CHAPTER IV
FORMULATION OF FIELD EQUATIONS

In this chapter we will show the roles that the continuity equation plays in

constructing fundamental field equstiops and, as a result, the universal ccnstant
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Firstly, it is reasonable to assume that the field equations be linear and
contain no derivatives of the fields higher than the second order. The purpose of
this assumption is not only to limit the choice of possible field equations, but also
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to affirm that the field due to two sources wil! be the sum of the fields due to each
source (superposition of fields), and knowledge of the fields at spacetime infinity
will be sufficient to determine the field everywhere (Dirichlet boundary conditions).
Then, there is only one field equation we can write down that satisfies these
assumptions, and relates the field FHVYto the source current-density JV, namely,

(4.1)

where a is to be some T ez scafing Domess s determined later by the units
tion conventicn is used.
vector and JV = (kp, j) is the
‘ \Whe previous chapter. If we take
the divergence of Eq.( 7 LAY hMment of local conservation of

(4.2)
If we generailize Eq.] —mrouse e symmemcor : , we will find that it can
be written as a lineqr} equ SWNJ FOO, F11, Fe2, F38, FO14F10,

¥

FO24F20, FO34F30 F‘E+‘I F13+F3 F234Fs2 or, in complete form,

AULANYNININT

[0,0,F°+0,0,F ¥0,0,Fz2+0.0,F | + 8,0 (F01+F1u) + 0,0,( Faa...Fec)
AR TN MR W&H) - 0. (43)

The simplest solution of this equation is achieved if F¥V is being an antisymmetric
tensor. Thus, Eq.(4.2) will be satisfied exactly in all inertial frames if FHV is an
antisymmetric tensor, or,

FHV

-FVH, (4.4)
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As we have leamed in Chapter Il, an antisymmetric second-rank tensor in four-
space has only six independent components which can be shown in matrix forms
as follows:

Foo Fo1 Fo2 Fos

~F10 —F20 30
mv = | Fo piropz i 0 -F -F | . (4.5)
FED 1 F HJ/ FE‘ D "FE‘E

1 p2
L =

We find that these s
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scalar part, of the curry
F21, F#%, 92, involves wi
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Since each gro e Roimiponents, we can treat it as a
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will introduce, corr§ ;m———mnd is called the polar field P
and the second ve T ield < .- p (F21, F', F*2) is called the
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Chapter . In lﬁ WW:HW%w alternatively later by

the notation u. )i hus, mponent}of these two vector flelds can be written as
A ﬁ\‘iﬂ‘iﬁ”ﬂﬂ']?ml']ﬁ 4

Ag) - (—F“. -F, —F*a)-

will appear to be two vects

(4.3)

A = (A,. AE,

At this point the physical significance of P = (P,, P,, P;) and A = (A,, A,, A,) is

not yet shown. Now, the tensor field F*Y can be presented in terms of P. and A,
(i=1,2,3),
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v = [P, 0 -A; A,]. (4.7)

To evaluate the signi #ields P and A, we write out the v = 0
component of Eq.(4.1),

or,
Evidently, P may be a Tieldl #Fsd& 54 2\ pole. The vector components

or,

[0,Fo1 + 8,02 +  Fos]+fauge + 0.F | +fg P2+ @ th[a 13+ 3,28 = aj.

AULINBNINYING

Replace the ents of P andeA as defineg in Eq.(4.8) jp,the above equation,
AR NN INETA E
VxA(x,1) - 1 0P(xt) = ajxt) (4.8b)
k ot

The two inhomogeneous Eqgs.(4.8a) and (4.8b) show the relations of the vector
fields P and A with their sources p and j. We notice that the vector part of the



67

source JY = (kp, J), in four-space, produces both polar field and axial field, in
three-space, of which relation is shown in Eq.(4.8b).

Dual Tensor Fields

From Helmholtz theorem in three-space, (see for detail in appendix C), we

find that both relations in 0y |
information of P and A. Ifve EONEIUe -rank antisymmetric tensor
field in four-space, we NI ==" AmmE™vious chapter, that its dual will
G a_the different characteristics.

as

contain the same info
Therefore, we write for 4

(4.10)

tpace of which values are defined
ined as

where sMVOB s the Levi-Paviiias i o
in Eq.(2.35). The covaria

,' !ﬂ : Y]
R lar
-P, 0 -A; A,Y¥

vV =

Foap = gnq_,gﬁ (4.11)

ﬂummmﬁﬂ“mi
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which can usuatl)* be written as
Buv = diag(1,-1,-1,-1).

Then the dual tensor *FHV in Eq.(4.10), can be written in matrix form as
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*PWV = |A, 0 P, -P, . (4.12)

We notice that the elements of the duial tensor *FHY are simply obtained from FHV

by putting P—» A and A— -P_ij

alled the dual source denoted
dual source must be locally

The source that o
by *J¥ = (kK*p,*).
conserved, this fact cg e of the continuity equation in
four-space,

(4.13)

where *JV is the dual soL ector. Then the dual tensor field

*FHV, corresponding to the so ', Ce written as

07 : ] (4.14)

g
|
i #

Therefore, the conservasion of dual soyrme, shuwn in Eq.(4. 13) follows as a

consequence cﬂ%quiw ﬁlﬁﬂ This because if we take

the four-dimens¥nal divergence of. Eq. (4. 10) we find

ammmmummmaa

= 1shv B 6y 0uFops (4.15)
2

the right-hand side vanishing identically because a\,a“ is symmetric whereas shtve:p
is antisymmetric under pev.
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From Eqgs.(4.14) and (4.10), we can obtain the other two field equations
in three-space of P and A,

V-A(x,t) = ok*p(x.t), (4.16a)
~VxP(x,t) - 1 giu(x.t) = arjix,t). (4.16b)

Therefore, we can write t/TE™smm. @seCommmi 2quations for every point in four-

space if both source J%
(4.172)
(4.17b)

These two field equations & in three-space according to the

following four equations,

7 | (4.18a)
Va8 1 0F ' (4.18b)

AUEIRENEMEINT
A Inendy

space while the two equations in Eq.(4.17) be the fundamental field equations in
four-space related to the source JV and its dual *JVv.
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If we assume that these field equation should also be covariant under parity
transformation, as described in Eq.(2.33a), we find that with source Q a true
conserved scalar under all transformations, because it does not depend on any
coordinate system, its density p is also a true scalar. Then we see that, from
Eq.(4.18a),

the field vector P must be 8% ect #=_both sides must transform in the

same manner under the £ St isfofmaimmemastesult from Eq.(4.18d),

the first term transfc ector, under spatial inversion.

To preserve the invarianCe ecessary that the vector field A
must be an axial vector and tf7%

left-hand side of Eqeig.

"Ust be also an axial vector. Then, the

ﬂ‘LlEW’JVIEWI’a'W BIN3

can be seen to nsfcfm as a polar vector. Thigmplies that {g¢ current density j is

+ oo R HRRTR AL VB conr e

velocity. Tﬂese facts explain why we call vector fields P and A earlier as polar field
and axial field respectively.
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Potential Four-vectors

It is not necessary to introduce potential, but they can be introduced for
convenience as follows. If we consider Eq.(4.2),

Oyo,F*v = 0,

#* introduce FHV in terms of another
— , UM = (D, u), where

we find that this equation
four-vector called poterimsmmme

(4.19)
This definition is not ongff <#t A \ ield tensor F¥V in Egs.(4.2)
and (4 4) but also ®t Fe ”;.1# ,H \ defined in Egs.(4.10) and

(4.14). This because ithve fifres W 4 n‘"'

. 5 B W
= f.F*’L*# . +!' e

'with respect XK, we will obtain

6H*FPN d Uﬁﬂapﬁlaua_] = 0.

-— A . ":J

LV
T
The first term in the b;acket vanishes use 0.0y is symmetric under pea,

while BPW& i Wm mwﬂ{e'lmlshes because 8,0p is

symmetric undefilli«>[3, while is anttsymmetnc By consideﬂng the definitions

b VO L EL Rl T

of YHs=(

P=-10u-VO (4.20a)
k ot

A = Vxu (4.200b)
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With the definition of the field FHV in terms of the potential UH in Eq.(4.15), the
source-field relation Eq.(4.1) becomes

B, OMUV- VDU = v, (4.21)

where ap and @V in the second term on the left-side are interchanged. For the

special case, in which ﬁuu:'* rinally get the potentiai field equation, in

four-space,

(4.22)
This equation can

(4.23a)

(4.23b)

. \

where [Jis the d'Alembgfiaizns: o e8as O = 82/8(kt)2-V2. Eq.(4.23)
shows the wave equations foCi@ /i) ential u and the scalar potential @ in

iSsclur-vector UM is not unique
Y )

three-space. FinalixAiSt e nate Shars

because we can ~-‘-
|

AudnEsieany
in order to obtain the same field’ tensor H'-Vlﬁvh

oo Bt S ST LA ™

Y = [ - avy] - v[ur - o]
= [euuv - avur] = v, (4.25)
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The invariance of F*¥ under the transformation of U according to Eq.(4.24) is
generally known as gauge invariance. The transformation law Eq.(4.24) is called
the gauge transformation. The tensor field FHV is not only invariant under inertial
transformation but also under gauge transformation.

Wave Equations
Among the most impgst A F 2 e® pf the fundamental field equations
are the existence of wavg SGESlihs, WhiciSis jhat vector fields can propagate

through space in the fc 2, we will consider the region
that both source JV aff

become

which the field equations

(4.26a)
(4.26b)

(4.28¢c)
(4.26d)

If we take the curl of E $4 .26b) and make use of EGs.(4.26¢) and (4. Eﬂd) we

" AUENEIINENT
AN TUIM AN

where the vectur identity, Vx(VxA) = V(V-A)-VZ2A, is employed. Taking now the
curl of Eq.(4.26d) and using Eqs.(4.26a) and (4.26b), we have

VeP(x,t) - 1 ?P(x,t) = 0. (4.27b)
k2 o
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The equations (4.27a) and (4.27b) have the basic form of wave equations in
empty space,

VeP(xt) - 1 2¥Px,t) = 0, (4.28)
c2 otz
where the factor ¢ is the velocityof BRI #gation in the medium. Thus, Egs.(4.28a)

\
and (4.28b) imply dire S0 \ U, " 4 equations for vector fields A and
P in empty space with ‘”' pMpas=uemsses herefore, the universal constant
parameter k, which we wier Il to make the components of
four-vector JVY be equivalg " jaf propagation of vector fields, P
and A, whose source argl The propagating velocity kK is
universal and must H€ . e transformation unique, As a
result, we can conclucé ti @ J§. the " s | 2lds, whose sources are some
conserved quantities, th# |, ‘ : ity \oi® ese fields must be the same,

equal our universal consts

i
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Before the invehtion of special relativity in 4905, no one knew that the
electromagnetig=fi ‘e | i ‘ -4 er |, could be deduced
directly from ﬂucm mﬂ md?:m:]n?of space and time. We
KNOW fOfm ' il ' m iﬂplay a role as the
source Q:mmmj Pll earlier. The fields
related to the electric charge are generally called the electromagnetic fields. These
fields in three-space will appear as the constitution of two vector fields called the

electric field E and the magnetic field B. The derivation of these two fields can be

shown as follows.
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Because we know that electric charge is conserved globally, then it is also
conserved locally, so the continuity equation in four-space exists,

d,J.Y = 0, (4.29)

where 1.V is the electric current- densrtjr four-vector defined as JJ¥ = (kpP,de)-

Then the relation of tensor fie ing to source J,Y can be shown as
(4.30)

By considering Eq.(4.2 . k. H-“" should be a second-rank

antisymmetric tensor of £ oo di\ey sresented in matrix form as:

-E, -E |
-Bg B, .(4.31)
o -B
B, 0

where we have introd -‘;- 1 r '  -5;:—8::& E and B, defined as

ﬂuﬁ@ﬁﬁaﬁ’iﬂ B3 (4.322)

B = (B, B, By) = (F-"E -F31, F21), (4.32b)

ARIAINTUUNIINGIAY

The field Yector E is called electric field vector while the vector field B is called
magnetic field vector, both are real fieids appear in three-space.

The content of Eq.(4.30) can now be seen since FBV is an antisymmetric
tensor. For v=0, Eq.(4.30) gives
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VE(XD = akpe(x.b), (4.33a)
while the vector components (v=1,2,3) of Eq.(4.30) give the law

VxB(x,t) - 1 JE(x) = ajy(x.), (4.33b)
k &t

ﬁtﬂa last section that, for every

e Our-space, there may be its dual

if Eq.(4.32) is realized.
antisymmetric second-ra"
field *FI¥ exists in nat R % Wgito FHY through the equation

(4.34)

where the definitions offe!) ed in Egs.(2.35) and (4.11),

respectively.

Therefore, B e e 5 id called magnetic charge,

2
defined as J,¥ = (kPgli sad can be shown as

A

ﬂumwmnwmm (439
fm"ﬁﬂﬁ*m QT PTH s e

adylyY = B9,V = 0, (4.36)

as it should be. For v=0, the components of Eq.(4.35) become

V-B(x,t) = okp,(x,1), (4.37a)
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and for v=1,2, and 3, they become

~VXE(,t) - 1 3B(xY) = aj,(xb), (4.37b)
Kt '

agnetic current density. The constitution of

where jo, = (o', J2, J,3) is :
Eqs.(4.33) and (4.37), \ '1/

(4.38a)
(4.38b)

P (4.38¢c)
-VxE(x.LfF S ] (4.38d)

give the complete set of eles

r”.‘_*.l':‘i‘ ; -  y

§eld equations, if sources being the

‘-. vith the fundamental field
AW

-

electric charge and_‘jal

equations in Eq.(4. e ic field and the magnetic
=

field must be polar fidlli and axial Hiela respectively. &imilarly, if electric charge is a

conserved scalar, then tﬁMﬁeﬁc che%: must be a conserved pseudo scalar. At

this stage, tha%uzlq%t m mm |
ARIAINFRURIINYINY oo

VxB(x,t) - 1 JE(x,t) = 4mj,(x.0), (4.39b)
k&t k.

V-B(x,t) = 0, (4.39¢)

VxE(x,1) + 1 (?_B{x.t} = 0, (4.394d)

k ot
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can be easily obtained as a special case of Eq.(4.38) when the magnetic charge
is vanished and the scale factor a.is set to be 4n/k (for Gaussian units).

To find out the usual definitions of E and B in names of Coulomb’'s law and
Biot-Sawart law, we have to consider the special case of Maxwell equations,
Eq.(4.39). For the electrostatic case, L, = (Jo', Jo?
find that '

. J?) = 0 and B equals zero, we

(4.40a)
(4.40b)

not depend explicitly on time
Scan be readily solved, by using

notice that the right-1,
so we can write E(x.,t
Helmholtz's theorem shafir, NEK in integral form as

\‘-_' Ex') d%, (4.41a)

wrred
or,

£ ) o, (4.41b)

ll“!'-‘\t I ?

AU INYNIN e11N3

where the vectofinotation -V } - (x-x ) is used. E%(il 41b) is generally

’QW']&W?M@W%'WEJ’]&H

called Colllomb’s law for static field E(x).

To obtain Biot-Savart law, we consider the steady-state magnetic
phenomena which are characterized by no charge in the net charge density
anywhere in space. Consequently, in magnetostatics,
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V-je(x,t) = 0. (4.42)

By taking this condition and the fact that E is vanished, the Maxwell equations are
reduced to be

VB(x,t) = 0, (4.43a)
(4.43b)

(4.44)

AULINENINeINg
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