CHAPTER III

Experimental

3.1 Instruments and materials

3.1.1 Instruments

- Infrared Spectrophotometer ; Perkin Elmer 1430
- Fourier Transform Infrared spectophotometer; Perkin-Elmer model 1720
- Differential Thermal Analysis ; Shimadsu Thermal Analysis Instrument DT-30
- Scanning Electron Microscope ; model JSM-T20
- Elemental analyzer; Perkin Elmer, model 240 analyzer, USA
- Multimeter
- Potentiometer
- Digital multimeter
- Saturated calomel electrode
- Platinum electrode
- Evacuable die
- Hydraulic pressure
- Vacuum pump
- Vernier caliber

Pyrrole	FLUKA
Thiophene	FLUKA
3-Methylthiophene	FLUKA
Methanol	MERCK
Chloroform	MERCK
Acetonitrile	BDS LIMITED
Acetone	MERCK
Ferric chloride anhydrous	MERCK
Potassium thiocyanate (KSCN)	
Sodium hydroxide	MERCK
Conc. sulfuric acid	HERCK
Nitrogen gas	
Oxygen gas	
Silicone oil	

ศูนย์วิทยทรัพยากิร จุฬาลงกรณ์มหาวิทยาลัย

3.2.1 Synthesis of Polypyrrole

3.2.1.1 <u>Typical Procedure for Polypyrrole</u> <u>Synthesis</u>

Ferric chloride solution in methanol was added into 100 ml three-neck glass reactor equipped with mechanical stirrer, gas inlet tube for bubbling the oxygen-free nitrogen, calcium chloride tube and a septum. Oxygen free nitrogen gas must be passed through silica gel, pyrogallol and conc. sulfuric acid before flowing to the FeCl3 solution at 0 °C for 1 hr. After that the polymerization was started by injecting vacuum-distilled pyrrole through septum by syringe to the solution with stirring. A black powder formed almost continuous instantaneously, and as the reaction progressed the color of solution turned from rusty orange to green. The the polymerization reaction was quenched by adding copious amount of solvent (methanol) in order to dilute FeCl3 solution. Then polymer powder was filtered and washed with methanol until the filtrate was colorless and contained no Fe(III), as indicated by testing with KSCN. The polymer powder was then washed with acetone and vacuumn dried in the desiccator at room temperature .

3.2.1.2 Variation of Reaction Temperature

The polymerization was carried out in FeCl₃ solution with 3 different concentrations, i.e., 20 ml of 1.5 M, 2.5 M and 3.5 M. In each concentration, 1.00 ml of pyrrole and reaction time 20 min were kept constant. However, the reaction temperature was varried as detailed in Table 3.1.

Table 3.1 Synthesis of polypyrrole with various reaction temperature

Sample No.	Conc. FeCl ₃ in MeOH (M)	Reaction temperature (+2°C)
PP1	1.5	0
PP2		10
PP3	1200000	20
PP4	D . I N B N	NE 35
PP5	กรณ์ม	100 ⁵⁰ 106
PP ₆	2.5	0
PP7		10
PP8		20
PP9		35
PP10		50

Sample No.	Conc. FeCl ₃ in MeOH (M)	Reaction temperature (+2°C)
PP ₁₁	3.5	0
PP12		10
PP13		20
PP14		35
PP ₁₅		50

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

3.2.1.3 <u>Various of Concentration of FeCl₃</u> <u>Solution</u>

The polymerization was carried out in 20 ml of FeCl₃ solution with various concentrations from 0.3 M to 3.5 M. In each reaction 1.00 ml of pyrrole, reaction temperature 0 °C and reaction time 20 min were kept constant. However, the concentration of FeCl₃ solution was varried as detailed in Table 3.2.

Table 3.2 Synthesis of polypyrrole with various concentration of FeCl₃ solution

Sample	Conc. FeCl3	Mole ratio
No.	in MeOH (M)	FeCl ₃ :pyrrole
PP16	0.3	0.44 : 1
PP17	0.6	0.88 : 1
PP18	1.0	1.43 : 1
PP1	1.5	2.14 : 1
PP19	2.0	2.86 : 1
PP6	2.5	3.57 : 1
PP20	3.0	4.29 : 1
PP11	3.5	5.55 : 1

79

3.2.1.4 Various Volume of FeCl₃ Solutions

The polymerization was carried out in 2.5 M FeCl₃ solution. In each reaction 1.00 ml of pyrrole, reaction temperature 0 $^{\rm OC}$ and reaction time 20 min were kept constant. However the volume of FeCl₃ solution was varried as detailed in Table 3.3 .

Table 3.3 Synthesis of polypyrrole with various volume of solutions

Sample No.	Volume of FeCl ₃ solution (ml)	Mole ratio
	1 and and a	
PP21	15	1 : 2.68
PP ₆	20	1 : 3.57
PP22	30	1 : 5.36
PP23	40	1 : 7.14
PP24	d / 1 C 50 d /	1 : 8.93

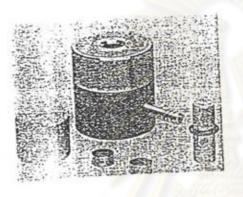
80

3.2.1.5 Various Reaction Times

The polymerization was carried out in 20 ml of 2.5 M FeCl₃ solution . In each reaction 1.00 ml of pyrrole, reaction temperature 0 $^{\rm OC}$ were kept constant. However the reaction time was varried as detailed in Table 3.4 .

Table 3.4 Synthesis of polypyrrole with various reaction times

Sample	Reaction time
No.	(min)
PP ₂₅	5
PP26	10
PP ₆	20
PP27	30
PP28	40 00 9
PP29	60


3.2.1.6 Various Solvents

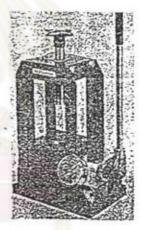

The polymerization was carried out by varried ratios of mix-solvents (MeOH:CHCl₃). In each reaction 20 ml of 2.5 M FeCl₃ solution ,1.00 ml of pyrrole, reaction temperature 0 $^{\circ}$ C and reaction time 20 min were kept constant. The ratio of mix-solvent was varried as detailed in Table 3.5 .

Table 3.5 Synthesis of polypyrrole with various solvents

Sample	Volume of solvent	Ratio
No.	MeOH + CHCl ₃ (ml)	MeOH : CHC13
PP ₆	20 + 0	
PP30	18 + 2	9:1
PP31	16 + 4	4 : 1
PP32	15 + 5	3:1
PP33	10 + 10	0 1:1
PP34	5 + 15	6 11: 3 a
PP35	0 + 20	O LD IO

Polymer powder was pressed into disc form (\emptyset = 1.20 cm.) by hydraulic pressure in special evacuable die. After that the conductivities of pressed disc polymers were measured by Van der Pauw method (see section 2.3)

ศูนย์วิทยทรัพยากร

Figure 3.1 Evacuable die and hydraulic pressure

3.2.2.1 <u>The Optimum Pressure for Pressed</u> Polymer Disc

Firstly, the pressing force for pressing polypyrrole into disc was varied from 2-6 tons. The conductivity of each sample was measured as shows in Table 3.6.

Table 3.6 Effect of pressure pressed on polymer disc

		Conduc	tivity (Se	cm ⁻¹)	
Sample No.*		Pressi	ng force	(ton)	
10.	2	3	4	5	6
PP1	57.11	57.03	56.02	40.13	31.16
PP ₆	133.02	130.35	131.21	92.25	86.36
PP11	72.44	69.26	68.31	53.18	47.24

* See experimental 3.2.1.2

It was chosen to use 2 tons of force for preparing the polymer disc throughout this work.

3.2.2.2 The Decay Conductivity of Disc Polymer

Two samples of polypyrrole disc, as obtained in section 3.2, were separately kept in open air at room temperature for a period of time to investigate the decay of conductivities.

> 3.2.2.3 The Stability of the Conductivity of Polymer in Various Conditions

> > 3.2.2.3.1 Temperature

Polypyrrole powder, as obtained in section 3.2, was kept in the sealed package at various temperatures from 4 °C to 100 °C for a certain period of time. The conductivity of each sample was measured.

3.2.2.3.2 Acid/Base Solution

Polypyrrole

powder,

as

obtained in section 3.2 which was separately exposed to sulfuric acid solution and sodium hydroxide solution. The concentration of each solution was varied from 0.25 M to 1.00 M. The samples were kept in the solutions at room temperature for 7 days. Then they were washed with deionized water and let dry in the desiccator under reduced pressure. The conductivity of each sample was recorded.

3.2.2.3.3 Atmosphere

Three samples of polypyrrole

powder, obtained in section 3.2 , were separately kept in the sealed package full of oxygen or nitrogen. The other samples was exposed to dry air in desiccator. All three samples were allowed to stand, as specified above, at room temperature for one month. Then the conductivity of each sample was recorded.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

3.2.3 Synthesis of Polythiophene

3.2.3.1 Synthesis of Polythiophene in Methanol

Synthesis of polythiophene by chemical polymerization in solution was carried out using the same procedure as mention in section 3.2.1.1 but thiophene was used instead of pyrrole. In each reaction 20 ml of FeCl₃ in methanol solution was kept constant as detailed in Table 3.7.

Table	3.7	Condition	for	synthesis	of	polythiophen	111
		methanol s	soluti	on			

Sample No.	Conc. FeCl ₃ in MeOH (M)	Reaction temperature (^o C ⁾	Reaction time (min)
PT1	0.5	0	20
PT2	แยวท	room	20
PT3	ลงกรถ	50	20
PT4	1.0	0	20
PT5		room	20
PT ₆		50	20

Sample No.	Conc. FeCl ₃ in MeOH (M)	Reaction temperature (^O C)	Reaction time (min)
PT7	1.5	0	20
PT8		room	20
PT9		50	20
PT10	2.5	0	20
PT11		0	30
PT12		0	60
PT ₁₃		room	20
PT14		50	20
PT ₁₅	3.5	0	20
PT16	0	0	30
PT17	C.	0	60
PT18		room	20

3.2.3.2 Synthesis of Polythiophene in Chloroform

Synthesis of polythiophene by chemical polymerization in solution was carried out using the same procedure as mention insection 3.2.3.1 but chloroform was used instead of methanol. In each reaction 20 ml of FeCl₃ in chloroform solution was kept constant as detailed in Table 3.8.

NO.	Conc. FeC13	Reaction	Reaction
	in CHC13	temp.	time
	(M)	(°C)	(min)
PT ₁₉	0.5	0	20
PT ₂₀		room	20
PT21	1.0	0	20
PT22		room	20
PT ₂₃ PT ₂₄	1.2	0	20
PT25		0	60
PT26		room	20
PT ₂₇	1.5	0	20
PT ₂₈	1.5	room	20

Sample NO.	Conc. FeCl ₃ in CHCl ₃ (M)	Reaction temp. (°C)	Reaction time (min)
PT ₂₉ PT ₃₀	2.5	0	20 20
PT ₃₁	3.5	0	20
PT ₃₂		room	20
PT ₃₃	4.0	0	20
PT ₃₄		room	20

3.2.3.3 Synthesis of Polythiophene in Acetonitrile

Synthesis of polythiophene by chemical polymerization in solution was carried out using the same procedure as mentioned insection 3.2.3.2 but acetonitrile was used instead of chloroform. In each reaction 20 ml of FeCl₃ in acetonitrile solution was kept constant as detailed in Table 3.9.

NO.	Conc. FeCl ₃	Reaction temp.	Reaction time
	(M)	(°C)	(min)
PT35	0.3	0	20
PT36		room	20
PT37	0.6	0	20
PT38		room	20
PT39	1.0	0	20
PT40		room	20
PT41	2.5	0	20
PT42	เวิทยุท	room	17520
PT43	2.8	1001	1165
PT44			15
PT45			30
PT46		room	5
PT47			15
PT48			30

Table 3.9 Condition for synthesis of polythiophen in acetonitrile solution

Sample NO.	Conc. FeCl ₃ in CH ₃ CN (M)	Reaction temp. (°C)	Reaction time (min)
рт ₄₉ рт ₅₀	3.5	0	20 20
PT ₅₁ PT ₅₂	4.0	0 room	20 20

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

3.2.4 Synthesis of Poly (3-methylthiophene)

3.2.4.1 <u>Synthesis of Poly (3-methylthiophene)</u> <u>in Methanol</u>

Synthesis of poly(3-methylthiophene) by chemical polymerization in solution was carried out using the same procedure as mention in section 3.2.3.1 but 3-methylthiophene was used instead of thiophene. In each reaction 20 ml of FeCl₃ in methanol solution was kept constant as detailed in Table 3.10.

Table 3.10 Condition for synthesis of poly(3-methylthiophene) in methanol solution

Sample No.	Conc. FeCl ₃ in CH ₃ OH (M)	Reaction temp. (^O C)	Reaction time (min)
P3MT1	0.5	199000	20
P3MT2		room	20
P3MT3		50	20
P3MT4	1.0	0	20
P3MT5		room	20
P3MT6		50	20

Sample	Conc. FeCl ₃	Reaction temp.	Reaction time
No.	in CH ₃ OH		cime
	(M)	(°C)	(min)
P3MT7	1.5	0	20
P3MT8		room	20
P3MT9		50	20
P3MT10	2.5	0	20
P3MT11		0	30
P3MT12		0	60
P3MT13		room	20
P3MT14	122	50	20
P3MT15	3.5	0	20
P3MT16		0	30
P3MT17	0	0	60
P3MT18	10000	room	20

จุฬาลงกรณ์มหาวิทยาลัย

3.2.4.2 <u>Synthesis of Poly (3-methylthiophene)</u> in Chloroform

Synthesis of poly(3-methylthiophene) by chemical polymerization in solution was carried out using the same procedure as mentioned insection 3.2.4.1 but chloroform was used instead of methanol. In each reaction 20 ml of FeCl₃ in chloroform solution was kept constant as detailed in Table 3.11.

Table 3.11 Condition for synthesis of poly(3-methylthiophene) in chloroform solution

NO.	Conc. FeCl ₃ in CHCl ₃	Reaction temp.	Reaction
• V	(M)	(°C)	(min)
P3MT19	0.3	200	20
P3MT20		room	20
สาล	งกรณม	หาวิท	ียาล
P3MT21	0.6	0	20
P3MT22			30
P3MT23		room	20

95

Sample NO.	Conc. FeCl ₃ in CHCl ₃ (M)	Reaction temp. (°C)	Reaction time (min)
P3MT24	1.0	0	20
P3MT25		1/2: -	30
P3MT26		room	20
P3MT27	1.2	0	20
P3MT28		room	20

3.2.4.3 <u>Synthesis of Poly (3-methylthiophene)</u>

in Acetonitrile

Synthesis of poly(3-methylthiophene) by chemical polymerization in solution was carried out using the same procedure as mentioned in section 3.2.4.2, but acetonitrile was used instead of chloroform. In each reaction 20 ml of FeCl₃ in acetonitrile solution was kept constant as detailed in Table 3.12.

Sample	Conc. FeCl ₃	Reaction	Reaction
NO.	in CH ₃ CN	temp.	time
	(M)	(°C)	(min)
P3MT29	0.3	0	20
P3MT30		room	20
P3MT31	0.6	0	20
P3MT32		room	20
P3MT33	1.0	0	20
P3MT34		room	20
			0
P3MT35	2.5	0	20
P3MT ₃₆		room	20
P3MT37	2.8	0	5
P3MT38	1 0 0 0 0 0 0	M L J M	15
P3MT39			30
P3MT40		room	5
P3MT41			15
P3MT42			30

Table 3.12 Condition for synthesis of poly(3-methylthiophene) in acetonitrile solution

Sample NO.	Conc. FeCl ₃ in CH ₃ CN (M)	Reaction temp. (°C)	Reaction time (min)
P3MT ₄₃ P3MT ₄₄	3.5	0 room	20 20
P3MT45 P3MT46	4.0	0 room	20

ิศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย