CHAPTER VI

CALCULATIONS AND RESULTS

Using the results from the DACCT measurement, the parameters of the two models, the pseudo-Richardson model in the section 4.1 and the basic model in the subsection 4.3.2, were calculated in this chapter. From the parameters of the pseudo-Richardson model, the effective contact resistance $R_c(prm)$ is calculated in the section 6.1. It is compared with the total resistance R_t in Table5 to assert the validity of pseudo-Richardson model. The fitting procedure of the basic model in the subsection 4.3.2 is described in the subsection 6.2.1. From the fitting parameters, at small current where the I-V characteristic is linear, a contact can be quantify by the contact resistivity, the effective contact resistance $R_c(fit)$ is calculated in subsection 6.2.2. Since $R_c(fit)$ is the only resistance of the barrier. Multiplied by the contact area, the result is the lower bound value of the contact resistivity.

6.1 Richardson Plot and Effective Contact Resistance R_c(prm)

From split temperature of each current in Fig.7 and 8, according to eq.4.1.1, B_{eff} and $A_{eff}A^*$ are obtained from the slope and the ordinate intercept, respectively, from the Richardson plot as shown in Fig.14. $A_{eff}A^*$ and B_{eff} of the other contacts are shown in column 2 and 3 of Table 5.

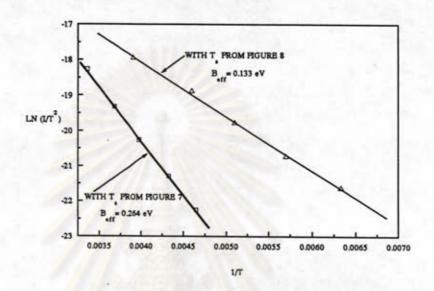


Fig.14 Richardson plot of the data Figs. 7 and 8, yielding the effective barrier height values. The ordinate intercepts yield $A_{eff} A^*$ used in calculated $R_c(prm)$.

The straight line obtained from the activation energy plot, such as in Fig.14, may not be sufficient to justify the validity of the model. [In practice, many experimental data may be fit with a straight line, especially for small data range. For given data there may be more than one model which the plots give straight lines. One should not rely much on justifying the validity of a model having experimental data plottable as a straight line.] The other evidence to assert the validity of the pseudo-Richardson model can be seen as follow. The theoretical contact resistivity ρ_c (TE), when there is only thermionic emission mechanism for current conduction across the barrier, can be obtained from equation 2.5.2, i.e.

$$\rho_{c}(TE) = \{k/(qA^{*}T)\} \exp(q \phi_{bp} / kT)$$
 $\Omega - cm^{2}$ (2.5.2)

Since pseudo-Richardson model assumed thermionic emission with a barrier height B_{eff}. So the contact resistivity should be calculated as

$$\rho_{c} = \{k/(qA^{*}T)\} \exp(q B_{eff}/kT)$$
 $\Omega - cm^{2}$ (6.1.1)

Thus the effective contact resistance $R_c(prm)$, due to the pseudo-Richardson model should be calculated from

$$R_{c}(prm) = \{ k / (q A_{eff} A^{*} T) \} \exp (q B_{eff} / kT)$$
 (6.1.2)

where $A_{eff} A^*$ is obtained from the ordinate intercept in Fig.14. The effective contact resistance values $R_c(prm)$, at 300 K, are shown in Table 5.

TABLE 5

Aeff A* #contact Beff Rt R_c(prm) (A/K²) (Ω) (Ω) (eV) 8.6x10⁻⁴ 0.318 68 93.0 B3/5 0.298 B6/3/1 1.6x10-3 17 19.2 3.3x10-4 C3/20 0.264 22* 16.2 8.1x10-4 D3/4 0.274 13 18.9 1.9x10-3 0.250 2 6.6 B6/4 0.280 16 24.3 D3/5/2 8.3x10-4 0.267 24 29.6 C3/19 3.4x10-4 0.231 3 11.2 8.0x10-4 D3/5/1 1.2x10-2 B4/9/2 0.294 2 4.2 2.0x10-3 C3/16/1 0.266 4 9.3 C3/16/2 6.3x10-4 0.227 3 8.9 0.206 44* 1.8x10-5 23.6 B6/3/2 B4/9/1 2.9x10-3 6.3 0.272 4 4.8x10-4 B4/12/1 0.200 1 2.4 4.3x10-5 B4/12/2 0.161 3 3.6 1.3x10-6 B4/11/5 0.111 16* 11.0 3.2x10-6 B4/11/3 0.058 1 1.1 4.3x10-6 B4/11/1 0.111 5 5.2 2.1x10-5 B4/11/4 0.116 1 1.8 7.1x10-6 B4/11/2 0.108 3* 2.7 9.1x10-5 C3/15/2 0.191 5 11.8 6.3x10-5 C3/15/1 0.194 8 13.6 B6/1/2 1.3x10-4 0.181 2 9.1 8.1x10-5 D3/1 0.170 3 10.7 1.5x10-5 B4/17/2 0.16 10* 5.3 4.8x10-5 B6/1/ 0.163 3 7.4 1.1x10-5 D3/3 0.156 11 13.3 1.7x10-5 C3/25/1 0.157 7 13.2 7.6x10⁻⁶ C3/25/2 0.135 7* 4.0 B4/17/1 8.5x10⁻⁶ 0.133 6 13.2

Beff, Aeff, and Rc(prm) at room temperature of Au/p-CuInSe2 and Ni/p-CuInSe2

where * indicates the case of $R_c(prm)$ greater than R_t . It is obviously impossible in reality, the error should due to a large uncertainty of $A_{eff} A^*$.

Although the split temperatures is subject to the judgment of the investigator, it does not much effect value of $R_c(prm)$, since a slight decrease of B_{eff} could resulted in large reduction of A_{eff} A*. For example, it can not justify deliberate correcting the split temperature of #C3/20 to obtain $R_c(prm)$ lower than 20 Ω .

6.2 Fitting Process and Effective Contact Resistance R_c(fit)

6.2.1 Fitting Process

From subsection 4.3, for a given set of parameters, the theoretical value I(V,T) can be calculated according to equation 4.3.2.1 - 4.3.2.8. The parameters included are A_{app} , m^{*}, m⁺, K, ϕ , Δ , $N_a(b)$, $N_a(s)$, and α . Among the nine parameters, m^{*}, K are expected to be constant from sample to sample. Here, we chose m^{*} = 0.73 (Neumann, 1986), and K = 13.6 (Wasim, 1986), so there remain 7 parameters to be considered.

For N experimental points I_i , i = 1, 2, ..., N, if one chooses to define the experimental Y_i as (I_i / I_N) , i = 1, 2, ..., N - 1, the area dependence is avoided. The corresponding theoretical quantity is $y_{t,i} = J_{t,i} / J_{t,N}$, where the current density is defined in eq. 4.3.2.1, then yields at best fit the values of the remaining six parameters by computer program in Appendix C. The value of $J_{t,i}$ at best fit are then used in the following manner to find A_{app} .

$$A_{app} = [I_i / J_{t,i}]$$
 (6.2.1.1)

Note that a small barrier is the barrier where tunneling is prominent, the latter is sensitive to the barrier shape. Since in this fitting process, the barrier shape is drawn first before calculating the current, so that at the minimum fitting error, the barrier shape should be the correct barrier shape. Thus, this fitting is pertinent for the small barrier.

6.2.1.1 The Result From Au/p-CuInSe2

Table6 shows the data, from the case of the small area metal contact under reverse bias V, the temperature T and the current I. The voltage V is the split voltage, the difference between the two voltage branches in the DACCT measurement of Fig.7, obtained from the range that the lower branch is due to the "bulk".

Also shown in Table6 are the fitting parameters and B_{max} , the zero bias barrier top including image force lowering.

The split voltage should be useable in our model while the lower branch is still smooth, ie. unlike the S-shape of the TFE and neglect TE patterns in figure 18 which shows the blocking of the contact under reverse bias. The smooth of the lower branch ensures that the large area metal still nonblocking. However, for #C3/20, for the current 4.95 mA, using the split voltages at the temperature above 230 K, where the lower branch is still smooth, the recalculated points are nearly the same as in figure 5f. So, in Table 6, we used the split voltages of this current downto 107.1 K, even it is the S-shape.

TABLE 6

Fitting for #C3/20 (Au/p-CuInSe2)

The substrate has resistivity 0.59 Ω -cm, carrier concentration 4.0x10¹⁷ cm⁻³. Contact area 9.5x10⁻³ cm²

	Input to computer			Output to	o computer	fitting parameters
i	v	Т	I	J _{t,i}	Ai	
	(volts)	(K)	(A)	(A / cm ²)	(cm ²)	
1	0.283	107.1	0.00001	0.003739	0.002674	$\phi = 0.5217 \text{ eV}$
2	0.255	137.5	0.00001	0.004923	0.002031	Δ = -0.1761 eV
3	0.174	164.0	0.00001	0.004242	0.002358	$m^+ = 0.07838$
4	0.070	188.0	0.00001	0.004586	0.002181	$N_a(b)=5.32 \times 10^{17} cm^{-3}$
5	0.363	107.1	0.00003	0.011352	0.002643	$N_a(s)=2.15 \times 10^{19} \text{cm}^{-3}$
6	0.341	137.5	0.00003	0.015236	0.001969	α = 0.1520 / °A
7	0.267	164.0	0.00003	0.013509	0.002221	$A_{app}=2.32 \times 10^{-3} \text{ cm}^2$
8	0.148	188.0	0.00003	0.010665	0.002813	B _{max} =0.455 eV
9	0.486	107.1	0.00010	0.047729	0.002095	
10	0.456	137.5	0.00010	0.055429	0.001804	
11	0.393	164.0	0.00010	0.053311	0.001876	
12	0.283	188.0	0.00010	0.041209	0.002426	
13	0.144	210.6	0.00010	0.037312	0.002680	
14	0.591	107.1	0.00030	0.133614	0.002245	
15	0.567	137.5	0.00030	0.159900	0.001876	
16	0.519	164.0	0.00030	0.172308	0.001741	
17	0.285	210.6	0.00030	0.113979	0.002632	

	Inp	ut to co	mputer	Output to	computer	
	v	Т	Ι	J _{t,i}	Ai	
	(volts)	(K)	(A) .	(A / cm ²)	(cm ²)	
16	0.519	164.0	0.00030	0.172308	0.001741	
17	0.285	210.6	0.00030	0.113979	0.002632	
18	0.138	232.2	0.00030	0.123640	0.002426	
19	0.720	107.1	0.00103	0.393376	0.002618	
20	0.705	137.5	0.00103	0.490522	0.002099	
21	0.657	164.0	0.00103	0.516582	0.001994	
22	0.577	188.0	0.00103	0.480060	0.002146	
23	0.472	210.6	0.00103	0.444245	0.002318	
24	0.316	232.2	0.00103	0.379609	0.002713	3
25	0.162	252.9	0.00103	0.441724	0.002332	
26	0.948	107.1	0.00495	1.849683	0.002676	
27	0.896	137.5	0.00495	1.771285	0.002795	
28	0.833	164.0	0.00495	1.678896	0.002948	
29	0.770	188.0	0.00495	1.713124	0.002889	
30	0.704	210.6	0.00495	1.903916	0.002599	
31	0.624	232.2	0.00495	2.220551	0.002229	
32	0.484	252.9	0.00495	2.222402	0.002227	
33	0.322	273.0	0.00495	2.441625	0.002027	
34	0.155	292.6	0.00495	3.071099	0.001611	
5	0.422	188.0	0.00030	0.143272	0.002093	

The results of the other Au /p-CuInSe₂ are shown in Table 7.

TABLE 7

Fitting parameters for Au /p-CuInSe2

#contact	ф (eV)	∆ (eV)	m+	N _a (b) x10 ¹⁷ (cm ⁻³)		α (°A ⁻¹)	A _{app} (cm ²)	B _{max} (eV)
B3/5	0.5680	-0.4415	0.0966	2.44	28.74	0.1460	4.95x10 ⁻⁵	0.413
B6/3/1	0.5274	-0.1413	0.0853	4.27	11.12	0.1545	1.33x10 ⁻³	0.431
C3/20	0.5217	-0.1761	0.07838	5.32	2.15	0.1520	2.32x10 ⁻³	0.455
D3/4	0.5080	-0.4004	0.0994	4.45	7.67	0.1469	9.78x10-4	0.418
B6/3/2	0.5060	-0.2686	0,1258	3.87	26.94	0.1529	2.20x10 ⁻⁵	0.360
D3/5/2	0.5017	-0.1266	0.1096	3.73	24.25	0.1529	8.32x10 ⁻⁵	0.364
C3/16/2	0.5003	-0.0379	0.0968	5.45	23.53	0.1455	1.61x10 ⁻⁴	0.360
C3/16/1	0.4987	-0.1867	0.0908	5.11	4.30	0.1467	4.67x10 ⁻³	0.424
D3/5/1	0.4848	-0.2355	0.1075	4.42	15.02	0.1454	6.99x10 ⁻⁴	0.370
B4/9/2	0.4832	-1.0900	0.0952	1.80	0.83	0.1584	7.72x10 ⁻³	0.426
B4/9/1	0.4822	-1.3211	0.0565	1.09	0.65	0.1476	3.07x10 ⁻³	0.430
B6/4	0.4780	-0.1833	0.1076	5.24	13.63	0.1477	6.40x10 ⁻⁴	0.368
C3/19	0.4685	-1.2340	0.1168	2.56	12.10	0.1450	8.03x10-6	0.360
B4/12/2	0.4652	-0.0411	0.0698	7.16	12.30	0.1442	1.77x10-4	0.359
B4/12/1	0.4536	-0.0807	0.0853	5.60	13.13	0.1458	6.10x10 ⁻⁴	0.346
B4/11/4	0.4041	-0.4750	0.1010	3.09	13.52	0.1423	1.11x10 ⁻⁴	0.294
B4/11/1	0.3976	-0.1898	0.1698	3.24	27.90	0.1437	3.48x10-6	0.245
B4/11/3	0.3882	-0.1362	0.1540	7.99	33.73	0.1439	9.23x10 ⁻⁷	0.218
B4/11/5	0.3833	-0.3777	0.1234	2.73	18.56	0.1393	2.28x10 ⁻⁶	0.256
B4/11/2	0.3608	-0.1833	0.1384	3.05	22.56	0.1436	3.09x10 ⁻⁶	0.225

The recalculated of #C3/20 from fitting parameters in Table 6, are shown in Fig. 15.

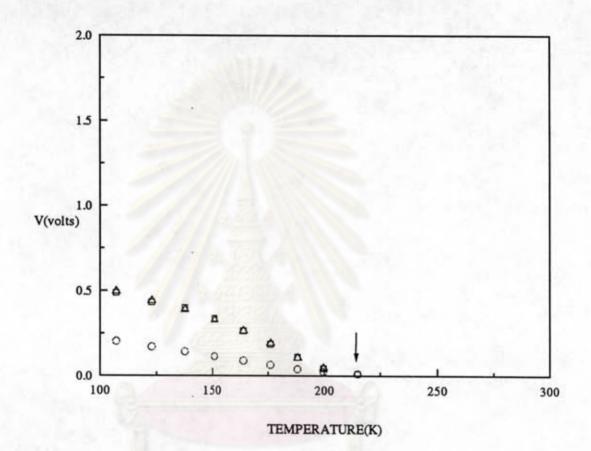


Fig.15a Comparison between the experimental and the recalculated points of #C3/20, Au/p-CuInSe₂. The circles and the squares are the lower and upper branches of the experimental data, respectively. The different between the triangle and the circle at the same temperature is the voltage to sustain this constant current which calculated from fitting parameters in Table6. The arrow is the split temperature T_s. In this figure, the current is 0.01 mA.

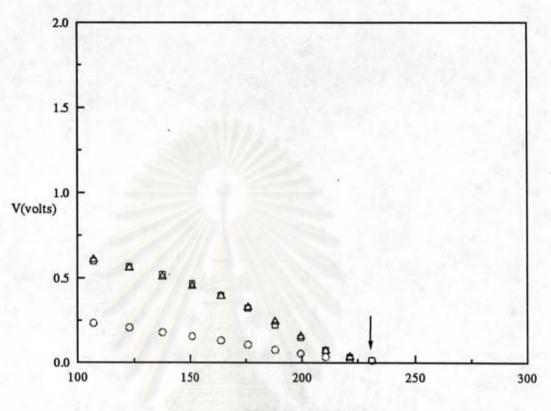


Fig.15b Recalculated and experimental data points of #C3/20 for constant current 0.03 mA.

ยวทยท

73

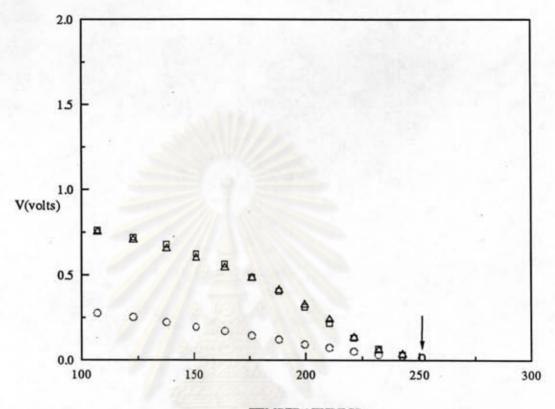


Fig.15c Recalculated and experimental data points of #C3/20 for constant current 0.1 mA.

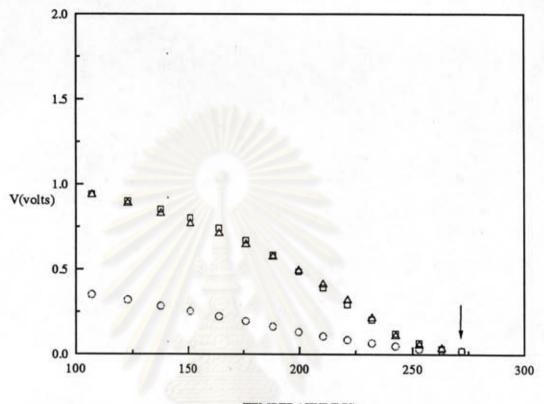


Fig.15d Recalculated and experimental data points of #C3/20 for constant current 0.3 mA

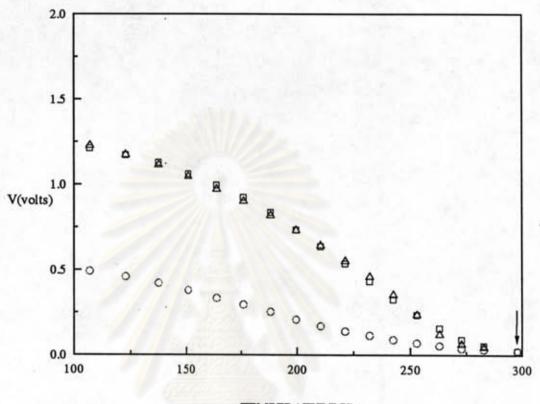


Fig.15e Recalculated and experimental data points of #C3/20 for constant current 1.03 mA.

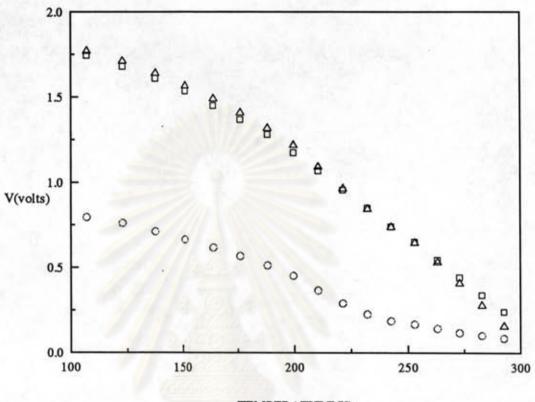


Fig.15f Recalculated and experimental data points of #C3/20 for constant current 4.95 mA.

ทยทร

6.2.1.2 The Result From Ni/p-CuInSe2

Table8 shows the data, from Fig. 8, and the fitting parameters of #C3/25/2.

TABLE 8

Fitting for #C3/25/2 (Ni/p-CuInSe2)

The substrate has resistivity 0.38 Ω - cm, carrier concentration 4.5x10¹⁷ cm⁻³.

Contact area 9.5x10-3 cm².

	Input to computer			Output to co	mputer	fitting parameters	
i	v	Т	I	J _{t,i}	Ai		
	(Volt)	(K)	(A)	(A-cm- ²)	(cm ²)		
1	0.053	107.1	0.00001	0.014295	0.0006996	$\phi = 0.2040 \text{ eV}$	
2	0.039	123.0	0.00001	0.013679	0.0007311	Δ = - 0.1320 eV	
3	0.087	107.1	0.00003	0.031666	0.0009474	m ⁺ = 0.08331	
4	0.079	123.0	0.00003	0.035467	0.0008459	$N_a(b)=11.42 \times 10^{17} cm^{-3}$	
5	0.058	137.5	0.00003	0.031138	0.0009635	N _a (s)=-38.77x10 ¹⁹ cm ⁻³	
6	0.137	107.1	0.00010	0.086481	0.0011563	$\alpha = 0.1236 {}^{\circ}A^{-1}$	
7	0.137	123.0	0.00010	0.109893	0.0009099	$A_{app} = 1.17 \times 10^{-3} \text{ cm}^2$	
8	0.121	137.5	0.00010	0.107432	0.0009308	B _{max} =0.412 eV	
9	0.100	151.0	0.00010	0.100171	0.0009983		
10	0.054	164.0	0.00010	0.061567	0.0016242		
11	0.187	107.1	0.00030	0.207814	0.0014444		
12	0.196	123.0	0.00030	0.294757	0.0010177		

	Input	to comp	uter	Output to co	mputer
i	v	Т	I	J _{t,i}	Ai
	(Volt)	(K)	(A) ·	(A-cm- ²)	(cm ²)
1	0.187	107.1	0.00030	0.207814	0.0014444
12	0.196	123.0	0.00030	0.294757	0.0010177
3	0.190	137.5	0.00030	0.334981	0.0008956
14	0.144	164.0	0.00030	0.283192	0.0010593
15	0.102	176.0	0.00030	0.206771	0.0014509
16	0.045	188.0	0.00030	0.122311	0.0024528
17	0.258	107.1	0.00103	0.604916	0.0017027
18	0.272	123.0	0.00103	0.869020	0.0011852
19	0.275	137.5	0.00103	1.083356	0.0009507
20	0.274	151.0	0.00103	1.298560	0.0007931
21	0.260	164.0	0.00103	1.357276	0.0007588
22	0.233	176.0	0.00103	1.234640	0.0008342
23	0.185	188.0	0.00103	0.909709	0.0011322
24	0.129	199.5	0.00103	0.634213	0.0016241
25	0.067	210.6	0.00103	0.432335	0.0023824
26	0.341	107.1	0.00495	1.737786	0.0028484
27	0.360	123.0	0.00495	2.497273	0.0019821
28	0.376	137.5	0.00495	3.449762	0.0014348
29	0.386	151.0	0.00495	4.471162	0.0011071
30	0.395	176.0	0.00495	6.842834	0.0007233
31	0.390	188.0	0.00495	7.892477	0.0006272
32	0.369	199.5	0.00495	8.009955	0.0006179

	Input	to comp	uter	Output to computer		
i	v	Т	Ι.	J _{t,i}	Ai	
	(Volt)	(K)	(A)	(A-cm- ²)	(cm ²)	
31	0.390	188.0	0.00495	7.892477	0.0006272	
32	0.369	199.5	0.00495	8.009955	0.0006179	
33	0.334	210.6	0.00495	7.344326	0.0006739	
34	0.283	221.5	0.00495	6.045607	0.0008188	
35	0.220	232.2	0.00495	4.666984	0.0010606	
36	0.154	242.6	0.00495	3.712153	0.0013334	
37	0.111	252.9	0.00495	3.815691	0.0012972	
38	0.076	263.0	0.00495	4.259461	0.0011621	
39	0.394	164.0	0.00495	5.716886	0.0008658	
40	0.178	151.0	0.00030	0.356157	0.0008423	

The recalculated of #C3/25/2 from fitting parameters in Table 8, is shown in Fig.16. Note that at high current and low temperature, the recalculating significantly deviate from the experimental, unlike Fig.15. All Ni/p-CuInSe₂ contacts show this effect. So, the basic model in section 4.3.2 does not fit with Ni/p-CuInSe₂ contact.

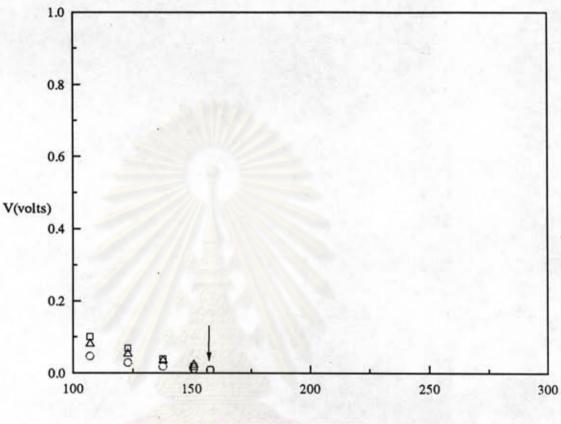


Fig.16a Comparison between the experimental and the recalculated points of #C3/25/2, Ni/p-CuInSe₂. The circles and the squares are the lower and upper branches of the experimental data, respectively. The different between the triangle and the circle at the same temperature is the voltage to sustain this constant current which calculated from fitting parameters in Table8. The arrow is the split temperature T_s. In this figure, the current is 0.01 mA.

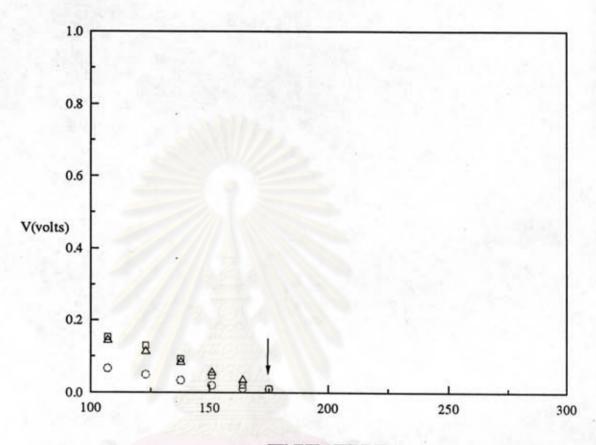


Fig.16b Recalculated and experimental data points of #C3/25/2 for constant current 0.03 mA.

2 20 21 20

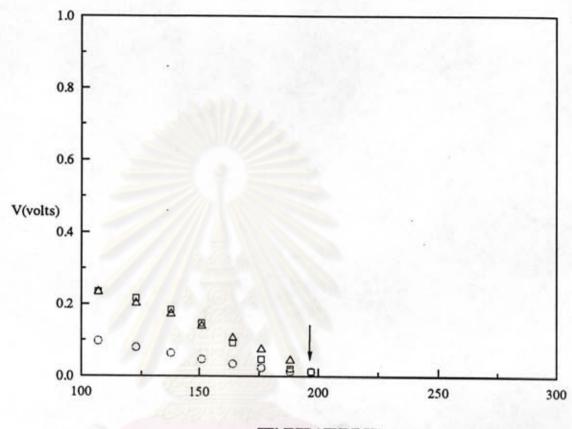


Fig.16c Recalculated and experimental data points of #C3/25/2 for constant current 0.1 mA.

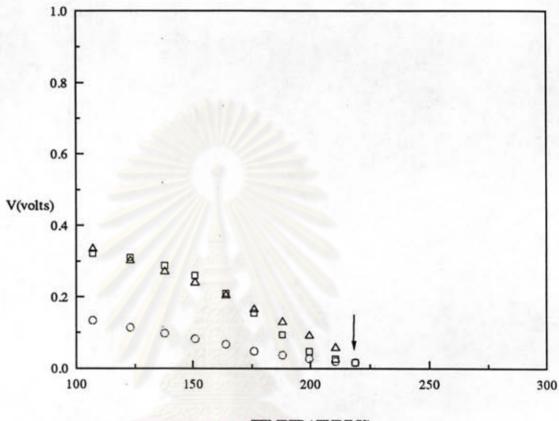


Fig.16d Recalculated and experimental data points of #C3/25/2 for constant current 0.3 mA.

นยวทยทร

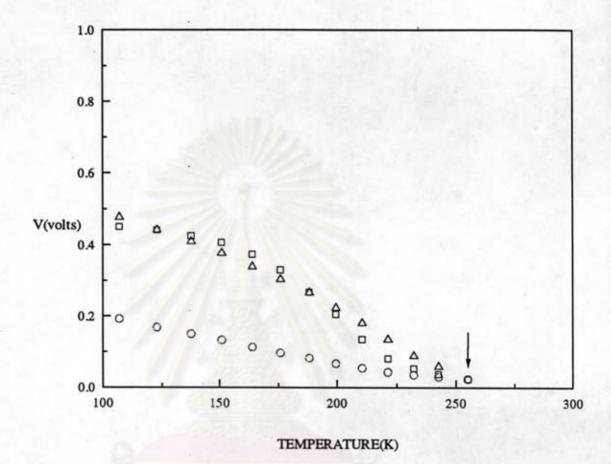


Fig.16e Recalculated and experimental data points of #C3/25/2 for constant current 1.03 mA.

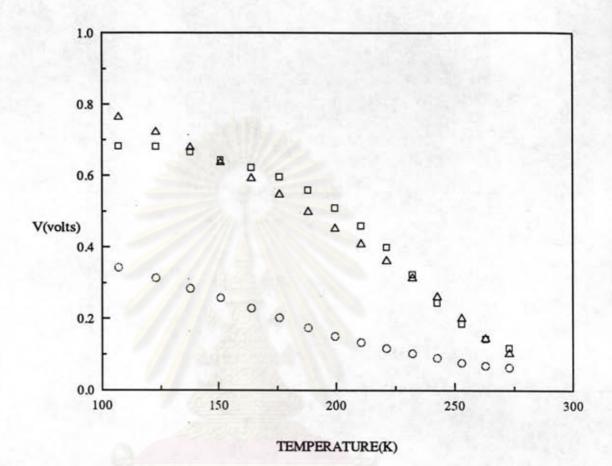


Fig.16f Recalculated and experimental data points of #C3/25/2 for constant current 4.95 mA.

6.2.2 Effective Contact Resistance R_c(fit)

Assumed that for a small forward current there still no other mechanisms involve, except the thermionic-field emission as in the reverse, the forward current should be governed by the same barrier's parameters. From the fitting (barrier's) parameters in subsection 6.2.1, i.e. ϕ , Δ , m⁺, N_a(b), N_a(s), α and A_{app}, both forward and reverse current at small bias are calculated. For reverse current, the equation 4.3.2.1- 4.3.2.8 are directly used. But for the forward current, the bias voltage in section 4.3 is -V. So, the boundary at x = S, in eq.4.3.2.6 become :

$$B(S; -V) = +V + \Delta$$
 (6.2.2.1)

and V in eq. 4.3.2.7 and 4.3.2.8 change sign for the case of the forward bias. The calculation of the currents at bias voltages -4, -3, -2, -1, 0, 1, 2, 3 and 4 mV, at 300 K, from fitting parameters in Table6 are shown in Fig.17. The bias voltages are chosen in the sense that the current density (current per the contact area) govern the maximum current density of p-CuInSe₂ solar cells (40 mA/cm²). The effective contact resistance $R_c(fit)$ was calculated from the slope. It was the resistance of the contact in the range which independent to bias, the contact can be quantify by the contact resistivity.

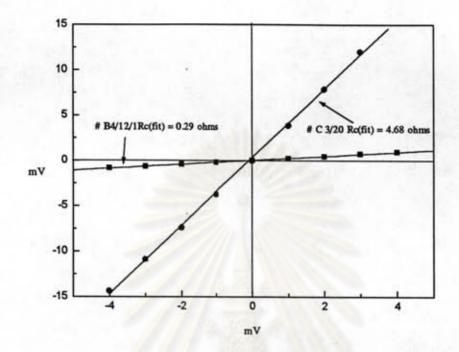


Fig.17 I-V characteristics at 300 K and small current of #C3/20 and #B4/12/1, Au/p-CuInSe₂. The fitting parameters used in the calculation are from Table 7.

 $R_c(fit)$ of the other contacts, calculated in the same manner of #C3/20 and #B4/12/1 above, of Au/p-CuInSe₂ are shown in Table9. Total resistance R_t and contact area (from Table2) are also shown. The former for comparison with $R_c(fit)$. The latter for lower bound contact resistivity $\rho_c(min)$ calculation. This can be accomplished by multiply $R_c(fit)$ with the contact area.

Effective contact resistance $R_c(fit)$ at 300 K that calculated from fitting

parameters in Table7.

#sample	contact area	R _c (fit)	Rt	$\rho_c(min)$	
	(cm ²)	(Ω)	(Ω)	$(\Omega - cm^2)$	
B3/5	9.5x10 ⁻³	14.48	93.0	0.148	
B6/3/1	9.5x10-3	4.10	19.2	0.039	
C3/20	9.5x10-3	4.68	16.7	0.045	
D3/4	9.5x10 ⁻³	2.60	18.9	0.025	
B6/3/2	9.5x10-3	8.42	23.6	0.080	
D3/5/2	9.5x10-3	3.94	15.2	0.037	
C3/16/2	9.5x10 ⁻³	1.05	8.9	0.010	
C3/16/1	9.5x10-3	0.93	9.3	0.009	
D3/5/1	9.5x10-3	0.61	5.6	0.006	
B4/9/2	9.5x10-3	0.87	6.6	0.008	
C3/19	9.5x10-3	25.27	29.6	0.240	
B4/12/2	9.5x10-3	0.95	2.7	0.009	
B4/12/1	9.5x10-3	0.29	2.4	0.003	
B4/11/4	5.7x10 ⁻²	0.22	1.8	0.013	
B4/11/1	4.4x10 ⁻³	0.95	5.2	0.004	
B4/11/3	2.8x10 ⁻²	0.39	1.1	0.011	
B4/11/5	4.4x10-3	2.70	11.0	0.011	
B4/11/2	9.5x10 ⁻³	0.72	2.7	0.007	