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CHAPTER I 

INTRODUCTION 

 

1.1 Background and rationale 

Ordinal probit model is a widely recognized statistical model for ordinal 

response data. McCullagh (1980) was among the first who studied this model. He 

proposed structural models appropriate for measurements on a purely ordinal scale 

that could be analyzed with different cumulative link functions such as logit and 

complementary log-log. McCullagh (1980) also provide a parameter estimation 

method based on the iteratively reweighted least squares. 

This model was re-introduced by Albert and Chib (1993) as a Bayesian 

statistical model. Albert and Chib (1993) employed the Gibbs sampler and data 

augmentation to estimate cutpoints. The results showed slow convergence. It was 

noted that high autocorrelation in the MCMC sample for the cutpoints may also 

seriously affect the convergence of  . Cowles (1995) improved convergence rate of 

the Gibbs sampler by using the Metropolis-Hasting algorithm in sampling both 

cutpoints and the latent variables together.  However, it proved to be difficult to tune. 

Chiarawongse et al. (2011) created an algorithm that was an adaptation of 

Metropolis-Hasting and operated on polar coordinates (Polar Metropolis or PM) to 

compute expected return on assets with qualitative input. The posterior density of the 

returns is a constrained normal distribution. The results showed that Polar Metropolis 

was more efficient than the Gibbs sampler and Hit-and-run sampler. 

A Bayesian ordinal probit model has a similar structure to that of 

Chiarawongse et al. (2011). The posterior distribution of parameters is also a 

constrained distribution but concerns different type of density. Therefore, Polar 

Metropolis algorithm should perform well for a Bayesian ordinal probit model. 
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The purpose of this paper is to apply Polar Metropolis for Bayesian parameter 

estimation of the ordinal probit model and to compare efficiency between  Polar 

Metropolis and the Gibbs sampler as measured by the average number of iterations 

required for the algorithm to converge to the solution. 

 

1.2 Definition 

 1.2.1 Latent variable 

Latent variables (hidden variables) are not directly observed variables (as 

opposed to observable variables), but are inferred by preference through a statistical 

model from other variables that are observed.  

 1.2.2 Full conditional probability 

 Suppose we wish to sample a random vector              according to 

target probability density function        of posterior distribution . Let           = 

                       represent the full conditional probability density function 

of      component,    , given the other components                     .  

 

1.3 Objective 

To apply Polar Metropolis for Bayesian parameters estimation to the ordinal 

probit model and to compare efficiency between Polar Metropolis and the Gibbs 

sampler. 

 

1.4 Scope of Study 

1. Compare efficiency between Polar Metropolis and the Gibbs sampler. 

2. Measure performance by the average number of iterations which are 

required until all cutpoints converge. 

http://en.wikipedia.org/wiki/Variable_(mathematics)
http://en.wikipedia.org/wiki/Observable_variable
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
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3. Conduct analyzes on the ordinal probit model. 

4. Analyze a set of real data: a 2010 credit rating of Thai company data set 

that received by an international credit rating agency. 

5. Analyze simulated data of size N= 50, 100, 250,500 and 1000 with 2, 3, 4 

and 5 cutpoints. The simulation environment is the following. 

5.1 The first independent variable                  

5.2 The second independent variable                  

5.3    correlate with    by 0.3 

5.4 Regression coefficient of        equal to -0.73  

5.5 Regression coefficient of        equal to -9.15 

5.6 Cutpoint vectors      are at intervals -2.2 to -0.6 for 2, 3 and 4 cutpoints 

and -3 to 1 for 5 cutpoints 

5.7 Each batchis equal to 500 iterations 

 

1.5 Significance of the study 

This research aims to provide a more efficient computational method for 

Bayesian parameters estimation of the ordinal probit model. 

 

1.6 Methodology 

1. Review the literature. 

2. Use a 2010 credit rating of Thai company data set for Bayesian parameters 

estimation of an ordinal probit model based on the Gibbs samplser. 

3. Use a 2010 credit rating of Thai company data set for Bayesian parameters 

estimation of an ordinal probit model based on Polar Metropolis (PM). 

4. Use simulated data for Bayesian parameters estimation of an ordinal probit 

model based on the Gibbs sampler. 

5. Use simulated data for Bayesian parameters estimation of an ordinal probit 

model based on Polar Metropolis (PM). 
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6. Compare efficiency between the Polar Metropolis and the Gibbs sampler 

as measured by the average number of iterations required for the algorithm 

to converge to the solution. 

7. Draw and discuss conclusions. 



CHAPTER II 

LITERATURE REVIEW 

 

2.1 Ordinal probit model 

Response variable of ordinal probit model is ordinal data. Thus, let    

            
  is denoted by a       vector of n response variables, which gets one 

of the k ordered values j = 0,...,k ,     is vector of independent variables and    is a 

vector of regression coefficients that there are equal to      dimensions. Let     are 

ordered cutpoints and          , the probability of observing               

conditional on    and   is given by 

                    
              

    

Which defines the link    is denoted by the normal c.d.f. for i = 1,2,…,n and  j = 

0,...,k where                       . Thus, Albert and Chib (1993) 

incorporated latent variables or hidden variables         
    

      
    to extra 

parameters for running the Gibbs sampler that depends on a vector of covariates     

through this model: 

  
     

      

Such that      iff         
      for j = 1,...,k-1 and we assume      r ior f a  and 

    (prior flat) indicator function of the ordering of the cutpoints. Hence, the joint 

posterior distribution for the latent variables      and other parameters is given by: 

                    
    

              
                    

 

   

 

Hence, the full conditional distribution for    
  and    are: 
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Thus, the distribution of    is truncated normal distribution, and the distribution of 

regression coefficients is multivariate normal distribution, given by 

                                    

If there are hidden variables   , which are made the full conditional distribution for 

each     is uniform distribution, given by 

                        

             
                         

                  

 

2.2 Markov Chain Monte Carlo (MCMC) 

In the case of the posterior distribution is not conjugate or high dimensional 

integration for Bayesian parameter estimation, a computational for posterior 

distribution from the density is very difficult. Hence, Markov Chain Monte Carlo 

(MCMC) is presented for fixing this problem. This method attempts to simulate 

straight draws from the distribution of interest which is very difficult, which the 

MCMC algorithm is assigned for sampling from the posterior distribution that are in 

one or more dimensions and moves around that posterior distribution. The idea of the 

MCMC comes from the concept of the second part. The first is the Monte Carlo 

which use to approximate posterior distribution and the second is the Markov chains, 

which infer to a new sampling points form their posterior distribution given by the 

previous sampling points. In each round of the process to create new value of the 

Markov chain. Details of this technique, Markov chain Monte Carlo, are as follows. 
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2.2.1 Monte Carlo Integration  

 We assume an arbitrary parameter     has a posterior density           . And 

we are interested in especially      which is the real-value function on state space. 

Hence, the posterior expectation of      is given by: 

                           

Where the set        , independent and identically distributed, draws from the 

posterior density. Hence, Monte Carlo Integration is used to approximate posterior 

expectation from sample mean: 

   
      

 
   

 
 

And the Monte Carlo standard error is given by 

      
             

   

      
 

Thus, if the sample points are appropriate generated from exact posterior distribution, 

the Monte Carlo Integration is efficiency. (Albert, 2009). 

 

2.2.2 Markov Chains 

Suppose, we require to simulate random vector   which has p.d.f.   on space 

    . Markov Chains are simulated sequence of vector                from 

transition probability P ,as 

                                                      

Where given       is measure space and a sequence of random parameters 

               is called Markov Chains if for every     it satisfies the Markov 

property:  



8 
 

                                              

where         has two properties. 

1. For every    ,         is probability measure over      . 

2. For every    ,         is measurable. 

The function P is called the one-step transition probability where given (one-step 

transition matrix)        . Thus, the initial states do not change transition 

probability. Hence, random parameter vector of Markov Chains             by 

transition probability from state    to state       depends only on current state      

not on previous states            .  

 If Markov Chains                have irreducible and aperiodic property 

(see appendix A.3) where reversible Markov Chains with respect to  . Hence, 

Markov Chains converge to target distribution   with in total variation or it means    

can be approximate to  . 

 

2.3 Metropolis-Hastings sampling 

In Bayesian parameter estimation, we require to generate parameter     from 

probability density function            of posterior distribution   . Hence, 

Metropolis-Hastings generates sequence of draws from proposal density          , 

and then sample points are filtered through below: 

1. Initialize any parameter      where         . 

2. Given the current state   , generate candidate parameter      from 

proposal density          which is a probability of returning a value of     

where given a previous value of    . 
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3. To compute the ratio that given by   
              

              
 with acceptance 

probability           . 

4. To compare   with generate          and deliver 

    
  

  

         

           
 

5. Let i = i+1 and repeat step 2. 

This distribution can converge to target distribution from idea of the MCMC. 

 

2.4 Gibbs Sampler 

 The Gibbs sampler can be viewed as a particular instance of the Metropolis –

Hastings algorithm in which random parameter is always accepted       (every 

proposal density is accepted). The idea behind the Gibbs sampler is that all random 

parameter can direct draws from the full conditional distribution (sampled from one 

by fixed another). Suppose, we interest in parameter             where joint 

posterior distribution of    which denotes by        , which is sometimes high 

dimensional integration. The Gibbs sampler’s algorithm is as follow: 

1. Initialize any parameter                            
  and n = 0 

2. To generate        from              where 

                           
 

                               

3. Let                            and add n to n+1. Repeat step 2. 
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2.5 Polar Metropolis 

 Polar Metropolis was presented by Chiarawongse et al. (2011) which use to 

compute expected return on assets with qualitative input, that posterior expectation of 

its is truncated normal distribution.  olar Metropolis’s algorithm is as follow: 

1. Given         is the length of      , the current direction is given by    

   

       
  L be a line segment is defined by                         

 , and let s is the surface of the intersection between the hypersphere with 

radius         and the polytope R. 

2. While half-width is more than the precision. 

3. Randomly select either an L-move or an S-move by a coin toss. 

L move: random sampling    from the conditional density           and 

accept it as       with probability  

       
         

       
 

   

 . Otherwise, let          . 

S move: random sampling    from the uniform distribution on S and accept 

it as       with probability        
        

      
 . Otherwise, let           . 
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2.6 Consistent Batch Means 

 The posterior mean          is estimated by using Markov Chain Monte 

Carlo (MCMC) where   depends on posterior distribution  . Hence, the methods for 

estimating are as follow: 

1. To generate Markov Chain {  , i=1,2,…,n} which have the total iterations 

                      , where          is total group of sample 

points and           is size of batch. Thus, we can estimate sample mean 

of group      , as 

    
      

           
                   

         
 for k =1,…,         . 

2. Let      
         

          
                   

   , where     
 

 
      

 
    

If the           and the number of consistent batch mean        are allowed to 

increase as the overall length of the simulation increases by setting           and 

bat               . Hence, Monte Carlo standard error of     is    

     
. 

Thus, the half-width of the interval is given by   

 
       

   

     
. 

 

2.7 Related literature 

Chiarawongse et al. (2011) presented Polar Metropolis for compute expected 

return on assets with qualitative input, which the posterior expectation of return is 

truncated normal distribution. 

From this research, they indicated that Polar Metropolis is more efficient than 

the Gibbs sampler. Hence, we interested to apply Polar Metropolis in credit rating 

problem which is ordinal probit model with posterior expectation of cutpoints as a 

product of constrained cumulative normal distribution. Does Polar Metropolis still 

have efficiency? 



CHAPTER III 

METHODOLOGY 

 
 This chapter presents the methodology of the study. The purpose of this study 

is applied the Polar Metropolis for Bayesian parameter estimation of ordinal probit 

model and to compare efficiency between Polar Metropolis and the Gibbs sampler 

method. The experiments were conducted using the credit ratings of Thai companies 

in 2010 and obtained by simulation using R-program. The researcher was conducted 

as follows: 

1. Simulate by using Polar Metropolis which complied with the scope of 

study and calculate half-width by employing consistent batch means. 

2. Simulate by using the Gibbs sampler which complied with the scope of 

study and calculate half-width by employing consistent batch means. 

3. Estimate cutpoints by using Polar Metropolis and the Gibbs sampler 

through a 2010 credit rating of Thai company data set, and calculate half-

width by employing consistent batch means. 

4. Count the number of iterations from cutpoints estimation where half-width 

is less than the required accuracy. 

5. Repeat until 10 times per case and compute average number of iterations 

of them. 

6. Analyze and conclude the results. 

In the process, the details of the operation are as follows 
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3.1 Data of study. 

3.1.1 Credit ratings of companies in Thailand in 2010. 

A 2010 credit ratings of Thai companies composed of 30 companies, 3 ratings, 

2 cutpoints. This data has two independent variables: the ratio between retained 

earnings and total assets (RETA) and the ratio of earnings before interest and taxes 

and total assets (EBITA) by a procedure to estimate the parameters of the cutpoints 

are as follows. 

1. let the precision  equal to 0.05 and each batch equal to 500 iterations. 

2. Estimate cutpoints by using two methods; the Polar Metropolis and the 

Gibbs sampler methods 

3. Compute half-width by employing consistent batch means. 

4. Increase one (i = i+1) or more batches until the half-width is less than the 

required accuracy. 

5. Repeat step 1 to 4 until 10 times and compute average number of iterations 

of them. 

 

3.1.2 Simulated data using Polar Metropolis. 

This process would generate parameters, the expected value of the cutpoints 

            , where d is the last cutpoint of data set, that determine exactly number 

of cutpoint. This data from the simulation was used, which is based on ordinal probit 

model and given the number of independent variables, the correlation between two 

independent variables, the number of cutpoints and the regression coefficients, 

according to the scope of study. The procedures for cutpoints estimation are as follow: 
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1. Let the precision equal to 0.1 and each batch equal to 500 iterations. 

2. Estimate cutpoints by using Polar Metropolis 

3. Compute half-width by employing consistent batch means. 

4. Increase one (i = i+1) or more batches until the half-width is less than the 

required accuracy. 

5. Repeat step 1 to 4 until 10 times and compute average number of iterations 

of them. 

 

3.1.3 Simulated data using the Gibbs sampler. 

This process would generate parameters, the expected value of the cutpoints 

            , where d is the last cutpoint of data set, that determine exactly number 

of cutpoint. This data from the simulation was used, which is based on ordinal probit 

model and given the number of independent variables, the correlation between two 

independent variables, the number of cutpoints and the regression coefficients, 

according to the scope of study. The procedures for cutpoints estimation are as follow: 

1. Let the precision equal to 0.1 and each batch equal to 500 iterations. 

2. Estimate cutpoints by using The Gibbs sampler. 

3. Compute half-width by employing consistent batch means. 

4. Increase one (i = i+1) or more batches until the half-width is less than the 

required accuracy. 

5. Repeat step 1 to 4 until 10 times and compute average number of iterations 

of them. 
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3.2 Cutpoints estimation using Polar Metropolis. 

 The key to the Polar Metropolis is that using polar coordinate transforms the 

cone support to a rectangular support by combining the Metropolis-Hasting algorithm 

and operating on polar coordinates. This method is randomly selected either an L-

move or an S-move by a coin toss, L-move: to generate cutpoints in the range of 

radius and S-move: to generate cutpoints in the range of angle. Let        is a 

number of iterations, an initial point        . Below are PM’s algorithm for sampling 

cutpoints in ordinal probit model problem. 

1. Given initial parameters as     ,     and     
  

2. Given         is the length of      , the current direction is given by    

   

       
  , L be a line segment is defined by                         

 , and let s is the surface of the intersection between the hypersphere with 

radius         and the polytope R. 

3. While half-width is more than the precision. 

4. Randomly select either an L-move or an S-move by a coin toss. 

L move: random Sampling    from the conditional density           and 

accept it as       with probability  

       
         

       
 

   

  
        

      
   

        

      
   and generate new     from their 

usual full conditional distribution which depend on the new 

     .Otherwise, let          . 

S move: random Sampling   from the uniform distribution on S and accept 

it as       with probability        
        

      
   and generate new     from 
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their usual full conditional distribution which depend on the new      . 

Otherwise, let           . 

5. Generate the coefficient of regression     . 

6. End for 

 

3.3 Cutpoints estimation using the Gibbs sampler. 

1. Let initialize parameters   ,   and   
 , Let n = 0. 

2. Generate    
   

 from full conditional probability 

                 
              

     , 

where      
   

   
  

   and   
  

=       . 

3. Generate    from full conditional probability 

                                   
               

          
                 , 

where                and    =        
 
   

 . 

4. Generate      fromfull conditional probability 

                             , 

where              and     =           
  . 

5. Let n = n+1 and repeat step 2 to 5. 

 

3.4 The criterion for the performance and procedures comparison. 

 The performance comparison criterion between two methods is the number of 

iterations required until all cutpoints converge, the smaller number of iterations the 

more efficient of method. Thus, the convergence is determined, while the half-width 

is less than the required accuracy. After received n sample points of cutpoints 

            . The procedure for calculating expected value of cutpoints using the 

Polar Metropolis and the Gibbs sampler is as follows: 
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1. Burn-in 10 percent of sample points and take 90 percent for calculating the 

number of consistent batch mean (    ) from round down of the square 

root of the remaining data             . 

2. Use consistent batch mean to estimate Monte Carlo standard error     

     
. 

3. Compute half-width from                
   

     
. 

 

 

 

 



CHAPTER IV 

RESULTS 

 

 The results of Bayesian parameter estimation for the ordinal probit model 

show that in credit ratings of companies in Thailand in 2010, Polar Metropolis is more 

efficient than the Gibbs sampler. In addition, in simulated data, Polar Metropolis is 

still more efficient than the Gibbs sampler for 2, 3 and 4 cutpoints. However, in the 

case of 5 cutpoints, the Gibbs sampler is more efficient than Polar Metropolis. The 

results of this study can be summarized as being that Polar Metropolis is better than 

the Gibbs sampler if the data characteristic is a credit ratings problem and there is low 

number of cutpoints. This chapter presents comparisons of half-width by Polar 

Metropolis and the Gibbs sampler where the number of iterations (      ) is the same. 

It shows only part of the credit ratings problem and the data obtained from simulation 

is fixed at 50 data points for  2, 3, 4 and 5 cutpoints. Therefore, the comparisons of 

their performance are chosen only against the first cutpoint. 

4.1 Results of comparison of credit rating data. 

Table 1. Mean and half-width of the first cutpoint      and the second cutpoint      

using Polar Metropolis and the Gibbs sampler for credit rating data (       

       ). 

Cut 

points 

  Polar Metropolis    Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     -2.2266 0.0497 -2.1968 0.0601 

     -0.6298 0.0428 -0.594 0.0491 

Table 1 presents results of cutpoints estimation. The half-width of the first 

cutpoint using Polar Metropolis (0.0497) is less than the half-width of the first 

cutpoint using the Gibbs sampler  (0.0601),  and half-width of the second cutpoint 
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by using Polar Metropolis (0.0428) is less than half-width of the first cutpoint by 

using Gibbs sampler (0.0491). The results show that Polar Metropolis is more 

efficient than the Gibbs sampler for cutpoints estimation of credit rating problems. 

 

 

Figure 1. The average mean plot of the first cutpoint of Polar Metropolis (right) and 

the Gibbs sampler (left) in the case of 2 cutpoints regarding the credit ratings of Thai 

companies in 2010. 

Figure 1 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 41,000 iterations are fixed. The first cutpoints using Polar Metropolis 

show convergence, but those of the Gibbs sampler do not yet. 
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Figure 2. The average mean plot of the first cutpoint of Polar Metropolis (right) and 

the Gibbs sampler (left) with 2 cutpoints for credit ratings of Thai companies in 2010. 

Figure 2 presents the average mean plots of Polar Metropolis and the Gibbs 

sampler where 41,000 iterations are fixed. The second cutpoints using Polar 

Metropolis and the Gibbs sampler show convergence. 
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4.2 Results of comparison for 2 cutpoints of simulated data. 

 

Sample size 

Figure3. The graph shows the number of iterations until all cutpoints converge versus 

number of observations by comparison between Polar Metropolis (line plot) and the 

Gibbs sampler (dot plot) for 2 cutpoints of simulated data where the precision is equal 

to 0.1 and number of observation are 50, 100, 250, 500 and 1,000 data points.  

The graph showsthat Polar Metropolis is more efficient than the Gibbs 

sampler regarding cutpoints estimation of 2 cutpoints of simulated data because 

number of iterations using Polar Metropolis are fewer than number of iterations using 

the Gibbs sampler at every data point. 
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Table 2. Mean and half-width of the first cutpoints      where given 2 cutpoints and 

data is fixed at 50 points from simulated data using Polar Metropolis and the Gibbs 

sampler (              ). 

Cut 

points 

Polar Metropolis Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     -3.3680 0.0755 -3.1819 0.0841 

Table 2 presents results from cutpoints estimation. Results show that the half-

width of the first cutpoint using Polar Metropolis (0.0755) is less than the half-width 

of the first cutpoint using the Gibbs sampler (0.0841). The results can summarized as 

showing that Polar Metropolis is more efficient than the Gibbs sampler for cutpoints 

estimation of 2 cutpoints from simulated data. 

 

Figure 4. The average meanplot of the first cutpointof Polar Metropolis (right) and 

the Gibbs sampler (left) in the case of 2 cutpoints for simulated data. 

Figure 4 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 25,000 iterations are fixed. The first cutpoints using Polar Metropolis 

show convergence, but those of the Gibbs sampler do not yet.  
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4.3 Results of comparison for 3 cutpoints of simulated data. 

 

Sample size 

Figure 5. The graph shows the number of iterations until all cutpoints converge 

versus number of observations by comparison between Polar Metropolis (line plot) 

and the Gibbs sampler (dot plot) for 3 cutpoints of simulated data where the precision 

is equal to 0.1 and number of observation are 50, 100, 250, 500 and 1,000 data points.   

The graph shows that Polar Metropolis is more efficient than the Gibbs 

sampler regarding cutpoints estimation of 3 cutpoints of simulated data because 

number of iterations using Polar Metropolis are fewer than number of iterations  using 

the Gibbs sampler at every data point. 
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Table 3. Mean and half-width of the first cutpoints      where given 3 cutpoints and 

fixed at 50 points from simulated data using Polar Metropolis and the Gibbs sampler 

(              ). 

Cut 

points 

Polar Metropolis Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     -2.9927 0.0526 -2.9727 0.0692 

Table 3 presents results from cutpoints estimation. Results show that the half-

width of the first cutpoint using Polar Metropolis (0.0526) is less than the half-width 

of the first cutpoint using the Gibbs sampler (0.0692). The results can summarized as 

showing that Polar Metropolis is more efficient than the Gibbs sampler for cutpoints 

estimation of 3 cutpoints from simulated data. 

 

Figure 6. The average mean plot of the first cutpoint of Polar Metropolis (right) and 

the Gibbs sampler (left) in the case of 3 cutpoints for simulated data. 

Figure 6 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 25,000 iterations are fixed. The first cutpoints using Polar Metropolis 

show convergence, but those of the Gibbs sampler do not yet.  
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4.4 Results of comparison for 4 cutpoints of simulated data. 

 

Sample size 

Figure 7. The graph shows the number of iterations until all cutpoints converge 

versus number of observations by comparison between Polar Metropolis (line plot) 

and the Gibbs sampler (dot plot) for 4 cutpoints of simulated data where the precision 

is equal to 0.1 and number of observation are 50, 100, 250, 500 and 1,000 data points.   

The graph shows that Polar Metropolis is more efficient than the Gibbs 

sampler regarding cutpoints estimation of 4 cutpoints of simulated data because 

number of iterations using Polar Metropolis are fewer than number of iterations using 

the Gibbs sampler at every data point. 
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Table 4. Mean and half-width of the first cutpoints      where given 4 cutpoints and 

data is fixed at 50 points from simulated data using Polar Metropolis and the Gibbs 

sampler (              ). 

Cut 

points 

Polar Metropolis Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     -2.8735 0.0362 -3.0008 0.0597 

Table 4 presents results from cutpoints estimation. Results show that the half-

width of the first cutpoint using Polar Metropolis (0.0362) is less than the half-width 

of the first cutpoint using the Gibbs sampler (0.0597). The results can summarized as 

showing that Polar Metropolis is more efficient than the Gibbs sampler for cutpoints 

estimation of 4 cutpoints from simulated data. 

 

Figure 8. The average mean plot of the first cutpoint of Polar Metropolis (right) and 

the Gibbs sampler (left) in the case of 3 cutpoints for simulated data. 

Figure 8 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 50,000 iterations are fixed. The first cutpoints using Polar Metropolis 

show convergence, but those of the Gibbs sampler do not yet.  
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4.5 Results of comparison for 5 cutpoints of simulated data. 

 

Sample size 

Figure 9. The graph shows the number of iterations until all cutpoints converge 

versus number of observations by comparison between Polar Metropolis (line plot) 

and the Gibbs sampler (dot plot) for 4 cutpoints of simulated data where the precision 

is equal to 0.1 and number of observation are 50, 100, 250, 500 and 1,000 data points.   

The graph shows that Polar Metropolis is more efficient than the Gibbs 

sampler regarding cutpoints estimation of 4 cutpoints of simulated data because 

number of iterations using Polar Metropolis are fewer than number of iterations using 

the Gibbs sampler at every data point. 
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Table 5. Mean and half-width of the first cutpoints      where given 5 cutpoints and 

data is fixed 50 points from simulated data using Polar Metropolis and the Gibbs 

sampler (              ). 

Cut 

points 

Polar Metropolis Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     -3.5349 0.0561 -3.6052 0.0637 

Table 5 presents results from cutpoints estimation. Results show that the half-

width of the first cutpoint using Polar Metropolis (0.0561) is less than the half-width 

of the first cutpoint using the Gibbs sampler (0.0637). The results can summarized as 

showing that Polar Metropolis is more efficient than the Gibbs sampler for cutpoints 

estimation of 5 cutpoints from simulated data. 

 

Figure 10. The average mean plot of the first cutpoint of Polar Metropolis (right) and 

the Gibbs sampler (left) in the case of 5 cutpoints for simulated data. 

Figure 10 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 75,000 iterations are fixed. The first cutpoints using Polar Metropolis 

and Gibbs sampler show convergence.  



CHAPTER V 

CONCLUSION AND DISCUSSION 

 

5.1 Conclusion 

 The problem of estimating the cutpoints of an ordinal probit model in a 

Bayesian setting is an integration problem of constrained cumulative normal 

distribution. Although the most popular MCMC method is the Gibbs sampler method, 

applied to this problem, it has a slow convergence rate due to the conical geometry of 

the support of the distribution. Therefore, we introduced a new MCMC method for 

Bayesian parameter estimation of an ordinal probit model which involves using Polar 

Metropolis. In simulated data sets, it is clear that Polar Metropolis is more efficient 

than the Gibbs sampler in low dimension problems with 2, 3, and 4 cutpoints. But, 

from 5 cutpoints, the low acceptance rate of the Metropolis-Hastings algorithm in S-

move causes the Polar Metropolis to slow down, which makes the Gibbs sampler 

more efficient than Polar Metropolis. Results show that the acceptance rate of S-move 

would drop where there are too many cutpoints (see Fig 11) because unsuitable 

distribution is used for the proposal density. We provided an example with 2 

cutpoints, using uniform distribution at interval of     
 
 
  

 
   for proposal density to 

generate cutpoints from their posterior distribution as a product of constrained 

cumulative normal distribution (see Fig 12).  
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Figure 11.The graph plots acceptance rate versus number of cutpoints at 50 data 

points.  
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Figure12.The graph shows the proposal density is uniform distribution and the full 

conditional distribution of cutpoints in the case of 2 cutpoints. 

  

5.2 Discussion and further research 

 As the results of study show a comparison of cutpoints estimation for an 

ordinal probit model for credit rating using Polar Metropolis and the Gibbs sampler, 

in low dimensions, 2, 3, and 4 cutpoints, Polar Metropolis is more efficient than the 

Gibbs sampler. Thus, the results correspond to the research of Chiarawongse et al. 

(2011) in that Polar Metropolis is more efficient than the Gibbs sampler. Unlike the 2, 

3 and 4 cutpoints, in the case of 5 cutpoints, the Gibbs sampler is more efficient than 

Polar Metropolis because of the problem of the low acceptance rate of cutpoints 

generated in S-move. Therefore, further research is needed to fine tune Polar 

Metropolis in its S-move. If successful, we expect the performance of Polar 

Metropolis to improve. 
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 We perform the experiments with different initial parameters settings. We 

observed that the initial parameters have some impacts on the convergence rates. 

Performing the experiments on different sets of simulated data, we observe variation 

in the convergence rates, which indicates the sensitivity of the algorithm to the data 

set. However, the correlation between independent variables does not show any direct 

impact on the experiment results. 

 The data in this research is simulated only for application to the credit rating 

problem. Further research, should try other ranking problems such as medical data. 

 In this research, the confidence interval is the criterion for performance 

comparison. Thus, in the case of higher dimensions, the MCMC algorithm may stop 

prematurely. There, further research to confirm the results, may try stopping other 

criterion. 
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A1. Results of comparison of 9 cutpoints of simulated data. 

Table A1. Mean and half-width of the ninth cutpoints      where given 5 cutpoints 

and data is fixed at 50 points from simulated data using Polar Metropolis and the 

Gibbs sampler (              ). 

Cut 

points 

Polar Metropolis Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     1.2891 0.0603 1.1811 0.0334 

Table A1 presents results from cutpoints estimation. Results show that the 

half-width of the ninth cutpoint using Polar Metropolis (0.0603) is more than the half-

width of the ninth cutpoint using the Gibbs sampler (0.0334) The results can 

summarized as showing that Polar Metropolis is less efficient than the Gibbs sampler 

for cutpoints estimation of 5 cutpoints from simulated data. 

 

FigureA1. The average mean plot of the first cutpoint of Polar Metropolis (right) and 

the Gibbs sampler (left) in the case of 9 cutpoints for simulated data. 
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Figure A1 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 25,000 iterations are fixed. The ninth cutpoints using the Gibbs 

sampler show convergence, but those of Polar Metropolis do not yet. 

 

A2. Results of comparison for credit rating data (4 cutpoints). 

Table A2. Mean and half-width of the fourth cutpoints      where given 4 cutpoints 

and data is fixed at 50 points from simulated data using Polar Metropolis and the 

Gibbs sampler (              ). 

Cut 

points 

Polar Metropolis Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     1.2378 0.0527 1.2252 0.0303 

Table A2 presents results from cutpoints estimation. Results show that the 

half-width of the fourth cutpoint using Polar Metropolis (0.0527) is more than half-

width of the fourth cutpoint using the Gibbs sampler (0.0303) The results can 

summarized as showing that Polar Metropolis is  efficient than the Gibbs sampler for 

cutpoints estimation of 4 cutpoints from credit rating data. 
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FigureA2. The average mean plot of the fourth cutpoint of Polar Metropolis (right) 

and the Gibbs sampler (left) in the case of 4cutpoints for credit rating data. 

Figure A2 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 50,000 iterations are fixed. The fourth cutpoint using the Gibbs 

sampler show convergence, but those of Polar Metropolis do not yet. 
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A3. Results of credit rating for 2 cutpoints where given correlation = -0.37. 

Table A3. Mean and half-width of the first cutpoint      and the second cutpoint      

using Polar Metropolis and the Gibbs sampler for credit rating data (             ). 

Cut 

points 

  Polar Metropolis    Gibbs Sampler 

Mean Std.Err Mean Std.Err 

     -0.5774 0.0477 -0.6147 0.0531 

     0.6973 0.0435 0.8030 0.0467 

Table A3. presents results of cutpoints estimation. The half-width of the first 

cutpoint using Polar Metropolis (0.0477) is less than the half-width of the first 

cutpoint using the Gibbs sampler (0.0531) , and half-width of the second cutpoint      

by using Polar Metropolis (0.0435) is less than half-width of the first cutpoint by 

using Gibbs sampler (0.0467). The results show that Polar Metropolis is more 

efficient than the Gibbs sampler for cutpoints estimation of credit rating problems. 

  

Figure A3.1. The average mean plot of the first cutpoint of Polar Metropolis (right) 

and the Gibbs sampler (left) in the case of 2 cutpoints regarding the credit ratings of 

Thai companies in 2010. 
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Figure A3.1. presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 2,000 iterations are fixed. The first cutpoints using Polar Metropolis 

and the Gibbs sampler do not converge. 

 

Figure A3.2. The average mean plot of the first cutpoint of Polar Metropolis (right) 

and the Gibbs sampler (left) with 2 cutpoints for credit ratings of Thai companies in 

2010. 

Figure A3.2. presents the average mean plots of Polar Metropolis and the 

Gibbs sampler where 2,000 iterations are fixed. The second cutpoints using Polar 

Metropolis show convergence, but those the Gibbs samplerdo not yet. 
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A4. Results of simulated data for 2 cutpoints where given correlation = 0. 

Table A4. Mean and half-width of the first cutpoint      and the second cutpoint      

using Polar Metropolis and the Gibbs sampler for credit rating data (       

       ). 

Cut 

points 

  Polar Metropolis    Gibbs Sampler 

Mean Std.Err Mean Std.Err 

  
 
  -2.757 0.0565 -2.8624 0.0832 

  
 
  -0.9341 0.0524 -1.0209 0.0673 

Table A4. presents results of cutpoints estimation. The half-width of the first 

cutpoint using Polar Metropolis (0.0565) is less than the half-width of the first 

cutpoint using the Gibbs sampler (0.0832) , and half-width of the second cutpoint      

by using Polar Metropolis (0.0524) is less than half-width of the first cutpoint by 

using Gibbs sampler (0.0673). The results show that Polar Metropolis is more 

efficient than the Gibbs sampler for cutpoints estimation of credit rating problems. 

 

FigureA4.1 The average mean plot of the first cutpoint of Polar Metropolis (right) 

and the Gibbs sampler (left) in the case of 2 cutpoints for simulated data. 
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Figure A4.1 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 25,000 iterations are fixed. The first cutpoints using Polar Metropolis 

show convergence, but those of the Gibbs sampler do not yet. 

 

FigureA4.2 The average mean plot of the first cutpoint of Polar Metropolis (right) 

and the Gibbs sampler (left) in the case of 2 cutpoints for simulated data. 

Figure A4.2 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 25,000 iterations are fixed. The first cutpoints using Polar Metropolis 

and the Gibbs sampler show convergence. 
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A5. Results of simulated data for 2 cutpoints where given correlation = 0.9. 

Table A5. Mean and half-width of the first cutpoint      and the second cutpoint      

using Polar Metropolis and the Gibbs sampler for credit rating data (       

       ). 

Cut 

points 

  Polar Metropolis    Gibbs Sampler 

Mean Std.Err Mean Std.Err 

  
 
  -1.4693 0.0497 -1.5035 0.0532 

  
 
  -0.1050 0.0454 -0.1449 0.0486 

Table A5. presents results of cutpoints estimation. The half-width of the first 

cutpoint using Polar Metropolis (0.0497) is less than the half-width of the first 

cutpoint using the Gibbs sampler (0.0532) , and half-width of the second cutpoint      

by using Polar Metropolis (0.0454) is less than half-width of the first cutpoint by 

using Gibbs sampler (0.0486). The results show that Polar Metropolis is more 

efficient than the Gibbs sampler for cutpoints estimation of credit rating problems. 

 

FigureA5.1 The average mean plot of the first cutpoint of Polar Metropolis (right) 

and the Gibbs sampler (left) in the case of 2 cutpoints for simulated data. 
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Figure A5.1 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 25,000 iterations are fixed. The first cutpoints using Polar Metropolis 

and the Gibbs sampler do not converge. 

 

FigureA5.2 The average mean plot of the first cutpoint of Polar Metropolis (right) 

and the Gibbs sampler (left) in the case of 2 cutpoints for simulated data. 

Figure A5.2 presents the average mean plot of Polar Metropolis and the Gibbs 

sampler where 25,000 iterations are fixed. The first cutpoints using Polar Metropolis 

and the Gibbs sampler show convergence. 
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A6. About the Markov Chains  

 A6.1. Stationary distribution 

Let   is probability distribution over      .   is said to be stationary 

distribution of probability transition matrix P, if     . 

 

A6.2. Irreducible Markov chains 

Let    is n-step transition probability and   is finite measure space over 

     . Markov Chain is said to be irreducible, if for every     with       , there 

exists n such that           for all    . 

 

A6.3. Aperiodic of Markov chains 

P has a period if there exist integer     and sequence of subset   of 

                such as i = 0,1,…,d-1 for all    . 

                               

Otherwise P is said to be aperiodic. 

 

A6.4. Reversibility 

 

 Transition probabilityP is reversibility with respect to   where  be a 
probability distribution over measure space       . If for every       

                    
  

       

where countable space   has all possible value K, transition probability P is given by 
the matrix          with size    . Hence, a stationary Markov Chain is said to be 
reversible if             . 
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A6.5. Markov Chain Convergence in total variation 

 

Theorem: If P is irreducible over  , where   is measure space on      , and  

  is stationary distribution. If P is aperiodic then for almost every x, 

               

Where     is total variational distance, as 

   
   

                                    

 

 

A6.6. Ergodicity 

 

Markov Chain is said to be ergodic if finite state Markov Chains that are 

irreducible and aperiodic have the property that,     ,    has all entries positive. 

 

 If the Markov Chains Monte Carlo (MCMC) algorithms can be constructed, 

the ergodic theorem can examine most of settings, the average as  

 
       

    

converges to        . 
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A7. Code for R-Program to compute Bayesian parameters. 

A7.1. Bayesian parameters estimation using Polar Metropolis. 

dataset<-read.csv("MCMC.csv",header=TRUE); 

x<-as.matrix(dataset[,2:3]); 

y<-as.matrix(dataset[,1]); 

library(MASS); 

library(mvtnorm); 

#Defined variable 

simround<-500; 

precision<-0.05; 

betavec<-as.matrix(c(-1,-6)); 

levels(y)<-c("1","2","3"); 

ratingvec<-levels(y); 

meanystrar<-as.matrix(c(NA,nrow=NA)); 

gammavec<-seq(from=-6, to=6, length=length(ratingvec)-1); 

cgammavec<-c(NA,length=length(ratingvec)-1); 

stdc<-0.625; 

dim<-length(gammavec); 

pivec<-c(NA,length=length(ratingvec)); 

xtb<-rep(NA, length(dataset[,1]),nrow=length(dataset[,1]),ncol=1); 

ystar<-rep(NA, length(dataset[,1])); 

ystar<-as.matrix(dataset[,2:3])%*%betavec; 

cgammamat<-c(); 

countl<-0; 

countll<-0; 

counts<-0; 

countss<-0; 

betamat<-c(); 

halfwidth<-1; 

batchnum<-0; 

gibbsloop<-function(){ 

while(halfwidth> precision){ 
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for (i in 1:simround){ 

#calculate xtb 

for(j in 1:length(ratingvec)){ 

meanystar<-

as.matrix(dataset[dataset[,1]==ratingvec[j],2:3],ncol=2)%*%betavec; 

xtb[dataset[,1]==ratingvec[j]]<-meanystar; 

}  

   

#simulate candidate gamma 

if(runif(1)<=0.5){ 

#L Move 

countl<-countl+1; 

rgam<-sqrt(sum(gammavec^2)); 

rcgam<-qnorm(runif(1)*(1-pnorm(0,rgam,stdc))+pnorm(0,rgam,stdc),rgam,stdc); 

cgammavec<-rcgam*(gammavec/rgam); 

    

#calculate r (ry/rx) 

r<-(rcgam/rgam)^(dim-1); 

    

#calculate proposal density (qy/qx) 

qydqx<-(dnorm(rgam,rcgam,stdc)/ 

(1- pnorm(0,rcgam,stdc)))/(dnorm(rcgam,rgam,stdc)/(1-pnorm(0,rgam,stdc))); 

 

# Calculatepir (piy/pix) 

for (j in 1:length(ratingvec)){ 

gammaminusxtb<-

c(NA,length=length(xtb[dataset[,1]==ratingvec[j]])); 

if (j==1){ 

gammaminusxtb<-pnorm((cgammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1)/pnorm((gammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1); 

pivec[j]<-prod(gammaminusxtb); 



48 
 

}else{  

if (j==length(ratingvec)){ 

gammaminusxtb<-(1-pnorm((cgammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1))/(1-pnorm((gammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1)); 

pivec[j]<-prod(gammaminusxtb); 

}else{     

gammaminusxtb<-(pnorm((cgammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1)-pnorm((cgammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1))/(pnorm((gammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1)-pnorm((gammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1)); 

pivec[j]<-prod(gammaminusxtb); 

} 

}   

} 

piydpix<-prod(pivec); 

 

#calculate alpha 

alphal<-piydpix*r*qydqx; 

minr<-min(alphal,1);  

if(runif(1)<=minr){ 

countll<-countll+1; 

gammavec<-cgammavec; 

 

#Simulate y* 

for (j in 1:length(ratingvec)){ 

 if(j == 1){ 

probvec<-

runif(length(xtb[dataset[,1]==ratingvec[j]]))*pnorm(gammavec

[j],xtb[dataset[,1]==ratingvec[j]],1); 

 }else{ 
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 if(j == length(ratingvec)){ 

 probvec<-runif(length(xtb[dataset[,1]==ratingvec[j]]))* 

(1-pnorm(gammavec[j-1],xtb[dataset[,1]==ratingvec[j]],1))+ 

pnorm(gammavec[j-1],xtb[dataset[,1]==ratingvec[j]],1); 

 }else{ 

probvec<-

runif(length(xtb[dataset[,1]==ratingvec[j]]))*(pnorm(gammave

c[j],xtb[dataset[,1]==ratingvec[j]],1)-pnorm(gammavec[j-

1],xtb[dataset[,1]==ratingvec[j]],1)) + pnorm(gammavec[j-

1],xtb[dataset[,1]==ratingvec[j]],1); 

 } 

 } 

ystar[dataset[,1]==ratingvec[j]]<-

qnorm(probvec,xtb[dataset[,1]==ratingvec[j]],1); 

} 

} 

    

}else{ 

counts<-counts+1; 

#S Move 

#Uniform Surface Hypersphere 

svec<-rnorm(length(gammavec),0,1); 

svec<-svec/sqrt(sum(svec^2)); 

cgammavec<-sort(svec); 

rgam<-sqrt(sum(gammavec^2)); 

cgammavec<-rgam*cgammavec; 

 

# Calculatepir (piy/pix) 

for (j in 1:length(ratingvec)){ 

gammaminusxtb<-

c(NA,length=length(xtb[dataset[,1]==ratingvec[j]])); 

if (j==1){ 
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gammaminusxtb<-pnorm((cgammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1)/pnorm((gammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1); 

pivec[j]<-prod(gammaminusxtb); 

}else{  

if (j==length(ratingvec)){ 

gammaminusxtb<-(1-pnorm((cgammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1))/(1-pnorm((gammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1)); 

pivec[j]<-prod(gammaminusxtb); 

}else{     

gammaminusxtb<-(pnorm((cgammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1)-pnorm((cgammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1))/(pnorm((gammavec[j]-

xtb[dataset[,1]==ratingvec[j]]),0,1)-pnorm((gammavec[j-1]-

xtb[dataset[,1]==ratingvec[j]]),0,1)); 

pivec[j]<-prod(gammaminusxtb); 

} 

}   

} 

piydpix<-prod(pivec); 

   

#calculate alpha 

alphas<-piydpix 

minr<-min(alphas,1) 

 

if(runif(1)<=minr){ 

countss<-countss+1; 

gammavec<-cgammavec; 

 

#Simulate y* 

for (j in 1:length(ratingvec)){ 
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if(j == 1){ 

probvec<-

runif(length(xtb[dataset[,1]==ratingvec[j]]))*pnorm(gammavec[j],xtb[dataset[

,1]==ratingvec[j]],1); 

}else{ 

if(j == length(ratingvec)){ 

probvec<-runif(length(xtb[dataset[,1]==ratingvec[j]]))* 

(1-pnorm(gammavec[j-1],xtb[dataset[,1]==ratingvec[j]],1))+  

pnorm(gammavec[j-1],xtb[dataset[,1]==ratingvec[j]],1); 

}else{ 

probvec<-runif(length(xtb[dataset[,1]==ratingvec[j]]))* 

(pnorm(gammavec[j],xtb[dataset[,1]==ratingvec[j]],1)- 

pnorm(gammavec[j-1],xtb[dataset[,1]==ratingvec[j]],1)) +  

pnorm(gammavec[j-1],xtb[dataset[,1]==ratingvec[j]],1); 

} 

} 

ystar[dataset[,1]==ratingvec[j]]<-qnorm(probvec,xtb[dataset[,1]==ratingvec[j]],1); 

} 

} 

} 

cgammamat<-rbind(cgammamat,matrix(gammavec,nrow=1)); 

  

#Simulate beta 

betavec<-

t(rmvnorm(1,(ginv(t(x)%*%x)%*%t(x)%*%ystar),as.matrix(ginv(t(x)%*%x)))); 

   

} 

#Compute halfwidth 

batchnum<-batchnum+1; 

newhalfwidthvec<-rep(NA,length=(length(ratingvec)-1)); 

#Number of batches for inference according to Consistent batch mean 

ncbm<-floor(sqrt(0.9*batchnum*simround)); 
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for(i in 1:(length(ratingvec)-1)){ 

#Number of inference batch and the batch size is equal 

infvec<-cgammamat[-(1:(0.1*batchnum*simround)),i]; 

infvec<-infvec[1:(ncbm*ncbm)]; 

infmat<-matrix(infvec,ncol=ncbm); 

batchmeanvec<-colMeans(infmat); 

newhalfwidthvec[i]<-qt(0.975,ncbm-1)* 

sd(batchmeanvec)/sqrt(length(batchmeanvec)); 

} 

halfwidth<-max(newhalfwidthvec); 

 } 

result<-c(batchnum,countll/countl,countss/counts); 

} 

batchvec<-rep(NA,length=10) 

aclrate<-rep(NA,length=10) 

acsrate<-rep(NA,length=10) 

for(i in 1:10){ 

set.seed(100+i); 

outvec<-gibbsloop(); 

batchvec[i]<-outvec[1]; 

aclrate[i]<-outvec[2]; 

acsrate[i]<-outvec[3]; 

print(i) 

} 

batchmean<-mean(batchvec); 

aclmean<-mean(aclrate); 

acsmean<-mean(acsrate); 
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A7.2. Bayesian parameters estimation using the Gibbs sampler. 

dataset<-read.csv("MCMC.csv",header=TRUE); 

x<-as.matrix(dataset[,2:3]); 

y<-as.matrix(dataset[,1]); 

library(MASS); 

library(mvtnorm); 

#Defined variable 

simround<-500; 

precision<-0.05; 

betavec<-as.matrix(c(-1,-6)); 

levels(y)<-c("1","2","3"); 

ratingvec<-levels(y); 

meanystrar<-as.matrix(c(NA,nrow=NA)); 

gammavec<-seq(from=-6, to=6, length=length(ratingvec)-1); 

gammavecnew<-c(NA,length(ratingvec)-1); 

betamat<-c(); 

gammamat<-c(); 

ystar<-rep(NA, length(dataset[,1]),nrow=30,ncol=1); 

halfwidth<-1; 

batchnum<-0; 

gibbsloop<-function(){ 

while(halfwidth> precision){ 

for (i in 1:simround){ 

for (j in 1:length(ratingvec)){ 

#Simulate y* 

meanystar<-as.matrix(dataset[dataset[,1]==ratingvec[j],2:3],ncol=2)%*%betavec; 

if(j == 1){ 

probvec<-runif(length(meanystar))*pnorm(gammavec[j],meanystar,1); 

}else{ 

if(j == length(ratingvec)){ 

probvec<-runif(length(meanystar))*(1-pnorm(gammavec[j-

1],meanystar,1))+ pnorm(gammavec[j-1],meanystar,1); 



54 
 

}else{ 

probvec<-

runif(length(meanystar))*(pnorm(gammavec[j],meanystar,1)-

pnorm(gammavec[j-1],meanystar,1)) + pnorm(gammavec[j-

1],meanystar,1); 

} 

} 

ystar[dataset[,1]==ratingvec[j]]<-qnorm(probvec, meanystar,1); 

} 

   

#Simulate gamma 

for ( j in 1:(length(ratingvec)-1) ){ 

lb<-ifelse(j==1,max(ystar[dataset[,1]==ratingvec[j]]), 

max(max(ystar[dataset[,1]==ratingvec[j]]),gammavec[j-1])); 

ub<-ifelse(j==(length(ratingvec)-1),min(ystar[dataset[,1]==ratingvec[j+1]]), 

min(min(ystar[dataset[,1]==ratingvec[j+1]]),gammavec[j+1])); 

gammavec[j]<-runif(1)*(ub-lb)+lb; 

} 

gammamat<-rbind(gammamat,matrix(gammavec,nrow=1)); 

 

#simulate betavector 

betavec<-

t(rmvnorm(1,(ginv(t(x)%*%x)%*%t(x)%*%ystar),as.matrix(ginv(t(x)%*%x)))); 

} 

 

#Compute halfwidth 

batchnum<-batchnum+1; 

newhalfwidthvec<-rep(NA,length=(length(ratingvec)-1)); 

#Number of batches for inference according to Consistent batch mean 

ncbm<-floor(sqrt(0.9*batchnum*simround)); 

for(i in 1:(length(ratingvec)-1)){ 

#Number of inference batch and the batch size is equal 
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infvec<-gammamat[-(1:(0.1*batchnum*simround)),i]; 

infvec<-infvec[1:(ncbm*ncbm)]; 

infmat<-matrix(infvec,ncol=ncbm); 

batchmeanvec<-colMeans(infmat); 

newhalfwidthvec[i]<-qt(0.975,ncbm-

1)*sd(batchmeanvec)/sqrt(length(batchmeanvec)); 

} 

halfwidth<-max(newhalfwidthvec); 

} 

batchnum; 

} 

batchvec<-rep(NA,length=10) 

for(i in 1:10){ 

set.seed(100+i); 

batchvec[i]<-gibbsloop(); 

print(i) 

} 

batchmean<-mean(batchvec); 
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