CHAPTER IV
THEORETICAL MODELS

deal with the intimate contacts, it

From the DACCT meas t, and based on the theoretical models of
Tantraporn (1970) and Tan Wl/

is possible to use his m Selieved 1 tu be more common, i.e. the

contacts which have ayer betw metal and semiconductor.

To obtain mnre advamagc fmm the mcasumnent. another model in
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model, 1tcal]sonﬂ1=bamcpnec1ples suchasthemuomflﬁeldandWKB
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not ﬁxed, a priori, in the computer fitting procedure. Even the conduction area
and tunneling effective mass are regarded as unknown parameters in fitting.
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4.1 Restatement of Pseudo-Richardson Model

As mentioned in section 2.6 when there is a thin insulator layer between

metal and insulator, hole (electron) have to tunnel through both the insulator

barrier and across the Schottky barrier. These two processes are in series. So, the
' ied by Ti, where Ti is the average
! insulator barrier (Card and
Rhoderick, 1971). Th _ ; eductio ~ rea A, which will be called
hereafter the effecti . ledrly 3 '- nt that a contact can supply

e effective area. So, it is

barrier is given by'ithe pseu hare son ¢ 1./ As long as the current

demand is less than“Richardson" current, t ¥ symmetric and limited by
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Same sense as sul:mgcnon 3.22, there is the spht temperature Tg
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I = Aeff A* T2 exp( - Beff /kT) (4.1.1)

all symbols are the same as subsection 3.2.2. The validity of this model will be

seen in the text.
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4.2 The Criterion of Ohmic Contact

The meaning of "ohmic" by mean of pseudo-Richardson model was
individually used by Tantrapom (1970,1972). Because it has two prominent
independent of the "bulk" sample

)Gard this meaning as the ohmic

nt demanded is less than

4.3 Basic Conducti

As usual, one ' _'J__ ulate @l'theoretical model that is the most

attention should be g the properties of ier @j this kind. However, before

Zc;s:: w@ﬁd in subsection 4.3, m 'ﬁmﬂ %slder some aspects on
LNANIHANINYAAY,

Experimental Data

In this subsection the concept of error surfaces in multiparameter
space is introduced. This consideration was mention in section 2 in the work of

Tantraporn (1972). It is described again in details here, for our purpose.
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One point, i.e. "physical reality test”, of the original work is excluded
here. It is one important point in view of Tantraporn (1972). According to his
view, the investigator should fit his theoretical expression with the experimental
data by not fixing the values of the eters, a priori. The parameters derived
from fitting are regarded me
significance can be asst n_pd:ﬁl’ physical reality test is met. The
: i the @ parameter found at fitting

bna chomes the electronic charge as an

ble parameters, and no physical

On the other han j one. l:hose a3 ' eter, because of the small

uncertainty of a3 the tgst ¥ would not be scnsmve As can be seen in the text , all

prmters S LA G b Famer, o e e

app- A shgh{lf'lchange in another parameter causes a great ghange in Agpp- So,
Aa.,p’ﬂ (bl mb bt don sing. Mhnupbrd b 16 adiko establish the
senmtwe physical reality test, namely "electrode area testing”. The test is
considered met when A,pp is found comparable to the electrode area.

For metal-thin insulator-semiconductor contact, because Aapp is already
algebraically modified to be much smaller than contact area and it better be found
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that small from the fitting, it can no longer be used as the testing parameter. So,
this thesis will omit only one point from his consideration. We instead pay our
attention to two pertinent parameters, i.e. the barrier height and tunneling effective
mass. Their values do not vary too much, i.e. like a3 in Fig.4, and are regarded as
acceptable values or significant

Let X mnﬁhe g‘lpeﬂuﬁublcs X1, X2, X3... (x] could

QltAge, > pressure, etc.). The experimental value

At Xj,y =} _ 5 . (4.3.1.1)

= _wleadge of the functional

dependence, a p:iorii"j

‘a w
Let kel filirebrbod el bk T s modet contain et
A of pammctc?s ﬂ, E,ﬁiﬁ fhay be the effective mass of-the semiconductor,

e o BB S A Vil TN = e

of X for a given set of A;

yii = ¥iXpA),i=1,2, .. N. (4.3.1.2)




where the subscript t denotes that the quantity is "theoretical”. "The least squares"
fit is obtained when €, defined by

€= Z(r,—yt )’ (43.13)

i=1

(4.3.1.4)

parameters (aj,ap,a3)
in Fig.4. A single pnul; in parameters s%cempmscms a set A. At the Ith point

(129 g AT O T P —

be compute.d in the A-space<to form equi-error-surfaces such as those
schemﬂ m'flla«}ﬂ m ﬁgwluw "LQJYLEJ :llﬁ'nu-surfms may
appmnmatt. ellipsoids according to eq. 4.3.1.3 and a minimum -error point exists
at, say, (aj,22,23 )3min = Q, where the superscript 3 represents "in 3

dimensions".




Suppose the same theoretical model is to contain only two parameters by
fixing, a priori, a3 = constant. Then instead of the three-dimensional equi-error-
surfaces one has a equi-error contour curves, also depicted in Fig.4. There also

exists the minimum error point at

(4.3.1.5)
where again the super&&u the rmmmensmns Clearly, the two-
dimensional minimum errg > three dimensional one. The
values of a; and ageft the tyo-dimensions ‘mini um error point S are also

different from those at JQ, &
This illustrates he [ jrsical parameters using a set
of other "known"

unknowns.

- in reality should be treated as

"box". Among each side of the box, a3 hag minimum length, i.e. a3 get minimum

cesiny. 83 WE %EHQW i ik kot acceptabl, while he

value of aj is more uncertain.
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d3 = Constant plane

S S S

Fig.4 Sample equi-gffo s iff 4 ﬁ:-é -. parameter space.

point O is sclﬁclﬁ 4s a - " g point, the ‘computer program described in
Appendix C wi ve minimum vithin a small "box" at Q
(suggestively drawnl this ﬁgun: to show the unﬂ'lmnty of each parameters).

S MWWS‘W e

themselves parameter aj, may carries a large. uncertainty. The

"““W\Tﬂ"a’m W G R o

acceptable parameter. In the case of more restricted parameters, say, a3 =

constant, a two-dimensional localization of the minimum error may be found at S,
illustrating the wrong values of a], aj found at S for two-parameters best fitting

as compared with aj, ap values found at the true minimum Q.
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4.3.2 The Basic Model For a Small barrier

In line with above consideration, the theoretical model should be
formulated starting as close to "first principle” as possible. Only the physical

parameters that are clearly known, to be assigned numerical values, a priori.

Other parameters, whose physical ex ay be questionable, or which can
H“T"’"
vary from case to case,,m&ept,‘m 2 : owns.

Since we are 4
have unit of energy

"barrier” in this subs

This subsection a.g‘q.rf_" e@f X
However, in the prese:nt wmf; m@ﬂmve mass mt is introduced as
his i3 be le{elesiran) is in the forbidden gap,
its effective mass (ﬁummgmﬂ;e effect - x.imaﬁnn still valid) would
differ from that in the allowed band. Sp, it should be the "clouding" parameter.

We assume ﬂe%l&lon’? ] o it doftler | Sq it Gun reflect the influence

of the heavy and light holes in funneling. Fusther more, m# should absorb the

deiaich Hom od i SUANABEN R o s

(The authm‘ is indebted Dr. W. Tantraporn for this intersting aspect of m+.)

Another different point, as mentioned in subsection 4.1, included in the

present work is the tunneling through barrier in series with a thin layer of
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insulator. However, this point is not important. It different from original work

only the terminology, i.e. Aypp is used here.
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Fig.5 Definition oBthe vari es usedjm the basic model, and

quantitative m ﬁﬁ Elﬁﬂ ﬁd the current-energy
distribution Tablt: 6.
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‘Referring to Fig.5, eneral expression for the hole current density J
flowing from the metal one-dimensionally toward the positive x direction at a
given temperature T when the semiconductor Fermi level at large x is negatively
biased with respect to the metal by the voltage V is given by




I(V,T)

Agpp J(V.T) 43.2.1)

oD
v, mH= jJ(E}dE
-v+A

from the metal's Fermi level, Acond
uction takes place, and Tj the

<o ﬁ
average transmission the insulator barrier. F is the
incident hole flux

Schottky barrier.

ion coefficient through the

x (43.22)

where q, k, h are the hole charge, Boltzmann and Planck constants, respectively.
m)* and mp* are the effective masses at the edge of the valence band of the light
and heavy hole.




[ The numerical value of log(4Ttmq kT /h3) used here is 24.94, where
mq) is electronic mass. This value is different from 26.594 of Tantraporn (1964a),
and 25.94 of Tantraporn (1964b). However, this point is not serious because this
numerical value is normalized by the same value of the base. So, the different

- Sl

The transmissiehenﬁb &m—appmunanon, is given by
-ﬂ"—-f

D(E)= N—E] dxp  (4323)

Where mt is ' eling e i , B(x;V) is the energy barrier
profile similar to that shéwn’ n Fi + and x9(E) are, respectively, the
small and large mE.ElS of foﬁ}*-'iﬁ /=

d unity for E greater than

the maximum of ﬁi'

(x;V) then in principle

if one cﬁnﬂmm the functiéral depende
one can oblqy ﬂagam \E&LHJ mmﬁ V and T from 4.3.2.1
ﬁj profile B(x;V)
and alsqm Enw DEU ﬁ;ﬁl parameters am le to experimental

study and control? This is a different approach from the conventional one in that
one starts with an energy barrier profile derived from an assumed model, then
from experimental-theory fitting ends up concluding whether the WKB theory is
valid or not (Tantraporn, 1972). We shall also assume a model from which the




profile B(x;V) is obtained, so that I(V,T) can be calculated from 4.3.2.1 and

compare with the experiment to obtain the parameters.

Consider a plausible doping profile, with an acceptor doping density as a
function of the position from the m‘up -semiconductor interface (x=0) given by

Na(x) = *Nam e (4.32.4)

Which might

[As point out

acceptors, eq. 4.3.2.4

Nyo(s) exp{-B - 3 1 h__ vithin,the range of interest N, is rapidly
decreasing with x, then fom,;ﬁnyl, X),...etc. terms would be
essentially constafit-so-ast-Ngto—= {Ng(o) + N @ + Ng3(s) +...} + Nai(s)
exp(- ﬁ x). In othcnjv ds, in eq 4324 aeeds not necessarily be the

acceptor dmmﬁ at large se.in the bulk semiconductor.]

ummmwmm

PERSA R
of dopant e. or gmdual d stoichiometry in

the case of compound semiconductors.

With respect to the Fermi level, let the position of the valence band at
x=0 beat () (See Fig.5). Thatis :




B(O;V) = ¢ (43.2.5)

[For intimate contact @) is independent of the applied biss, i.e. eq.4.3.2.5

above is valid (see also Section 2.6). However for the contacts of interest, the

), | S .
The reverse a Oltage |V causes the se conductor Fermi level at

x=S to be at V "beloW" sholgtal Fermi level Let A be the position of the

valence band "above'#fts e leyel & > 8. So, for reverse bias

(4.3.2.6)

J asadnmi s Tl_: - ‘,'
e =
TR

then the width of tgf solution of
i

dcghﬁﬁu

o+ ‘i=;a—* Iia,{ }dédg 432.7)
ﬂHQQﬂﬂﬂ§WHqﬂﬁ

T Ap
Ol and V; i oisson ion wi > usual boundary
condition that (dV/dx) = 0 at x = §; K is the dielectric constant that is appropriate

for hole in traverse across the barrier.

The energy barrier profile for this basic model is then

Tie125{90




B(x: v)-—”Na{i}didn—v-i-ﬂ-— . 432.8)

€, %1 1I6TLKE x

where the effect of the image force is also included and is represented by
the last term.

The theoretical value of i w«:ﬂ on this model then can be
calculated according to --M;: fw@ ,T). The parameters included

mtl'lethenrctlcalmod(' Lm0, A, Ny(b), Ny(s), and CL.

r.canbeubtmned from the
DACCT measurement. \\\ ranch is due to the "bulk”, the
difference in the values of i volt ¢
the voltage directly sustaified by the * on, called the split voltage Vy,

larities at a constant current is

which is the pertinent vol i the barriep, model. For various values of the

current | one may Obta t of data I as a funetion of Vs and T, and can
g ) X

extract the above barrie rmg procedure. This fitting
procedmem]]bemthg-smt:mﬁZ
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