CHAPTER Il

FORMULATION OF INERTIAL TRANSFORMATION
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current dgnsity vector defined classically as = pv, where v(x,t) is the typical
velocity of Q at the considered point (x,t) (Sokolnikoff and Redheffer, 1987).

The continuity equation Eq.(3.1) implies conservation of Q within a volume
of space that can be made arbitrary small, which means that Q is locally
conserved, processes that destroy Q at one point and create it at another are
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forbidden, even though they may conserve the total of Q. This is because global
conservation of Q would require the propagation of instantaneous signals between
distant points, which is inconsistent with the principle of relativity. This concept of
a local conservation law will play a central role in the material to follow.

To preserve the global conservation of Q, there requires that it must be
conserved in all frames of alehl ' as a result, Eq.(3.1) should be
covariant or have the saniemOBNIN alZsfsente frames. Following this idea, we

suggest that the continmwsmm=s : P=RSlId be written in form of tensor
equaticn, ‘ \

(3.2)
where we take the | LT isWhe covariant partial derivative
vector and JV is the v i W\ ector. The scalar product of
these two vectors is en the continuity equation. Note
that the convention that rée e summed from O to 3 is used
The two vectors each has fo e for the scalar part-and three for
vector part,
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then they are qtyﬂg vung(' jirm rgr!:lmsura in four-dimension of
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From the definitions in Eq.(3.3), if we set 9, =0/0t and 10 =p, we
find that Eq.(3.2) apparently becomes the continuity equation Eq.(3.1) but there
still contains some logical inconsistencies in these definitions. This because we

have convinced that all components of a four-vector must be equivalent so they
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must have the same unit. Therefore our definitions for 8, and J° above are
improper because they have different units from the others in the vector part. For
the sake of consistency, we have to introduce the constant, denoted by k, which
has unit of velocity, into the definitions of dy and JO by the way as follows:

0= kp. (3.4)

Op = 2/2(kt)
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Oy = 8 = AXVE = aVyd, (3.5)
axv'  axvaxv

where XV = (X0, X1, X2, X3) = (X0, x) = (kt, x) is the coordinate vector in

spacetime, and, for convenience, we will write
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XY = avy, ,?iv' = av', (3.8)
axv’ axv

and use a similar notation for other such derivatives. It is difficult to formulate the
transformation laws directly from Eq.(3.5). We find that it is more suitable to
cotain transformation laws from sformation of differentials of coordinates

dXV¥, where

e v vdxv. {3-?)

It is evident from Egs. ivative four-vector &y, can be

calculated from the iny, an o A WORLER laws of the differentials dXV.
» -"_ '!‘ |IIII 5
Actually, we have ) '- A A%’ “that the differentials of the
i 1 "" \ k
coordinates, dXV is the®si Sl a3 ;a" of \\- itravariant vector in four-space,
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(1t is for this reason that ¥ e R ite coordinates with superscripts.)

We then pi y*"""“"“““"""“'“—“"“"“l:i that spacetime must be

homogeneous, in tha i
homogeneity assumptla.g implies that the transforrnatmn equations which furnish

spacetime mﬁﬁﬂx’}'ﬁ HW%‘H‘@t are linear (Berzi and

Gorini,1969). Wnder linear transformation,
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where (AV'y, BY'= constant), the coordinate differences AXV transform like the

coordinate differentials dXV and thus constitute a qualified four-vector called
displacement four-vector. Because of this, the displacement four-vector can then

ine® the same properties. The

serve to represent any contravariant four-vector, As a result, the coordinate vector
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XV = (kt, x) itself behaves as a four-vector only under linear homogeneous
transformation (BY'= 0) in order to conserve the common origin, if XV = (0, 0)
then XV'= (0, 0), too.

The linearity of the proper transformation has an important physical

consequence called inertial motiogd| ' 4 uniform motion with a cocnstant velocity.
\ :
From the requirement of linem WELA, ‘ransformation, we can suggest that

o 0o nlﬁnate four-vectors XV'=(kt’, ",)

o frames of reference S’ and S
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and XV = (kt, x), for the g
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(3.9b)
where A, B, C, and-{ ag o ﬂ unspecified parameter v
and the minus sig v; R bnvenience. It is obviously

seen from Eq.(3.9) tijjt an"o8 ¥ertial nigfion, with velocity v, in some

¥

reference frame S if' it i€ af rest in another equivalent frame s'. Inertial motions

ten are crar@ SRSk B SRR ATV venstomaton of the

coordinate four-vecmr Their general equation gf motion, accgrgling to (3.9a), is

’QW']E!W??IJNW]’JVIEJ']@H

= [B(v)/A(W]t, (3.10)

therefore the inertial velocity v equals B/A. Thus we can say that the inertial
motions are obtained from rest by the proper transformation which will be referred
to later as inertial transformation because it represents for the transformation of
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any inertial frame of reference. With an adequate change of notation, our inertial
transformation equations Eq.(3.9) may be written

' = E(v)(x-wt) (3.11a)
t' = EW[Fvt-G(v)x] (3.11b)

>
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depending on three unknow
Formulation of Inertis

We have alres ations Eq.(3.11) is valid
ive velocity v along xx' axis.
X W\three constants E, F, and G.
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ad two initial conditions:
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transforrmation laws in Eq.

I. The condifip nof ' joff)is at rest in frame s’ then
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II. The conditidd of universars Hrticle has the velocity k (-k)
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We find that Eq (3 11) can giveSrise directhethe additionatidaw for velocities of

.nenialﬂnm\’ﬂim quq ﬂﬂfl a H

= (u-v)/(F-u,G) (3.12)
Then we make use of the second condition to obtain the following two equations:

k(F-kG) = (k-v) (3.13a)
k(F+kG) = (k+v). (8.13b)
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From these equations we can readily prove that the parameters F(v) and G(v)
should be defined by
F(v) =1,G(v) = v/k2 (3.14)

Then Eq.(3.11) becomes

(3.15a)
(3.15b)

and the additional

(3.16)

Indeed, it is more fundame 4 B, transformation laws for coordinates
by deriving first the Elidiflé or 4)6) directly from the above
)

two postulates, | arkedd ust be also proposed as
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pustulate the transformation, the postulate of symmetry:

lll. The inertial transformation is symmetric with respect to the inertial
frames S and S'.
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This assumption is arisen from the particular fact that if we put ug=0 in
Eq.(3.16), we find that ux’n—v. in other words, S travels with constant velocity -v-

relative to S'. Then the transformation equations Eq.(3.15) can be written as

x = E(-V)(x'+vt’) (3.17a)
0t 1] (3.17b)

If we insert x and t from & — IR0 - we find that

Then, the unknown 4 ‘ :

parameter v, or E(v) = &\
isotropic. The isotropy ¢
orientations of the space

(3.18)
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where v* is the velocity of S'* relative to S*. However, if we apply x*=-x, t*=1t,

x'*=-x', andt'*=t"in Eq.(3.19), we will have the equations

-x" = E(v*)(-x-v*) (3.20a)
t' = E(v")[tsvxk2], (3.20b)
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By comparing Eq.(3.20) with Eq.(3.15), we obtain immediately that E(v*) = E(v)
and v*=-v, then, as a result, E(v*) = E(v) as required. Such natural result,
expressing the relative velocity of the reversed reference frames as the opposite of
the relative velocity of the initial frames, might have been taking for granted.

ely find that, from Eq.(3.18),

From these results, we imm

(38.21)
and the complete form 15) becomes
(3.22a)
(3.22b)
and its reverse transfo 17) becomes
(3.23a)
(3.23b)

where E(v) is ﬁﬁﬁﬁwwﬁﬂ I‘Elpe'ﬂ)jnd the two undisturbed

spatial componejts are transranned asy=y and 7=z By ccllectlng our results,
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x' = B(x-vt), y'=y, =z
= Blt-ws2], (3.24a)

and its reversed transformations,



B(x"+vt), y=y, z=12.
Tt = B[t’q-yx’ ka] (324b}
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where B =E(v) is a costant function of v, B = 1/(1-v2/k2)1/2,

al constant kK plays the role of a
u H un S5 yet arbitrary, and need not be

. rtial formulas dictate that no
g to imaginary value for the

It follows from Eq. {3 al
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identified with the specsss
particle may exceed i
transformation coeffigf however, that this limiting
W formulas, but follows as a

w0, with which Eq.(3.24)

universal speed was
consequence from thegh.

becomes the classical G

could not be ruled ML) there is an abundance of
experimental evidencel hich poite e RETact thatdM is infinite. The existence of
signals which travel witheg finite invarignt velocity leads us to eliminate the

Galilean transfﬂ%ﬂl&%%@ﬂﬂ 1& ﬁe universal velocity, as

Einstein has po%lulated then ourginertial trapgformations i JFq. (3.24) become
o= QIS O BT BB oo
dependen e of mass on velocity follow closely that derived from the Lorentz
transformation, and that the limiting velocity k is indistinguishable from the speed
of light ¢ to within present experimental limits of accuracy. That the limiting
universal velocity k is finite is an experimental facts.
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To fulfill the requirement that the continuity equation must have invariant
form, we find that, after taking a long logical process, it is covariant under the
linear homogeneous equations called the inertial transformation for inertial frames
of which we have established from only three fundamental postulates. This
transformation also provides the crucial recognition that space and time are not
absolute, a concept which is foreign to Newtonian mechanics.

The transformation / eralizec form if we omit some of

the three postulates abCwsFEsF==: o} h_____ | has developed a fundamental
rederivation of special rel 2 B ﬁ\“* nvariance nostulate hut reglect
other sufficient assumptffe, H t gl the more generalized form of
Lorentz transformation 4% 4 Blues of particle’s velocity
(Sewjathan,1984). \#% : N . Lorentz transformation by
invoking the principle 4 nd that there must be a
: ove (Lee and Kalotas,1975).
The precise explanation of # zfﬁﬁﬂ{' o ®ciprocal principle was illuminated
in the papers by Gorine and _i",,??: 3 3t ecca,1970) and Berzi and Gorini

(BErZI and Gorini, 1 4&; :-_T—':."

universal limiting speed |
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The :ne«% mm&n ;mﬂc’lﬂ 1 transformation of the
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vector é‘v. In three-dimensions we call x a vector and speak of x1, x2, x3 as the
components of a vector. We designate by the same name any three physical
quantities that transform under mtgtlr:'ms in the same way as the components of x.

It is natural therefore to anticipate that there are numerous physical quantities that

transform under inertial transformation in the same manner as the four-vectors XV
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and 8,. By analogy we call them also being four-vectors. The concept of four-
vectors involves closely with coordinate transformations. Each four-vector A can
alternately be described by its contravariant or covariant components, AV or A,,.
The two kinds are distinguished by their transformation laws. The contravariant
vector A = AV with four components A°, A1, A2 | A2 are transformed according to

the rule,
AV’ Wy 2V A, (3.25a)
> =
.and the covariant ve = - AT S nponents Ag, Aq, Ag, Ag are

' »‘ (3.25b)
Our defined current-defis % ‘\ e of contravariant four-vector
under inertial transformafic .ﬂp H\,' ' '

D
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The above definitionsaee i =2 cecific of the spacetime is defined
by the invariant int& M RS RN RS Uy from the transformation
laws Eq.(3.24a), I

b

d52 = kadt2 - dxa-d'ye * dz?,

ﬂ U ﬂ ,J Yl Hﬁﬁ‘ﬁ’ﬂ’ltﬁ’ﬁ (ax3)2.  (3.26)
::(:ma}iﬁmquﬁ g“‘iﬁf’ﬂengm element of

ds? = g, dXHdXY, (3.27)

where g, = gy, is called the metric tensor. For flat spacetime, the metric tensor
is diagonal,
Buv = diag(1,-1,-1,-1). (3.28)
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As we have shown in the previous chapter, the covariant coordinate four-vector X,,
can be obtained from the contravariant XV by contraction with Buv» that is,

Xy = guXY (3.29a)

and its inverse,
XY = ghvXy, (3.29b)

where, for flat spacetime, =

With the metric™(e5s e .t Tollows that if a contravariant
four-vector has componzafs A 441, ¥ s S@variant partner has components,
Ag=AD, A,=-A1, Ay=%7 ¥ CEEET - LARE sely as

where the three-vector a Radiias e 2 A% The scalar product of two
four-vectors is
(3.31)

Consider now the trans n;atiun of deriv:tjua four vectors Eq.(3.5), it shows that
differentiation - Hmwm the coordinate vector
transforms as mmnf a covariant r operator. From Eq.(3.29a) it
follows 16 17 j ‘r m @mneﬂt gives a
o ST P

(8 79, -V)
(8 700, V) (3.32)

vV = 61"&“?
oy = /XY
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The four-divergence of a four-vector is the invariant,
Oy AY = VA, = (OA0/8X0) + V-a (3.33)
an equation familiar in form from continuity equation, Eq.(3.1), of density and

current density of Q. The four-dimensional Laplacian operator is defined to be the

invariant contraction,

2] - ve, (3.34)
This is, of course, just g ol # Bt RNAe Suation in vacuum.

Note that, We*Cayfe #& B-ive (™) FOL ) imply the very fundamental
- S |
3 W ko)2 (3.35)
where RZ? is the squared gis: me. This constraint is analogous to
z2, under rotations and
fheme-space. Actually, Eq.(3.35)

A

the invariance o© -

translations of the o :’*

can be written more precisely as
L

Augnaninen; ..
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x = Rcos®, ikt = Rsin®, : (3.37)

where tan® = ik/v. From Eq.(3.37), we obtain the following identity,



(x+kt) = R(cose -isiné) = Re~i6,
Finally, we find that
(x+kt)(x-kt) = x2- (kt)2 = (Re~©)(Rel®) = R2,

the same resuit as snown in Eq. (%

\I
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(3.38)
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