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APPENDIX A

NOETHER'S THEOREM

The continuous symmetries of classical field theories along with the

equations of motion for the fields imply the existence of conserved currents from

which one can construct cog 4 ',‘j f’ 5. This is usually called Noether's
theorem, which in both itssrls IR

classifying the general PRI ¥ orj sumessPliantum field theories(Cheng and

Li, 1584). A brief review.g “Wagé.is summarized from the pagers
by Karatas and Kowalsk 4 3

‘ forms is very important for

=

aqd Taha (1991).

Let us conside Brized by a Lagrangian density

L [$a(). auba(x)]

and their first-order sps et

& spacetime point XH = (X9, x)
e"ake of simplicity, we ignore any
explicit dependence of L &n A dex a enumerates the different field

types including reference gn properties with respect to the

Lorentz group (sca! ;_‘;.:....._.,-7”..._-"__-.“_.."f: 7 3/0XH, where u= 0,1,2,3,

dmwer the vector index .

AP

A signaﬁeﬂ Ei;/%'nﬂeﬂ ﬂ%ﬂ’wﬁﬂm?w is -ﬂm invariance of

the action integrg

IR, ..

taken between two spacelike surfaces under the associated transformations of the

and we employ the digs
)i

fields. Hamilton's principle then implies that the equations of motion are also

invariant under these transformations. Noether's theorem refers to the local
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implications of & symmetry and these are determined by exploring the
consequences of the invariant

8S54[9) = o, (A-2)

under the infinitesimal transformations

ba(x) \U 1 (A-3)

The variations are ass.men i e T surfaces 1 and 2.

Corresponding in the Lagrangian density

oL = a B.9.x9]. (A-4)
0,(xH) |
where summation over any re __,, e I implied. If we suppose that we can

interchange the 3 ajdia A:1), together with equations

of motion V 'hf ’

el ﬂuﬂﬁw"ﬁwm“fm
ama%nﬁs‘fﬂ"ug@ﬁnﬁﬁ g *

Since the integrand of Eq.(A-8) vanishes on the boundary surfaces and involves

otherwise arbitrary variations of the fields induced by the symmetry transformations,
it follows that

(A-5)

By = 0, (A-7)



where
Mo oL 30,(x), (A-8)
a[a#d)u(x“ )]

is the conserved Noether current. Evidently we can always define a Noether current
corresponding to Eq.(A-3) whethg ot Eq.(A-2), and therefore Eq.(A-7), is

realized.
Actually, since ai e =yarijtio@ mina fields are involved, Eq.(A-8)
defines an entire familue® il b Necharges

NROH), (A-9)
which are also conservy .
(A— 1 0}

as a consequence of Eq.(AZZiudadil ishes sufficiently quickly in spacelike

directions at infinijfe—m————— -
| v: ‘ ) J

i) J
From Eq.(A-2, we find that although JH is*Conserved but it is not unique.

Ml 1Ll i) (17014F
TSy o

one obtains form invariance under the local gauge transformation

G(x) > e-iexIG(x),  AL(XE) - AL(XH) + (XM, (A-12)



g

the conserved Noether current

Ju(x#) = ie($*3,D-03,d*+2ieA d* )y (XH) - Fu (XW)IHY(XH).  (A-13)

Since thumﬁ out to be explicitly dependent on the gauge transformation function
% (XH), Karatas and Kowalski then define an intrinsic Noether's current J¥, given by

(A-14)

This intrinsic current is e source of the electromagnetic
field
(A-15)

1‘\

It is thus implied that #cj \larges the class of conserved

Noether currents and a ch#fcd relevant must be made.

The conditicaAdfiasalisaisatinua p&7) general non-Abelian group
are also discuss y v 2 d‘. that no extra conserved

currents associated \ local gauge Invariance, ssth as JY, is needed but it is
necessary to i o j ﬂ iam or L= L(,, AM). The
mnsequemesmﬂﬂﬂ intl mﬁﬁmuaﬂnns for the gauge
fields AsS ' ﬁ: . ﬂar currents. Their
dims%ﬁcﬁﬁgﬁﬁ &Iﬁ'ﬁﬁdﬁﬁ s that arise in the
case of local gauge invariance are exactly those that follow from giobal gauge

invariance.



APPENDIX B
ADDITION VELOCITY LAW

We will show here how we can directly obtain the addition law of
,' # # g initial conditions | and Il. The inertial

transformation is derived diig Sl This approach was Ttirst proposed
by Pisistha Ratanavararssssmssi g § ________ sa,1989).

We consider for 4 \ertial frames S and S’ along

the xx’ -axis with const: Wme first that the addition law

for velocities must be sal

l. The postulate © y \'" icle is at rest in frame S’ then

it will have veloc

IIl. The postulgte g aticle has the veloeity k (-k)

in frame § ;r_, R} in frame S.

. ¢ i

We immediatly find that ghe.conventional Gglilean addition law,

FI‘LIEW’JVIEIW’ETW gIn3

U ¥ U -V, (e-1)

QW']ﬁ\iﬂ‘imﬁJW]'mﬂ’]ﬁﬂ

is not satféfied the second postulate therefore it has to be modified. At first, we
are suggested that its proper form should be

u' = - v+ (), (B-2)
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where F(u,,.u;) is the correction term to be determined. From the above two

postulates we find that F(u,;.u,') must be corresponded to the initial conditions,
F(v,0) = F(0,-v) = 0, F(k.k) = F(-k,~-k) = 1. (B-3)

From the second condition in Eq.(E e suggest that F(u,,u;) be appeared as

wy,', or usy,’, or u'/u, QA ond and third forms are omitted to
preserve the firet condit T iFmm. @ o addition velocity law in Eq.(B-2)
should be written as .

(8-4)

oMbe condition F(kk) = 1, we
& Mbdified addition velocity law in

where ¢ is the pr
find that the constant
Eq.(B-2) becomes

or, after rearranging 'F;

i |
|
i 3¢

ﬂumwﬂnfab&nm b
e A RDINBI INEDAL v s

developed in Eq.(3.16). From this, we can easily obtain the inertial transformation
in Eq.(3.23a) by rewriting Eq.(B-5) as

u, = (dx'zdt') = [(dx/sdt)-v],
[1-v(dxsdt) k2]
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or, after rearranging,

ax’ = B(dx-vet), (B-6a)
and
dt’ = B(at-vdx/k2), (B-6b)

where [3 is the proper consta # amined. If we integrate Eq.(B-8), and

\|j
also assume that when a0 0 ), R i) =(0,0), too, we will obtain the

linear hOMOEENEOUS CODLum ™S 2N S [0 IO

(B-6a)
and
(B-6b)
The inverse of these trans
(B-7a)
and
t = +vx /k2). (B-7b)

weron U ANENTNHN T
ARIABINUIMIINGINY e

(1-v2/k2)

To satisfy the initial condition, only the positive value of B is valid then we obtain
the complete coordinate transformation laws:
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x' = B(x-wt), (B-9a)
y =, (B-9b)
Z =2z (B-9¢)

= B(t-wsk2), (B-2d)

where we assume that the x-comu

Jpd y-component are not disturbea py the
motion along xx -axis and

" ’/ . The compiete set of Eq.(B-9) is
in fact the inertial tra *:_*E $ hSmmweity developed in Chapter . As

usual, its inverse is
(B-10a)
(B-10b)
(8-10c)
(B-10b)

By using Eq.(E-H}). the -_—'——— T other components can be shown as
follows: iaaad
Y £
‘V:.
[ e

- ﬂuﬂqwﬂwﬁﬁﬂﬂns
qmmmmmzwmaa

(B-11)

(B-12)



APPENDIX C
HELMHOLTZ'S THEOREM

Helmholtz's theorem provides the basis for a complete investication of the
scurces of a vector field. A lucidly presented proof of the theorem we paraphrase

here is given by Griffths (19 84) and Kobe (19886).

Helmholtz theorer® %) ISR parts as (1) and (2) below.

(1) A continuc: e £1d 35 Rl jetermined by its divergence and

its curl within a region 48 f iz Sdm yer the boundaries.

(2) For any cofinf. fve i i g Wfined within a volumetric region

V which is bounded, ¢ ‘ ! ¥ conditions that in the limit as r
becomes infinite V-F and ? an 1/r which may then require a
lower boundary, we define
;

1 (c-1)

=4

ﬂuﬂqwﬂwﬁwaﬂni

W ¢ pEr) AV’ (c-2)

’QW']@\‘lﬂ‘iﬂJ TaNgNa Y

in which r’ specifies a variable source point whose coordinates are the variables of
integration and all the primed elements are refered to these coordinates, and r

specifies a fixed field point. It follows:
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Fir) = -VU + VxW. (c-3)

A proof of Helmholtz theorem for three-vectors, which is shorter and slightly more
general than the usual one, is given by Kobe as follows. Helmholtz theorem states
that a vector field F(r) which vanishes at the boundaries may be written as the sum

(c-4)
If the vector field F i
(c-5)
then it follows from Eq g€ - ‘ A\
: N VU v, (c-6)
The scalar field U is
U = Vv, (c-7)

and the vector field 3 £
L7 . (c-8)

s BT IMEWE AR o = ™
ARAALDIALIUNRND NEAREhmcn vamsnes o

the boundaries is determined by its divergence and curl. The uniqueness is proved
by Arfken (1970). From the above equations this corollary can be proved. The
divergence of Eq.(C-8) is Poisson equation

vy = -V (c-9)
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The solution to Poission equation for a function which vanishes at the boundaries

of the volume V is
U@ = L Gl )VFE) av'. (c-10)

The Green’s function is

(c-11)

where G(rr') = (4n
determined from the Lg¥in
Eq.(C-8) gives

to Laplace's equation as
e boundary of V. The curl of

(0;12)

from Eq.(C-1). Because of Eg J. and Eq.(C-12) is Poisson equation
The solution to the @

_ Y

4 - TV x &) av', (c-18)

ﬂﬂﬂ?ﬂﬂ%ﬁﬂﬂﬂﬂi

Therefore F can be determined bY its divergemge and curl wien Eqgs.(C-10) and
1A SN YA o2 L1 Bhson (011
used in gqs.(c—ln) and (C-13), then Helmholtz theorem in Eq.(C-6) should
have a harmonic term F, added to it which satisfies Laplace's equation in order to
satisfy the boundar:_v conditions.
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Helmholtz theorem has been employed in electromagnetism texts in
connection with the magnetic vector potential to justify the form used to specify the
potential gauge (Jackson,1975), and it has been extended, by Kobe (1984), to
an antisymmetric second-rank tensor field. An antisymmetric second-rank tensor
FUV can be expressed as (Hauser,1970),

Fio W/ La-0.C) + FO,, (c-14)

where Ay(XH) and C,
asterisk, of an antisvi

ors. The dual, denote by an
is defined as

(c-15)

AN
where €, is totall)' i-LRviia tensor with £,,,9=-1. The first

f .
and second terms on the rife————c—=#® of Eq.(C-14) are analogous to the
corresponding termay indg (<65 1rie Fiox . on the right-hand side of
Eq.(C-14) is a sq ; f¥ bquation, which is added to

satisfy the boundary §jnditie 8o :f"‘.- of Laplace’s equation,
which can be added to C-6) to satigfy the boundary conditions.

ﬂ‘LlEW’JYIEWI’iW BN
’QW']&\‘IﬂiﬂJﬁJW]’JWEJ’]ﬁH
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