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INTR(}I?B,CTION
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The Geometrical Phase a ™

In quantum meghanic Cs, we are Istruck by the peculiar fact that an equation of

physics contains 1mag§41annnes ‘EThc time dependent Schrodinger equation
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involves i (the square r negaﬁve umty) both in its time derivative and possibly

in the Hamiltonian operato 'Fhe solutnﬁg,of Eq.( 1) are consequently complex.
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It is said that the phases Qf;_Wavc fﬁﬁ_ghpns y that solve Eq.( 1) do not matter,
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But thisis only true if y describes the entire systennis described. Since in practice

T

and perhaps even in principle we cannot construct the wave functions for everything
that might inerest us, we must/deal with wave functions that describe only a part of the
entire system, and then interference experiments between different parts allow

determination of the relative phase.

During the last few years, considerable interest has been focused on a
complex of physical ideas that share a common mathematical theme (Shapere and
Wilczek, 1989), the concept of holonomy. The recent flurry of activity began in
1984 with a paper by Michael Berry (Berry, 1984). He showed that the adiabatic

evolution of energy eigenfunctions, with respect to a time-dependent quantum




Hamiltonian H (t), contains a phase of deeply geometrical oﬁgin (now known as
"Berry's phase" or "Geometrical phase”, y) in addition to the familiar dynamical
phase exp[-iEt/#]. The additional phase approaches a finite, non-zero limit as the
Hamiltonian is taken more and more slowly around a closed path in its parameter
space R. Berry's observation, although basically elementary, seems to be quite
profound. Multiplicative phases or more "gexberally group transformations with similar
mathematical origins have been identified a‘n& "ffound to be important ina startling
variety of physical contexts: Examples of geometn'éal phases abound in many areas
of physics. Many famﬂla: problcms that we do not ordmanly associate with geometrical
phases may be phrased in terms of then). Often the result is a clearer understandmg of
the structure of the pro g fxand ah elegaht expression of its solution.

Consider, for example, the, pralbessmn of a Foucault pendulum. Standard
treatments (Symon, 1980]' ca&culaxe the rate of precession of a pendulum in a frame
rotating with the surface of the éar‘th in té;'l’ns of the Coriolis force, but a much
simpler and more geometrlc cxplananoq; may be given as follows. Suppose a
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pendulum is tmnspprted along a closed loop C, in thefgravnanonal field of a point

mass, and that the'p§5'10d and amplitude of its swmg*—-*é.re small compared to the
typical time and distance scales of the transport motion: We may assume that the loop
lies on the surface ; of a sphere,concentric-with, the mass;-although this assumption is
not necessary.dNow, when the pendulum returns to its initial position, its invariant
plane,will have rotated by seme-angle. Forpexample; fortranspert around a sphere at a
constant latitude (relative to the north pole) , a straightforward calculation shows that
the net rotation will be 27 cos 6 radians. A remarkable feature of this result is that it is
independent of the rate at which different parts the loop are traversed (provided that
the traversal is slow). This is a consequence of the fact that the Coriolis force is
proportional to the velocity of transport, so that its integrated effect is invariant under

rescaling of time. (Velocity-dependent forces, like the magnetic force on a moving




charge, tend to be associated with geometric phases.) Foi' transport along the

equator, the pendulum will not precess. This may be seen from a symmetry
argument. The rate of precession does not depend on the direction of the pendulum's
swing, so we may assume that the invariant plane lies in a north-south direction.

Then any precession would break the reflection symmetry between the northern and
southern hemispheres, so that the pcndu}u/;n must not precess at all. (Alternatively,
the Coriolis force at the equator always’” pomxs vertically, and cannot torque the
pendulum's invariant planc.) Now'if C-is made up of geodesic segments, the
precession  will all come {rém the .anglcs where the segments meet; the total
precessmn is equal tgpfﬁ:: fep deﬁcxt imgle which in turn equals the solid angle
enclosed by C modu 29«’2 Fmaﬂly, we can approximate any loop by a sequence of
geodesic segments, so/fhal the most E)general result (on or off the surface of the
sphere) is that the net paecessxon ls equalto ‘the enclosed solid angle. This result may
seem rather esoteric, but its gencrahty ap?_tg‘?omemc nature suggest its depth. In

fact, the mathematics descnbmg it lS essenﬂ}ﬂly 1dent1cal to that describing the motion

of a charged parncla in the ﬁeld of a magnetic monopole The most famous example

of a physical phase‘"is the one given by Aharonov and‘-&ohm thirty three years ago
(Aharonov and Bohm, 1959). They considered the motion of a charged particle around
a magnetic flux tube fromwhich the particle is excluded.Although the particle remains
in a region freeof any electromagnetic fields, its wave function acquires a phase given
by the'lingdintegral,around the closed particle path of thevector potential A describing
the magnetic field B. Alternatively, by Stoke’s law, the phase is the magnetic flux

through any surface enclosed by the path.

= exp[ﬁi%fds-B

As is well-known, this Aharonov-Bohm phase has been experimentally observed.

B = VXA

exp [%% f A (R)- dR




Berry's original paper on the quantal adiabatic phase, elegantly presents the key
concepts surrounding what we have come to know as Berry's phase, the gauge
invariance of the adiabatic phase, the expression of the phase as the integral of the
magnetic field from a monopole over an enclosed surface, and the theorem on
degeneracies of a complex Hamiltonian; The example of a spin in a slowly changing
field, which has become a paradigm to stﬁ'dieg (and measurements) of geometrical
phase, is shown to leaQ toa magr:eﬁc-m;nopde-like effect. Berry proposes an
experiment to measuiethe phase, by splitting a beam of coherently polarized

electrons in a magnetic ﬁsl‘d rotanng)‘the field around one of the beams, and

measuring the resulﬁﬁg pﬁase dxfference by interference.
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His purpose hem is tp explam\hhow the phase factor contains a circuit-

dependent component qtp[iyn(t}] in addiuon to the familiar dynamic component

exp[-iEt/A#] which accorqpame‘s the evdlanon of any stationary state. A general
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formula for the geometrical phasc in termFaf the eigenstates of H will be obtained in
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the next section. = |
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General Formula for Phasg Factor
Let the Harmltoman H(R) be changed by varying parameters R=(X,Y,-:)on

L (L)

which it depends. Then the excursion of the system between timest=0 and t=T
can be pictured as transport around a closed path R (t) in parameter space, with a
Hamiltonian H (R (1)) such that R (T) = R (0). The path willhenceforth be called a
circuit and denoted by C. For the adiabatic approximation to apply (Schiff, 1968), T
must be large. The state|W(t)) of the system evolves according to Schrodinger's

equation

HR @) v(©) = #] v () 2)



At any instant, the natural basis consists of the eigenstates |n(R)) (assumed discrete)

of H(R)for R = R(t), that satisfy

A(R)|n(R)) = Eq(R)[n(R) 3)

with energies E, (R). This eigenvalue ec}uation implies no relation between the phases

of the eigenstate |n (R)) at different R. FJ@m purposes any differentiable choice

of phases can be made, p_rtmded |n (19) ’i;'s"ﬁ;g{cjv_alued in a parameter domain that

includes the circuit C..™ |

grcparec%m one of these states | n(R(0))) will evolve with
i Tlgus_i_\g(t)) can be written as

exp [iva (t)]|n (R (1)) Gy

Adiabatically; 4 Sy
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The first exponential is the familiar dyna&%ﬁase fac}or. In this thesis the object of
attention is the sec’é xponential: The crucial point wil 5!? that its phase v, (t) is non-
integrable, v, canngz_;be written as a function of ngnd in particular is not single

valued under continuation around the circuit, i.e. y, (T) # v, (0)

The function 7y, (t) 1s determined by the requirement that |y(t)) satisfy

Schrodinger's'equation, and direct substitution of Eq:/(4) into Eq..(2) leads to
¥a() = i{n(R())| Ve n (R (1)) R(Y (5)
The total phase change of | W) round C is given by

T
|w(T)) = exp[iyn(C]l exp %f dtEn (R (t)||w(0)) (6)
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where the geometrical phase change is

Ya(C) = if (n(R)|VRn(R))- dR %
2
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the phase of the ;-":,m....m.

|n (R);-) exp

[1A(R)]|n(R)>

ten ﬂ‘iJEJ’WlEJW‘ﬁWEJ’]ﬂ‘i
AN WGl ‘muwm NENAY

which is analogous to a gauge transformation [ Appendix A ]. Obviously, an

(10)

observable cannot depend upon the choice of gauge, and it is clear that geometrical

phase obeys this property since, by Stokes' theorem, we can write




¥a(C) = f dR - A, (R) = fds . Ve X An(R)
C

2 de-VRx [An(R)+ VRA(R)] = de-VRx An(R) (12)
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so that ¥, is unchanged. f/f
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The analogy witk_xéelcctrpmagner:ic potentials and fields does not mean that the
effects are ncces?(-‘clcctimagnetic origin. Therefore, we shall use a
mathematical terminglogy ¥ fich/ makes no reference to electrodynamics, and call

Y ,
the vector potential” A /a g
ights

xﬁlect_io;-and the field B =V x A a curvature. This
N
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terminology also highl l%acpzt that i)hase arises from non-trivial topological
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properties of the space spanfied 531:;the ‘}}ra'meter. ,
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Outline of thesis — —
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Gcnerally,-éi:ritical step in solving quantum: éllechanical problems is to set
up the Hamiltoni;n{—'-or classically, the Lagrangian of the system. We thus begin the
second chapter with a brief review of the Bom-O_prenheimer approximation in
molecular phiysic¢s. In'chdpter Il we will study the pfiricipal' mathematical device used
in this thesis, 'the path integration téchnique formulated by Feynman and Hibbs
(Feynman and Hibbs, 1961). It has been nsed as an approach to,the geometrical phase
by Kuratsuji and Iida (Kuratsixji and Iida, 1985) as in Chapter IV. Chapter V is

devoted to a study of magnetic monopoles and geometrical phases. Chapter VI will be a

general discussion.
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