme ngompany such transitions, and lead to
cancellations in prqbcsscs whose characteristic time st;ale is much longer than, in

y
processes assoc1ated/ with motion of the slow variables. waards the end of this chapter

we shall discuss thc?clationship between these two a_pproaches more precisely. It is
appropriate to miéntion one conciusion from that discussion,now, however, we shall
find that quantum variables can only be slow in a very weak sense. For example, in a
path integral description, the important space-time paths are not-differentiable, and the
typical velocity is strictly speaking infinite even for so called slow variables throughout

this thesis.

Lagrangian Formulation

Often it is more convenient to work with a path integral description.

Phenomenological models are typically easier to formulate in terms of a Lagrangian,
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where symmetries are manifest. Non equilibrium and non perturbative problems, such
as calculating tunneling amplitudes may be easier to solve in the language of path
integrals. In addition, as we shall see, it is much easier to incorporate corrections to the
adiabatic approximation (which are higher order in time derivatives) in an effective

Lagmnglan

In the derivation of effective Lagrangrans, we should expect, and will find, that
geometrical phases occur. This 1s panticularly‘ clear if we think in terms of path
integrals. Then along aay particular path the slow degrees of freedom can be
considered as external paiémeters got}erning the state of the fast ones. Therefore,
the amplitude for such 2 path cah contain 4 geometrical phase factor of the classic type.
Geometrical phases of th‘ls sort are!conheeted with some of the most subtle and
interesting phenomena in QUgmum freld theory, including the occurrence of fractional
quantum numbers and anomahes s Altholigh Berry s phases have such an appealing

feature, they are still concemed thh the smac aspect only, i.e., the time development

of the external parameter space is glven form the outset. Actually, the parameter space

itself can be regar_aed as a dynamic object. For examfﬂd, in the Born-Oppenheimer
theory, the internucle_hr distance, which is frozen is regérded as a dynamical variable.
Thus we are forced to inquire a dynamical “meaning to Berry's and Simon's topological
phases. The review of this chapter is to put forward an answer to this question. A
similar dynamical argument was suggested by “Mead and Truhlar, before Berry and '
Simon, They showed that this-specific phase acquires~ a meaning of the effective
vector potential in the Schrodinger equation for the nuclear motion in molecular
collisions. However, the argument based on the Schrodinger equation is of essentially
local nature and does not seem to be appropriate for describing the global character of
this non integrable phase. In order to push the global aspect forward, we adopt
the path integral formulation for the bound state problem of two interacting

systems. In this formulation, the geometrical phase naturally arises as an additional
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action to the conventional action function induced by adiabatic processes.
Simultaneously this topological action is shown to modify the semiclassical

quantization rule for the motion of the external system.

Effective action by path integral

Consider two interacting systéms, which are described by variable
conventionally called "intemal"” and “eoiEave" coordinates; r and R respectively.

We adopt a Hamiltonian g

= hr R)+ﬁo(P,R) \ (1)

'_a-

where the internal Hapﬁltoman h 1s_assumed to depend on R and not on its conjugate

momentum P. Let us cohsuier the trace 5of the evolution operator

K(T) = Tr (exp[- iﬁT“ i

By

which is written as

Yy

K(T) = Y f(n (Ro),Ro)exp[--}ii-ﬁT]

n(Rq).,Ro>du (Ro) (2)

n
In Eq.(2) one naturally picks up-the transition amplitude for the quantum process
starting from the initial state |n(Ro), Ro) ( =|n(Ro))®| Ro)) and returning via closed
loops:C to/the same'state. Here| Ro) denotes the eigenstate of Hg(P; R) and In(Ro)) is

the eigenstate of h (r,R) at R =R with eigenvalue E; (Ry). Then with the aid of

time-discretization together with the completeness relation holding for |R ), we get

<n(Ro),R0|exp[-ﬁiﬁT] ’n(Ro),R0>

=<n(R0),Rolexp[-ﬁi€I?IN]’n(Ro),Ro> (3)
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with € =T/N and the identity

exp[-}{ ﬁN]: lim (l-ﬁieH :

The R.H.S. of Eq.(3) is equal to

(4)

)

Q,WEW]TWEJ’m‘i

Y .. HD[RQ Ro) Ro exp[1- Lefl >
Q‘W Ay ﬂﬁm JMLE

RN : cxp -—-eH lRN 2> <R2|exp[1-ﬁieﬁHR1>

<R1‘exp[l- -%-eﬁ“ n(Ro),Ro> 6)

Further noting the relation for € =0 and that € and | Ry - Ry | are small
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(7

Therefore

Rk CXP[ le Rk‘l

NENTNEINT
wﬁdmm WY RRBIE B e

Eq.(2) can be expressed as

K(T) = ; f Tan (C) exp [%‘ So (C)] H du(Ry, Py) (9)
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where

Se(C) I(P R - Hp)dt

is the action for the collective motion along closed loops C. T, (C) is just the

internal transition amplitude and given by

T (©) = (n Raerpl-t A 8B] 1500 a®o)) (10

"

i.e., the time ordered plﬁuet where h(ks denotes the internal Hamiltonian at the point
R =R, on the loop Q,(‘Peqhukas, 1969).,Namcly, if we denote|@,(T)) as a solution
of the time-dependent, Schquinger equduon

% 4
:.(
dia

_ﬁ /s

(iﬁ 8 H (o) R)‘)-jé; )
ot b

|
B _

o 2 .r -
with the boundary;éndition |3,{0) = |n(Re), T, (C) é written as

LY J‘I

Tra(C) = (n(R)!B, (9)

Under the above prescription we ' turn to the ‘case of  the adiabatic motion where the

period T is large. By inserting the completeness relation holding for the internal state

on each point of external variables Ry, ;

D Imy) (my| =

my

Eq. (10) is written as

Tan (C) = (n(Ro)|e'jﬁ'B(N)€e’%ﬁ(N'l)e--- e'%ﬁ(z)ee'%ﬁ(l)sln(Ro» (11)
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Ton (C) = Z( (Ro)|e Lh(Ne,-LR0v)e -gi-ﬁ(s)ee-ji-ﬁ(z)e'm)

. W X
1):-:e % h(N 2)s|mN_3>

Ton () @ﬂ%ﬂﬂ%}mawa?ﬂﬁ |2 )

my mMN.3 M2

ama\mm URIINYIAY

h(N-2)e h(N-3)e

|mN3)(mN3|eﬁ Il'nN-4>

<mN 2|eﬁ

ek R0 (Ry))




--(mlle'%f‘“"ln(ko)) (12)

Now consider the term ﬂé& the adiabatic approximation, we
:

pick up the quantum ( betwee states

with the same quantum number

&

U8 LIRS LR
RIAIN IR B A
= o[- L En(Ue] (| n(Ro)) (13)

consider Eq.(12), we used Eq.(13) so that, Eq.(12) can be rewritten as

AIDHS N H%
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Tw(©Q) = XY e # =M (nRo)my.1 ) e § 0D (my | my.,)

m,y mN-1
i Ea(3)e i Ea(2)e -LE(1)e
e % (m3|my) e % (mz|my) e # ( mp|n(Ro))
(14)
we now obtain
- -
Ton (C) = exp|- lf En(Rt) dt| (n(Ro)|.n(R1))c (15)
l
Here the overlap funcﬁon‘ {a(Ro)| ; (R'i{} )ic is given as an infinite product
'-TJ-'.
(n(Ro)| n(Ry))¢ = Nl@w I'LGH(Rk)I n(Ry.1)) (16)
£ o KA,

i
f

where we adopt a phase convention In(Ro)) =|N(RT) (~ . This overlap function
naturally invelves the history of excursionin 'the R-space which is indicated by the

suffix C. Each'factor (n (Rg)| n(Rk.1)) in Eq.(16) defines a connection between two
infinitesimally separated points 'Ry “and Ry, hence Eq.(16) gives a finite connection

along “circuit C given by a set of division points {R,} . Thus, by using the

n> ARi

approximate relation

oR;

= exp [ <n

 (Re)ln (R 1) = 1-<n
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= cxp{i <n i g n> AR; (17)
Eq(16). is written as
(n (Ro)|n(R1))c ,i{ n>- dRy
y )
(18)
with
(19)
or
¢ = An(R)
H‘HEJ’J EJWTWEJ’Wﬂi
= ¢ Ay(R) - R, (20)

ARIANT UMY Y

This is essennally the same as the phase obtained by Berry. However the present
derivation of Kuratsuji and Iida is quite different form Berry's and somewhat similar
to Simon's (Simon, 1983) which is based upon the holonomy of vector bundles over

R-space. Eq.(15) will be rewritten in term of Berry's phases
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T

Tan(C) = exp -; I Eq (Ry) dt| exp[iva(C)] (21)
0

and we can write the propagator in Eq.(9) as

.

T
K(T) =2 | exp|-+ f E.(R)) dt _exp{iyn(CB]exp[%so(C)]Hdu(Rt,Pa
n 0 ‘ t

. (22)
:

Thus we arrive at the ef_ﬁetjt@,ve pam*iritegfrii associated with the adiabatic change of the
external dynamical vaﬁ%bfé '

o

P s |

. )

F ¢ i AR A

Ret(m) =% | ofe[ Lfs i O IT au (R, P (23)

n

-

where e =

)
- o

W
S;ald=so"f En (R[) dt
0
is the adiabati¢ action function. From (23) we get a natural explanation that the phase
Ya (C)~appears asya topological, action functiom, whichs is-to ~be added to the usual
dynamical action. We want the dynamics in R-space to correspond to a particle moving

in an additional vector space A (R). Thus we expect to find a piece in the effective

action &7 in R-space which corresponds to the effective Lagrangian L& (Aitchison,

1987)
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Indeed, in that case

T T
S (T) =I Leff dt =f Aq(R)- %%dt

0 0
and f
Af / 2

exp 1SS (T)] = exp {r?ﬂ )

This result is just what KurafSuji and Ii%ia obtain.

i y/w}ﬂ qbnsxderPe effect of the topological phase. The most

direct way for this i aAne the eﬂergy spectra. The energy spectra is rapidly
estimated by the semlcla§51qal quantxzauoty}'ulc (Gutzwiller, 1972; Miller, 1975) which
is derived base on the effe’énv,&_piopagator__ﬁgﬂ(23). Consider the Fourier transform of

Keff(T), where we restrict ‘ourselves tér')-fit'ispccific adiabatic level n. Firstly the

A £ )
semiclassical limit% ' @ of stationary phase,
Ke(Th) Leerp [} 974Q) win(€) Foi0) (24)
PO,

where 0(C) denotes the so-called Keller-Maslov index and 2 indicated is the sum
PO.

over periodic orbits. Next, taking the Fourier transform of effective propagator Keff(l’)

K(E) = i I K °ff (T) exp[ %El‘] dT
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KS9E) = exp [;‘i- $24C) +iy(C) - i%a(C)] exp [ ﬁiEI‘] dT

|
S
> 3

exp [% $(C) + 1ET +iv(C) - i’fz—a(C)] dT. 25)

Il
S
= H

and evaluating the integral over T by the stauonary phase, then we get the semiclassical

propagator in energy forim <

S(E) = 1 8'4@ lé*ric-"lac
K*(E) %_c@{,, 015 28T £i1(0) T5(C)

- =
i
“ #

- 2 éxp[rt Wad(Efﬂy(C) i%al C)] (26)

r
n"J."'..

’JJ

where W24(E) = Sad + ET (acnon 1ntegraU and T(E) is determined by the stationary

phase condition .~ &)

-

—a—(Sad +ET) =0, _
aT

Here, we Testrict ourselves to the case that there appear a finite number of
isolated closed orbits for each-value of the energy. For this-Case; a semiclassical
quantization condition can be written down explicitly. Namely, takifig account of the
contribution from the multiple traversals of basic orbits, i.e., puting W mb Wad,

o— m - ¢ and Y— m - Y for m-times traversals and summing over m, K*°(E) turns out

to be

KE) =~ Y exp[ ](1 exp [ﬁ W] )“ 27)
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with

W(E) = W4 (E)+#(C) - 5=

From the pole of Eq. (27§’,#/

so that

(28)

This gives :ﬂeﬂwﬁw ﬂﬂ WW gsludmg the effect of the

topologlcal

T el ARSI L B Bhrne v

explamed in the next chapter.
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