CHAPTER X

CONCLUSION

This work is intended to investigate the possibility of using surface information to control production of the solution gas drive reservoir under the natural depletion process in order to gain optimum ultimate oil recovery. A commercial black oil numerical reservoir simulator was used for generating data for the study. Empirical correlations which are accepted ia the feservoir engineering field were used for generating properties of fiuids and/rock required by the simulator. A number of simulation runs were conducted. Certain(reservoir and fluids' properties were changed according to the purpose of the investigation The simulation was based on the radial numerical reservoir model.

It is found that ultimate oil recoyery from the natural depletion process of a solution gas drive reseryorisindependent ontmaximum-ailocwable oil production or plateau rate. This is true for any set of fluid properties. However, different fluid set gives different ultimate oil recovery The reseroris can be produced under a variety of maximum allowablenpil production rates and its ultimate oil recoveries become identical at theqnandongent of the napural deppetion process? fow Per different maximum allowable oil production rates will result in different time of reaching the abandonment when the maximum allowable oil production rates are lower than a certain value. The average reservoir pressure at abandonment of the cases with high maximum allowable oil rates are approximately equal, provided that the maximum allowable oil rates are higher than a certain value.

Extensive investigation was made for heterogeneous reservoirs represented by a numerical reservoir model having normal distribution porosity and log normal distribution permeability. The results revealed that heterogeneity have insignificant effect on the relationship between maximum allowable oil rate and ultimate oil recovery. However, it affects ultimate oil recovery and times of obtaining equal oil recovery.

For the conclusions above, the investigations were made at sand face in order to exclude the effect of changes occuring in the tubing, hence the actual effects of the reservoir system can be investigated. of order to apply the findings about the influences of the reservoir system to the actual production operations, a tubing lift table was included in the model. This, tubing lift table was generated from another application included in the same package of the black oil simulator. It was also found from this latter investigation that thegftect of maximum allowable oil production on ultimate recovery was negligible readdition, the limitation of minimum flowing tubing head pressure didsrot effect uitimate oil recovery froin natural depletion process. It had affected on recovery at various time points though. At any time point, oil recovery from the cases which allow the weil to produce at higher maximum allowable oit rate will be higher, provided that the maximum allowable oil rates used are lower than alceram value. Thoogh, ultimate oif recovery at thezabandonment of natural depletion process of each case is approximately equal, the case with lower maximum allowable oil rate would have to produce for longer time.

For a reservoir having a well producing under a certain limitation, for instance, minimum economic rate or minimum flowing tubing head pressure, a maximum allowable oil production rate equal to or greater than a certain value results in similar
oil recovery fraction curves. In addition, certain conventional plots of other information, for instance, GOR or part of oil production rate plot, are also similar. This leaded to the consideration of a threshold rate which resulted in identical production behavior. Hence, an identifier which might be used for adjusting production rate in order to gain better oil recovery as a function of time was searched.

Additional plots of surface information were made for investigation.
Additional plots included plots of derivative of oil production rate, GOR, and flowing tubing head pressure with respect to producing time versus producing time. Plots of both first and second order derivatives ryere made for investigations.

Among these derivative plots, polett of the first order derivative of flowing tubing head pressure showed a unique trend, Plot of first order derivative of GOR and oil production rate were not useful for ideatification. The shape of derivative of GOR obtained from each case had almost the same shape but it occurred at different time for each case. Plots of second derivative of these information, e.g. oil rate and GOR, did not have unique shape as well. Therefore, these plots were not useful for identification either.

Plot of the first order derivative of flowing tubing head pressure was used as an identifier for improving oil recovery. The shape of this derivative is unique. At the early stage of phoduction, the curve of defvative of flognts fabing head pressure was negative. This curve tended to approach zero as the well was producing. The cases with high maximum allowable oil rates had the curves which approached zero within short time period. In contrast, the derivative of the cases with lower maximum allowable oil rates approached zero within much longer producing time. The unique
shape of the derivative of flowing tubing head pressure for the threshold maximum allowable oil or plateau rate has been identified.

The second order derivative of flowing tubing head pressure did not show any unique characteristics. Therefore, it was considered that the second order derivative of flowing tubing head pressure plotted against producing time could not be used for identification purpose.

The results from this study can be used to specify optimum plateau rate after having some production data. All the conclusions for this study is applicable to the solution gas drive reservoir only.

