CHAPTER |

INTRODUCTION

The purpose of this thesis is to establish the fundamental field equations
through a logical process convent ] alled the deduction approach to science.
Unfortunately, this kind of prge it ‘@accustomed to most physicists thus
utset. After that, the preliminary

tic fields and quantum gauge

it is worth giving some sm
concepts of fields and :
fieids will be presenteg 21NN wemiete this chapter.

The Fundamental Apprafohd AUScTES (NEk hali092)

In order to discovr, i Scientist always uses two logical

approaches. the inductive .

performs a number of observaties——: ®, finds a pattem and then formulates
b IA T

gt be tested against future

deductive science, the scientist

the law or organizi &, P

experiments. The cd ; ixjotion of the planets is an
example of an ind »'; e SCIenG %5 usgil the heliocentric model of
Copemicus and the gn nal nhser@lons of Tycho Brahe painstakingly

s off 41 1 I ot

motion (Zeilik afd Smith,1987). ¢
4NIUNRIANYAY
Iﬂeﬁﬂlﬂasmence the scientist begins by postulating certain truths of
nature, with only little guidance from outside experiments, and deduces the
consequences of the postulates. The consequences are cast into predictions,
which can then be pitted against observational tests. We see that inductive
reasoning works from the bottom up, deductive from top down. Of course, all
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scientific theories of nature, whether they be arrived at by induction or deduction,
must be abandoned if they are found to be wrong.

Although the deductive is rare, many twentieth-century physicists have
used it successfully. Albert Einstein has founded his ingenious theory, the special
theory of relativity, upon only two basic postulates, the form invariance of all
-physical laws and the mnsta ‘ W ! V 'ged of light in empty space, which are

applicable in all inertial ' o®__Similarly, the modern theory of
electrons, framed by P2t
and love of mathematiczs
The unified theory of 4 4377¢!
formulated by Sheldo & & LT nand Steven Weinberg in the
1960s, was built 4boy 9 re, not upon the detailed
trajectories of particled ¥ Wo!

1 Gm== % founded upon Dirac's intuition
‘ of how electrons behaved.

< TALE

a Drali 14 - -
[he P minary L.oncep

The concer & é::__ e e s e _ 4 Euler for hydrodynamics
but it was first intr Cle {»_': about 140 years ago to
electric and magnetic -jf ena. Faraday had rejected a

give an explanation f&!

concept of | ' ENdepg - that the interaction
between chargbgh ‘ d thelidted By a chich is the continuous
functi yatial. ' | ﬁﬂﬂ is account was
pictnrm . i : j static fields.

After the first introduction by Faraday, the concepts of field have been widely
accepted. They have also been generalized from being purely spatial to being
spatio-temporal and are used not only for theory of electromagnetism but
throughout physics, and in particular to account for gravitation in the General
Theory of Relativity.
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In the language of physics, fields can be discriminated into two kinds. the
classical fields and the quantum fields. The classical field is a kind of tension or
stress which can exist in empty space in the absent of matter. It reveals itself by
producing forces, which act on any material object that happens to lie in the space
of the field occupied (Dyson,1953). The two important classical fields are the
e.ectromagnetic field and gravitatio a field. In difference, the quantum field is

special large scale marg€s# £ FoL %, At this stage, most physicists
believe that all physal #6iff fay (3R Bedley the same principle called the
unified field theory ( ' ‘

Fig.1 Field lines of electrostatic fields
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In the present study, field will be treated mathematically as a differentiable
function from a space or space-time manifold into a set of abstract entities, which
may be the set of non-negative real numbers or the set of all real numbers. There
are scalar fields. The abstract entities may also be vectors, which in an n-
dimensional space can be represented by a set of n real numbers. Tensors are a
further generalization of vectors and can
be represented for an n-dim )

, for a natural number m, greater than 1,

can see that a field is a fu'M

for some non-negative 4
field, f m =2, it is a teryr

galar field; if m=1, it is a vector

[ heory o eciromagneis

Electromagnetic fig field in nature. its details
have completely 'm fiteenth-century after the
development for over E h Slicafiapproach to the field can be
shown as follows (.iack.oipn 1975). -

ﬂummmwmm

At the @hrly time, eectﬂc and magnetic theanes were investigated

= o
individu, Ellﬁ 1 : iR alpt b ﬁ:ﬂ’lﬂ were made by
Charles u » O as established the

force law for stationary charged particles by using a torsion balance
(Serway,1990). He showed that the force F exerted between two small charged
bodies q4, located at point x,, and g, , located at point x,, , can be written as



F = Kg40z (X;-%) (1.1)

b‘1 "‘ala

This equation is generally called Coulomb’s force law and q, and g, are algebraic
quantities which can be positive or negative. The constant of proportionality K
depends on the system of units we

Therefcre, from Eq.(1 3

(1.2)
where

(1.3)
We interpret this as-ibe az. e rates the vector field E of

~A = T T .5

which value at any pL7# i} charges are so small and

so numerous that theylcan be CESCHBEE Dy a chalide density p(x), then electric
o “ﬁ“ﬁaﬁ"ﬁ‘ﬁmw Tulib)
A9 mmmﬂﬁ’ﬁ%ﬂa g 7

where d3'= dx'dy’dz’ is the three volume element at x'and the constant K is
omitted according to the unit we preferred. This equation is the integral form of the
Coulomb's law in Eq.(1.1). It is more suitable form for the evaluation of electric
fields by using the so-called Gauss's law in three-space which states



f, Enda = 4= J, p(x)d3, (1.5)

and the divergence theorem,
fa vada = ,L‘F-v d3x.

Then we can readily orove from E

(1.6a)

_ which is the differen
Eq.(1.4) we will fi

siacuostatics. If we take the curl of
(1.6b)

o8 of electric field for static case.

The two equations in Eq

Similar to the studies:ZZ @i 4 gomena, the knowledge of magnetic
phenomena was dgykioped from thetem 4 Jlowever, the distinction is
that there is no el 2 ‘
magnetic field as e! Ic field has. Ine studies ofd agnEtic fields began shortly
after Qersted le is deflected by a
cuwmt-uwm%mIﬂcm ﬁadrt had reported that a
conductor {:arryin a staa% curfent produces a force orJmagnet. From their

exmm’ﬂﬂ%ﬁﬁﬂ M LA IR NN L cressn or e

magnetic ﬁefd B at point x produced by electric current density j at point x" in the
following convenient form

ic charge to be source of

B(x) = ljj(x'}x(x-x’) d3x’ (1.?)
= v

pe-x'|2



where c is the speed of light in vacuum. This equation is generally known us the
Biot-Savart law of magnetostatics. By taking the divergence and curl of Eq.(1.7),
we will obtain the laws for magnetostatics (Griffths,1989),

I,
o

X
I

o, (1.8a)

4 j(x). (1.80)
c

The combination ¢ _-': S and niemewetticlds was arisen from the study
{3n< meslnade by Michael Faraday in
exert effects on each other,
Mtric forces, the effect is now

on time-dependent e!sgus
183 1. Faraday discoys
He found that a changg®
known as induction, wy

(1.9)

Badgy’'s law. We also note that

This equation is ca'hyg
=f’i§ ent, VxE(x) = 0, for the

this is the time-de§{™#
electrostatic fields. Aljfhis stage, tHewangal ental dijations of electromagnetism
can be summarized as fallgy

ﬂuH’J‘VIEWHW gIn3

Coulomb’s law: VER = 4npx).q (1.10a)

mpere Q) aNnIal NW}% W%lﬂ)a Bl Guion)

Faraday’s law: VXE(x,t) + 1 3B(xt) = 0, (1.10¢)
' cdt

i
e

Absent of magnetic charge: V-B(x) (1.10d)
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These equations are written in macroscopic form and in CGaussian units. The
continuity equation guaranteeing the conservation of electrical charge is

dpix,t) + Vejx,t) = 0 (i.11)

which requires that the cha :: | S arbitrary volume is caused by the
flow of current through S,

The field equs some logical inconsistency

. 5

om vector calculus that the
) = 0, then, it follows from

appeared in Ampere
divergence of curl of

Ampere’s |law for steag

(1.12)

T

But form the contim p = holds only if the charge

density p is constar| y X ) of view, no a priori reason

n

to expect that the sliftic eqUANONSSNSIEINChanglid for time-dependent fields.
However, it was James CMaxwell who gbolished this conflict. In 1864, Maxwell

had modified ﬂ%ﬂta Wﬂﬂﬁ&l‘n’q{ m«nce by introducing a

term called the ¥spiacement currgpt to Eq.(1.10b) as followg),

'ﬂW'\Mﬂ‘iﬂJNWI’JV]H’IﬁH

B = 41:1@:) —> VxB(x,t) = 4::1(; t) + 1 OE(x,1). (1.13)
c c cat

Then, the complete set of the electromagnetic field equations in Eq.(1.10), after
being modified, become



Coulomb’s law: VE(xt) = 4npix,t), (1.14a)
Ampere-Maxwell's law: VxB(x,1) - 1 GE(x,t) = 4mj(x.t), (1.14b)
c ot c
Faraday's law: VXE(x,t) + 1éB(x,t) = O, (1.14c)
c ot

Absent of magnetic charge: 1] V-B(x,t) = 0. (1.144d)

These four field equation 1ed “=iempitte set of Maxwell equations for

time-dependent electrggmemeseieids. WSl magihe first two equations are now
imply directly the ex Mdiation in Eq.(1.11). Maxwell

equations together v , or Lorentz force law for

electrical charge q,

(1.15)

Eives a complete deser :
17 Y
It is often use

R etic interactions.

T toe ata tha Js E ail] B appearing in the Maxwell

equations in favor of & amgctor potentialsA and scalar al @ through the
elations ﬂ‘lJEW’JVIEI‘VI’iW g
Be= VxA, (1.16a)

QWWMﬂ‘iﬂJ%JW]%VIH’IﬁH (1.160)

These definitions automatically satisfy the third and fourth of Maxwell's equations,
as can be verified with the identities V-(VxA) = 0 and VxV® = 0. Thus the four
coupled first-order partial differential equations in Eq.(1.14) are converted to two
inhomogeneous equations that are satisfied identically,
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V2D . 1 &(V-A) = -4mp (1.17a)
c ot
V2A-132A- V(V-A + 100) = -4xj (1.17b)
o2 a2 cat c

where the vector identity Vx(Yaul#

W Y-A) - V2A has been used. Therefore,
the solution of the Maxwe!LBaN '

i @ 24 to solving the coupled equations

in Eq.(1.1 7) for potentioe —=d § s PlOIt @ fundamental property of
classical electrodyna T e il { '“_"; » -*H_::-H these equations. The
potential A and @ as™Ue g€ Fadje Fe) 301 unigue. The transformation of

A and @ that preséive gl Ff Kas 5 called gauge transformation.

Because of the idens

(1.18a)
where % is an arbitrary scalscamni« T ave no effect on B. to preserve E, in
Eq.(1.16b), the D b4 ply be changed by

1" d
il ;
WD = O-1 0. : (1.18b)

‘o |
AUEAININTNYINS
These _ ions.bf gonstauctid is and B fields as
the pﬂam . misfmell equations
invariantly. We may use this invariance to choose a set of potential (®, A) that
satisfy

VA+ 18D = 0. (1.19)
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Then, the second-order equations in Eq.(1.17) decouple to

V2D - 1 320 = -4np (1.20a)
0231:'2

V2A-182A = -47j (1.20b)

gauge. The particular choice

Btz gauge and Eq.(1.20) is
\ & 1SN idely used because it leads to
ived above, and because
covariant form. Another useful

A procedure sy
of gauge defined by
termed the Lorentz
the two decoupled ¢
- equations in the Loren ' -
gauge condition is the Coulof e e V'A = 0, then the scalar potential
satisfies the Poiss OR)eC

S

[ (]

o s, ﬂumwﬂmwmm
MR TRINNAINYA T

. x|

The scalar potential is just the instantaneous Coulomb potential due to the charge
density p(x,t). This is the origin of the name "Coulomb gauge.”
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Because of the logical addition of the Maxwell displacement current term in
Eq.(1.1nh). its role in empty space is stil made some confusion. Rosser
(Rosser,1976,1983) and Shadowitz (Shadowitz,1975) have pointed out that

the Ampere-Maxwell's law in empty space,

relation betvieen the two e ok LatarNEanA B, valid 2t any field point in
empty space. The Max @ £ A1 SWiis, source of the magnetic field

since the displacement g 4§ Simaty™ ﬁot appear in the differential
equations for the potenti#5 # #:a / ‘\ Coulomb or Lorentz gauge. The
only sources in Maxwefl e \ : \ jefisity p and the current density

j. Therefore, it is pointledS 1 Fmaid ne g Jch as "a changing electric field

produces a magnetic fi eld” ﬁﬂ:ﬁ shion does. This confusion will be

dispersed if we consider 4 Saay 0 four-space rather than in the

conventional three-} ,;, Y|

] J
Maxwel! equatlcng have survived unscamed for over a century, particularly

e o ALY PN BIAP e s o s

suffered drastic@ghanges from rhe invention of the special ti'leory of relativity by

Albert mlﬁ@ﬁmfﬁmwa H‘T.'a ﬂ relativity on the

basis of

l. The form of physical laws is the same for observers in all inertial frames.
Il. The speed of light is the same for observers in all inertial frames.
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From these two postulates, he can derive the so-called Lorentz transformation, for

two inertial frames moving along xx” axis (Rindler,1991),
X'=y(x-vt), y=y, 2=z t'=y(t-we2) (1.22)
where v=1/(1-v2/c2)12 is a g4 the transformation. This transformation

was first shown by H.A. Lofesis
Maxwell equations aramswsss Ve ‘-" also showed that Maxwell

modify Newton’s secBhic v f e TSN Sistnt With the postulates of relativity
: We could suggest that Maxwell

linear homogeneous

tensor transformations. e ®hsor theory in Chapter Il.) The

texts on =_a;_________-._-.. &amples, Jackson(1975) in
Chapter 11, or Sch wdi .

applied to elﬂnﬁﬁmﬁ mﬁiﬁﬁ c;r:r :aj;iw;:n::

principle of superposrtion Then, i¥could be gemeralized fromathe static case alone
to omaﬂtrﬁ%ﬂ&‘lﬂ FOAAAR VEL YR Ele st o
electric ch arge is a conserved scalar is hold true(Kobe,1986). Instead of
Coulomb’s law, the Biot-Savart law in Eq.(1.6) can also be used for being the
initial equation to derive for the same result (Neuenschwander and Turner,1992).
Similarly, Zeleny(1991) was derived Maxwell equations and Lorentz force law by
using the postulate of symmetries of gauge invariance, Eq.(1.18), and the
Lorentz invariance, Eq.(1.22).
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Theory of Quantum Gauge Fields

Though we have learmed from the special theory of relativity that all physical
laws should be Lorentz invariance, which is a kinematics or geometric symmetry.
Such symmetries do not, by themselves, determine the structure of the
interactions of fields, but do help us to map those interaction from one space to
‘ ge. In contrast, dynamical symmetries

another, e.g., from three-spaca\ \ ‘

do determine interactionsise ienis s include general covariance and

quantum gauge invariariss - d =emmmes the gravitational field from the
Lorentz-invariant theorv ' he structure of the fundamental
interactions from a Knoy#: N gangians and symmetry groups.
Now we will show that ha 4 £ 84 = SRR\ Nariance works.

The gauge pringbls P A\ dekcribed as a principle of local
symmetry, is a state o0 roperties of physical laws. It
requires that every conti ocal symmetry, a phrase that is
story of gauge principle began in
polly  significant relation of
could be simply stated that

explained and discussed in fecis :
1918 when Emig L._-,-. thar hae faund 46

-

-
)

1

conservation law ane ;'.l-’-\

F-
s
1
¥ |
41

fareve:ycanﬁmous metry of nature there is a &0,

e Y ST T
M-\ av-RTap TR 1L Talok 1) i

symmetry, similar to the local symmetry that characterizes the General Theory of

Relativity. The invariance that Weyl hoped to exploit was an invariance with respect
to change of scale. The scale invariance is the requirement that physical laws be

esponding conservation law

the same if the scale of all length measurements is changed by the same over all
factors. Weyl wanted to require a focal gauge invariance in which a scale change
are allowed to be different at different points in space and time, analogous to the
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curvilinear coordinate transformations of the general relativity. The associated
conservation law, corresponding to Noether's theorem, was to be the conservation
of electric charge. Unfortunately, his theory did not success and Weyl later
abandoned it (Weyl,1931).

ndon had pointed out that the symmetry

It was until 18927 that Frit;

in the complex phase OF | w=ye fincti M lvariance under a global phase
change-multiplication ™" L sgarstant phase factor elt -was
trivial in fact; the norgafiag #4 fa=ath 8N i & Slence of electromagnetic field
allows a much broader ,. | \Atante

in which the phase factafvd #dar \‘x \, Point to another in spacetime.
It becomes an arbitraf fi ‘ \ :
Weyl also played a part

ANCe under a local phase change,

\ ite coordinates of space-time.
is¥idea and continued to use the
gh'it was now a misnomer, since the

ength scale, rather than to the

name “gauge symmetry” t d :"T
word “gauge” historical
assignment of '!r' SRS ——— . ‘ at a principle of gauge
invariance could devesr 0 ¢ rqmagnetism and matter (Weyl,

1831), in a manner Tiiar to his earlier umfiad meow of electromagnetism and

i ‘“ﬂ'ffB’J‘VIEWI’a'W g1N?
ww STPTOR MR 3T e

parameters and those that correspond to some kind of reflection. Accordingly, they
are known respectively as continuous and discrete transformations. Gauge
theories are depended only on the continuous transformations, but continuous
symmetries, whether spacetime or internal, can again be of two kinds. First, the
global transformation of which the parameters of transformation, the global
parameters, are constant. This implies that the transformation is the same at all
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spacetime points. In contrast, if the parameters of transformation depend on
spacetime coordinates then the symmetry transformation is known as a local
transformation. In such case real physical forces must be introduced to maintain

the symmetry.

As an example, let us consider the time -dependent Schrodinger equation,

associated with particle of charg

) = EEG. (1.23)

Clearly, if ¥(x,t) is a S0 g, SO is elqx w(x,t), where y is a
constant parameter.
only be defined up . :
therefore, a symmetny n o nical system. This kind of
transformation is conser#d Jiiaseiais Shsity, p = ¥'% | of a quantum
mechanical state, and, in
with just such a WPOESESESESEaReSRReTme = I donservation of “probability

F b ‘
comes from the fa "!f.:,_' = and ¥ , so that the phase

Wechanical wave function can
ant phase transformation is

electric charge can be associated

¥

factors cancel.

S UEANENENENN
A mmmummm N (1.24)

now %(x,t) becomes a scalar function of spacetime coordinates, namely every
point in four-space has a different phase. This transformation still gives
conserved probability but it is no longer giving correct solution for time-dependent
Schrodinger equation,
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ot

|:-n2 Ve + V(x}-J ¥x,t) = ihd¥xt. (1.25)
2m

This because the gradient and time derivative introduce the inhomogeneous terms

V[elaxx.D/chyu )] = elaxlx

(SN [i(q/eh)(Vx(xt) Hixt) + VEOD)]
- (1.26a)

0 [t/ Ry L) FoxD) + g_mtﬂ
X | 2
(1.26b)

s in Eq.(1.26), we see that
or a local phase transformation.

Because of the appeara
the Schrodinger equation oy

vgr, be made a symmetry of

The transfo o
BX Jied gradient and modified

Sc:hrodmger equatiof
derivative of time that & gbntain d VestORRoNent sl a '

vaﬂ%&l@%&l‘lﬁ’iw Bolfkgne  (ren
’QW'] aﬁﬂmwn‘nma d

In these n ions, the Schrodinger equation is become

alar potential as follows:

[.n_z D2 + v{x)] W) = ih DO WKL), (1.28)

em
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To determine the invariant form, we also require that the vector and scalar
potentials change under the transformation of Eq.(1.24) as

A > A=A+ Vyrxy (1.29a)
® > O =0- b (1.29b)

[V-icaremacy v AA4E 7 R ORI ()] (eiaxCx)/eN i ty)

xt] ¥xt  (1.30a)

and the modified time de

liél + i(qxcn}cta] ¥ > [0 335750 o (qfch)g_x(x.t}](eiq‘x(ﬁ)fﬁﬁ Y(x.1)
= AT

F
|" -

-~/ B2 (x.1). (1.30b)

(] -

s e LA e o
AR A S A e a Y

q
|:—_n_2 [Vv- i(qfch).n(x.t)]z - V{x;j Pxt) = Iiﬁ o0+ I(qfch)tb(x,ﬂ W(x,t), (1.31)
2m ot

provided we require the added vector and scalar potentials to transform as given
in Eq.(1.29). We recognize Eq.(1.29) as a gauge transformation similar to that
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found in Maxwell equations Eq.(1.18). To preserve the invariance under a local
phase transformation requires the introduction of additional fields. These fields are
known as gauge fields, and lead to the introduction of definite physical forces. In
the present case, A(x,t) and ®(x,t) can be interpreted as the electromagnetic
vector and scalar potentials respectively (Das and Ferbel, 1994 ). The complete
treatment on this line to obtain thi f§agwell equations Eq.(1.14) was shown by
Kobe (Kobe,1978). He alsa oWl f/#Mawell equations could be derived by
using the postulate of gam ‘.:"'?éﬁ- iance garigian and Hamiltonian mechanics

| auge principle in every case
there is a charactericyf '4of £ y W\ SndiBes, represented graphically in
Fig. 2, connecting consgfvedl an =0 W8 of nature, and gauge fields.

AUt Ve
ARIAIN TS

Fig. 2. The logical pattem of gauge theory (Milis,1989)
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Eirst, as we have seen, there is Noether's theorem, which states that for
every conservation law there is an associated symmetry and vice versa, second,
there is the fact, mentioned above, that the requirement of local symmetry leads
to a gauge field theory of particular well-determined character; and third, we find
that the gauge field theory determined in this way neces_sariry includes interactions

between the gauge field and the c ed quantity with which we started. Thus
we have the astonishing f true conservation law there is a
compiete theory of a g . " given conserved quantity is the
source. The only restric ce==hat tion law be associated with a

continuous symmetry (L™ /74 LA 158 S™Sigale, parity, which is associated
with reflection symmelg. 3 £ FEuRe L ¥ A st one free parameter, the
interaction strength. S
Robert Mills (Mills, 198

i\, e logical pattern was given by

For some 25 yeafs e idi e (almost always thought of

in terms of local gauge "InviEsss" | as a specific characteristic of

electromagnetic theory bu ental_significance. The idea that

local gauge ‘ﬁf?ﬁ*ﬁ'ﬂ"“ﬁﬁ“—"m = ,1'-“;- ificance in physics began

to be considered in -_ji . Siy iy the brilliant paper of C.N.

i¥

Yang and R. Mills (Yanand Mills, 19542.J|n 1954 Yang and Mills introduced the

field that mﬁﬁ m mvariance under local
rotations in isqgpin space of a derivative actlng on a wave function. They

g T e iien (151
electrom ple ari der local gauge

transformations. Their work was extended to general gauge groups by R. Utiyama
(Utiyama,19586).

With extensive studies, the principle of gauge invariance is now considered
as the principle which underlies all fields of nature (Weinberg,1974). With this
principle in mind, particle physicists are again actively pursuing the long sough
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goal of a unified field theory which would unify the strong, electromagnetic, weak,
and gravitational interactions. There has been substantial progress in unifying the
weak and electromagnetic interactions in name of electroweak theory
(Weinberg,1980), and the strong interaction can also be brought in the Standard
model theory (Georgi and Glashow,1980). Gravitational interactions still remain

isolated, but the gravitational field equations have been recently derived from a

other such theories.

Scope of Thesis

) \ 8 fundamental field equations
by the assumption that there

The purpose
from the continuity
exists some conservedl iy s -.\-: ted by Q in nature. If Q is
conserved globally, then IcSally as well, the local conservation
of Q implies that there exiszEZig) v equation for the conservation of Q,
similar to Eq.(1.1§ :__;—_-___;___‘: a conserved scalar, it be

77 AY
conserved in all re V__,M 4‘._ ity equation should have the

invariant form (cova i‘ e), then it can be written Wtorm of tensor equation. The

universal co m m the form invariance
of mntlnurtyﬂa ﬁﬁp m ﬂcive to develop the
transformation unde th cﬁntln We will call this
traf'ISf m ﬁ iﬁvﬁﬁ ﬂ!ﬁﬁ ly on the relative
motion o? inertial frames. In Chapter IV, we propose that the sources will have
interaction among themselves mediating by the second-rank tensor field. This
tensor field is then proved, by using continuity equation, to be an antisymmetric
tensor in four-space. It gives rise two real fields in three-space called the polar
field and the axial field. The characteristics of these two fields can be manifested
by four equations which we call the fundamental field equations for the conserved
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quantity Q. We also shown for example, if we take the speed of lignt in empty
space to be the universal constant velocity of nature, as Einstein did in his special
theory of relativity, we can readily prove that the fundamental field equations for
the conservation of electric char_ge are exactly the well-known Maxwell equaticns
we have already mentioned in Eq.(1.14). Finally, the conclusions and discussions
are given in Chapter V. The sufficie

-7r ils of tensor meory in four-zpace, which

ﬂ'NEI’JVItIW’a'W BN
ama\mmumwmaa
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