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CHAPTER 1

Introduction

The physics of nonlinear response of.€omposites subject to an applied elec-
tric field has been very much fiitcrested becatse it Has many applications in physics
and engineering, for instanee, developing photonic devices, explaining some physi-
cal phenomena, predicting optigal resplbnses and using as fundamental information
for designing nonlinear gptigalmuaterials [1]. For example, the color of laser light
depends on the optical monlinear ljespghs,e of material used in laser. If we can
control the optical nonlingar respohse ;l?elna_we can control the color of the emit-
ted laser light. Therefore, it is ﬁﬁ%ful to;:sé__l_l‘dy the electric field responses of these
materials. Various methods haye been usé,d_’.é,g[astudy the effective responses of non-

linear composites such as the_‘petjturbati_(?i_.,_@e_thod [2-4], the variational method

[5-8] and the deco_ﬁpling approximation [9-12]. The ;a_ecoupling approximation,

originally propose(f by Stroud and Wood [13], has beetl widely applied to study
nonlinear composites+by many authors |9 -12]. We ‘previously have applied this
method together with, the-variational method,to predict the effective third-order
nonlinear coefficient' (%) of strongly nonlinear'spherical dielectric composites [14],

and confirmed the results with thé experimentéahdata of Gehrfef al. [15].

Obviously, the effective response depends on composite microstructures such
as inclusion packing fraction and inclusion shapes. In the literature search, con-
stituents of spherical and cylindrical geometries have been mostly presented for
theoretical models in investigations of effective responses of composites. However,
in experimental lab, the realistic constituents of prepared composites may not be
perfectly spherical or cylindrical such as those of Kochergin et al.[16] and Piredda
et al.[17] with imperfectly spherical and cylindrical nanoinclusions, randomly dis-

tributed in dielectric medium. Therefore, the research interests have been devoted



to the elliptical and ellipsoidal composites and also concentrated on the effect of

inclusion shapes on nonlinear response.

To obtain the effective nonlinear responses very close to those of realistic
composites, we consider the composite microstructures of two types, composites
with identical inclusion shape and those with distributed inclusion shapes. For
the former, the geometry of all inclusions is the same. For the latter, the inclusion
shapes could deviate from a specifie geametry such as cylinder to any possible
shape of elliptic cylinders. For both cases, the'inclusions are randomly embedded

in the host medium with parallel axes

For composites withaideatical inclusion shape, Hui and Chung [11] studied
the effective nonlinear rgspounsciu ran(iom composites consisting of weakly nonlin-
ear cylindrical (and spherical) in¢lisions randomly embedded in the host medium.
By using the effective medium appraxin;atipn, the expression of effective nonlinear
coefficient (y.) was defived. Giordano é’c_ al. [18-19] developed alternative proce-
dure to investigate the shape—ciejéenden‘.%;égects of linear or nonlinear ellipsoidal
dielectric inclusions randomly oriented and é{nbedded in linear dielectric medium

in terms of the eccentricity of the iIlClUSi:CT]-:_lS_.;, Chang et al. [20] have investigated

the effect of host lrigdium and particle shapes on thi_-fd:order optical nonlinear-

ities of nanocompd‘si‘f_es which compose of ZnO nanoréds or ZnO nanoparticles
suspended in water ox‘ethanol. Their results are in geod agreement with the the-
oretical predictions based on Maxwell-Garnett, effective.medium theory. Recently,
we have applied the decoipling approxiniation lte investigite the shape effect of
identical inclusions on the effective nonlinearsesponse of strémgly nonlinear el-
liptical“dieléctric lgoniposites iny thegdilute limit [21]. (We éxpect_that composite

microstructures of these work relate to those of Kochergin’s experiment.

For composites with distributed inclusion shapes, based on statistical ap-
proach, Goncharenko et al. [22-23] successfully predicted the effect of shape dis-
tribution on light absorption and light scattering of ellipsoidal composites and
their approach has been widely applied to study the electric field response by
many authors [24-31]. The effective linear and nonlinear optical properties of

metal-dielectric composites with inclusion shape distribution [24-26] have been in-



vestigated including the effective nonlinear response of a two-dimensional strongly
nonlinear elliptic cylindrical composite by the effective medium approximation
[27] and that of nonlinear ellipsoidal composite by Maxwell-Garnet approxima-
tion [28]. Xu and Li proposed that the particle shape has a profound effect on
the optical threshold of metal-insulator composites [29]. Goncharenko et al. have
predicted the shape distribution effect of nonsphericity on linear and nonlinear
optical properties of small particles ¢omposites [30] and evaluated the effective
dielectric response of core-shell particle of Jinear [31] and nonlinear composites
[32]. We expect that the compesite microstrtctures of these work relate to those
of Piredda’s experiment. .

Further investigationfand analyaiis of the effects of inclusion shapes on ef-
fective nonlinear responses for fhie two_—d.imensional nonlinear elliptical dielectric

composites are presemfed dn £his research. The work of Hui and Chung [11] is

extended to weakly and strongl;frnonlljfgé;ar elliptic cylindrical composites with
identical and distributediinglusion shap_'éé'. In Chapter 2, the brief details of the
dielectric properties, the basic pﬁﬁationg Jf;fe {eported. In Chapter 3, we consider
the composites with identical--.iﬁclusion si‘h?f—;e The dielectric property of the in-

clusions is that the electric diéﬁiaéement -(JD)ﬂaIId clectuic field (E) satisfies a more

general relation D:‘ eE + x|E|’E where § is a nonl@%@éﬁr integer exponent. For
weakly nonlinear corr}-posites e > y[Effand ¢ <« >‘<|E\2 for strongly nonlinear
composites are considered.. By using the,decoupling approximation, the effective
nonlinear coefficients (v, ) are determined, and then the effe¢ts of inclusion shapes
on Y. are reported for varying the aspect ratios (the ratios between the semi-major
and sémi-minor axesifor;identical inclusions). In|Chapter'4; we focus on the com-
posites with distributed inclusion shapes having the same dielectric property as
composites with identical inclusion shape. Based on the statistical approach and
the decoupling approximation, y. and the effects of inclusion shapes on Y. are
reported for varying the shape distribution parameter. Finally, discussion and

conclusions of our theoretical results are given in the last section.



CHAPTER I1

Theoretical Background

In this chapter, the brief details ofthesdiclectric properties and the basic
equations of composites subject-to an external electric field will be reported. These

play important roles inimvestigation of the eleetric field responses of dielectric

composites in Chapterss aud 4. )

i -

_—

2.1 Dielectrie Med-‘ia " J'

2.1.1 Polarization'(P) ,

In general, the molecdl-eﬁs-.-are classi-f.ié;;i_‘r;to two fypes: polar and nonpolar
molecules. In a pdlgir?the,tﬁé center of the eléctfic charge is permanently
displaced from the ce:nter of the nueleus charge so :the neutral molecule has a
permanent electric dipelesmoment. Thegwater molecule is an example of polar
molecule. In'contrast, if .the centers of positive and negative charges are not
displaced relative to each other, then the molecule does not exhibit a permanent
electrigydipole (ngnpelar molequle). "Examples of nonpolar melecules include Oy,

NQ, and HQ.

Now, we consider the interaction between individual molecules (or atoms)
and the electric field. If the atom is neutral and unpolarized, the dipole moment
is zero as in Figure 2.1. When an external electric field is applied, the electron
cloud becomes slightly displaced or asymmetrical, as in Figure 2.2, and the atom
is polarized having a tiny dipole moment p, which points in the same direction

as the electric field. For polar molecules (or atoms), the external electric field



rotates the dipole moments to the direction of the external electric field. Figure
2.3 shows the polar molecules of water in an electric field. The electric field creates

the polarization (P) which is the dipole moment per unit volume.

Positive

nucleus :
Negative

charged clound

2.1.2 Linear ]ﬂelectrics

e L L LIS PRI S0 e e s

(E) and the poq]arization (P)as ¢

where ¢ is called the permittivity of free space.

Generally, the dielectric property of linear and isotropic materials is that P
is proportional to E. When E is not too strong, the relation between P and E

can be written by

P = ¢oX'E, (2.2)



Substituting Egs 0 (2:1) ¢ erna relation between D and E

is given by

(2.3)

where € = go(1 + y fpermittivity) of materials.

"\
Therefore, the'éle y ,portlonal to the electric

field in linear dielectrie

Noﬂuga amwmm
ﬂmaﬁ DS ULV DB o ot i

(2.3) becomes noticeable [33]. The nonlinear effects of the materials occur be-
cause of the interaction of the local field E, with the molecular dipole moment,
which rotates those dipoles and creates a polarization field P. The polarization
field is linearly dependent on the magnitude of the local field so long as they are
small. This linearity eventually breaks down and higher order terms are needed

to describe the polarization field. The polarization in this case is given by [34]

P =coXE + XY [EPE + X [EI'E + ..., (2.4)



where x', ¥'® and y/® are the nonlinear first, third and fifth order electric sus-

ceptibilities, respectively.

Thus, the nonlinear dielectrics are materials whose polarization is not pro-

portional to the local electric field. Similarly, replacing Eqs. (2.4) into (2.1),

the relation between the electric displacement (D) and the electric field (E) for

nonlinear dielectric is
(2.5)

where € and x are called t

In this research.

which the relation bet

obeys
(2.6)

ly nonlinear composites and

2.2 Basic ’-ff fions in I tics

3
NI TNENIT WY

We consider the Maxwell’s ‘9quat10ns in electrostatics of dielectric media

RN TUYNINGNY

and
VXxE=0,or E=-Vg¢, (2.8)

where ¢ is the electric potential.

By using Eqgs. (2.3), (2.7) and (2.8), these lead to

Vi = (2.9)



This is Laplace’s equation. The solution of Eq. (2.9) depends on the mathematical
coordinates such as the elliptic cylindrical coordinates (u,v). The general solution
is [35]

o(u,v) = [(A,, cosh(nu) + B,e™™) cos(nv) + (C,, sinh(nu) + D,e™"™) sin(nv)] .

(2.10)

where u and v are the variables in the elliptic cylindrical coordinates.

The solution of Lapla iptic cylindrical coordinates is em-

The boundary iffion e_cssential to be specified in solving for electric

i) the electric potential i . : lin mote distance,

ii) the electric field at th . = 0) is parallel to the direction of

the external uniform electri

iii) the continuity uyr'— tial com | legtric field at the inclusion

) the contin ﬁt geﬁo Ej %ﬂw EF electric displacement at the
inclusion surf ﬁ ‘ﬁ ﬁ s.I ﬁ ﬁ

QWWENﬂ‘mJ UA1AINYAY

surface,



CHAPTER III

Composites with Identical Inclusion

Shape

In this chapter, we investigate the effects of inclusion shapes on effective non-
linear responses of nonlinear ellipii¢ cylindrical dielectric composites with identical
inclusion shape in two dimensions.: Three types of coniposites, linear, weakly non-
linear and strongly nelingarfare considered. The effective linear coefficient (e.) of
linear dielectric composites is determinéld. | It is applied to determine the effective
nonlinear coefficient (xq) of Wé&kly and ét?ongly nonlinear composites with the
same microstructures as a lineari compo;j_:t;ai}?y using the decoupling approxima-

tion. The effects of inclusion shapes on Xe_?agé'_yeported for varying the aspect ratio

(the ratios between the semi-major and semi-minor axes for identical inclusions).

3.1 Linear Dielectric Composites

3.1.1 Typical Structure.and Model

We consider a linear composite which consists of linear elliptic cylindrical
inclusions with identical shape, having the same aspect ratio, the ratio between
major and minor axes (M = ¢/b), randomly oriented and embedded in a differ-
ent linear dielectric medium in dilute limit, as shown in Figure 3.1. The linear
coeflicients of inclusions and medium are ¢; and ¢,,, respectively. The axes of any
inclusions are parallel and much longer than the respective semi major axes such

that the system is considered as two dimensional.
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\‘ ctlon (the ratio of inclusion

volume to composite vo model is assumed. Figure 3.2

shows the single inclision del- ? \\

elliptic cylindrical inclsig lo -u# »._ ! o and 0 < v < 27, where

vlindrical coordinates. The

u and v are the variables i coordinate. u and v present

th? elliptic e lin 2

the unit vectors in the no 1d fangential component of ellipse,

E,=E,cos(a x+E sm(a)y

Figure 3.2: The single inclusion model of identical inclusion shape in elliptic cylin-

drical coordinates.
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drical Coordinates.

N

ylindrical Inclusion
4 |4 [
.—i’?; ;J’:‘I .
The electric field inside the elliptic
termine the effective 1 CWF. '
ermine the effec 1T/e 1n 2 gp& o
field inside elliptic culindrical incl

indrical inclusion is required to de-
n the literature search, the electric
el by Yu et al. [4] by using

Kite

etnatively, we present the

the complex transformatio

determination of themectric field inside the elliptic Qlindrical inclusion by using

the elliptic cyﬁdrieal dostdinates. o

SR U R —
PRANTURRIINGIAY o

We employ the elliptic cylindrical coordinates (u, v) which are related to the carte-

sian coordinates (z,y) by:

x = acosh(u)cos(v)

y = asinh(u)sin(v),

where a = v/c? — b? is the focal length of ellipse in Figure 3.2.
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The general solution of Laplace’s equation in elliptic cylindrical coordinates

in this case is [35]

o(u,v) = Z [(A,, cosh(nu) + B,e™™) cos(nv) + (C, sinh(nu) + Dye™™) sin(nv)] .

(3.2)

In order to derive for the electric potentials in the inclusion and medium in

Figure 3.2, the electric field is se

into two components ¥ and y and the

electric potentials are the li of the responses to both external

fields, Eo, = Eycos(a) a boundary conditions are given

here as follows.

i) The electric pot | At remote distance (u — o00)

becomes —aFEy, cos J This’ r'i fn # 1 and gives A; =
—CLEOQ;.
) The electric g h respect to the x axis, ¢(u,v)

¢(u, —v). This omits t i _ 0 in(v) = —sin(—v).

By using the two bourd - i) and ii), and the mathematical

Mt A A

formula cosh(nu ﬁdnh nuj G , the al in the host medium of
the elliptic cyhndri al inclusion with 5 Major axis pa allel to the external electric
field is D T )

o (u,v) [ira cosh(u) + Bl((;“o.‘s,h(u) — sinh(u))] cos(v) Eoq. (3.3)

vasremetiodf] S VRIS ISR et ot of e o

section of the qehhiptic cylinder. Physically, when we apply the external electric

saa B IR VAL TSR DI T B e s
inside the inclusion occurs in the direction o only. This is the boundary condition

for determining the electric potential inside the inclusion.

As described above, if u = 0, the result of Wh:o = 0 gives the electric
potential in the inclusion of the elliptic cylindrical inclusion with a major axis

parallel to the external electric field:

#% (u,v) = A} cosh(u) cos(v) Eq,. (3.4)
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Similarly, when the external electric field Ey, = Eysin(«) is applied per-
pendicular to the major axis of the inclusion, it can be proved that the electric

potential in the host medium is
@Y, (u,v) = [—asinh(u) + Dy (cosh(u) — sinh(u))] sin(v)Ey,. (3.5)
The electric potential inside the inclusion is

¢ (u,v) = u) sin(v) Eo,. (3.6)

According to Figure
Eysin(a)y, where « is e major axis of the inclusion
aligned in the ¥ directio From Egs. (3.3) - (3.6), the

electric potentials deri v , nodified to.become

)| sin(v) sin(a) By, up < u < 0.
(3.8)

The constants “and D in Egs. (3.7) an 3.8) can be determined by

iii) The tangenﬂl compone he electric ﬁm is continuous (Ey; = Eo),
then the electric potentialss also continuéus

AW IEINENNT
R RARIATN WA IRY -

A:—a+C(1—E>, (3.9)

and

B:—a—i—D(g—l). (3.10)

iv) The normal component of the electric displacement is continuous (D;,, =
Dmn or €z‘Em = 5mEmn)7

997 0%

i o |u=u0: Em ou |u:uo;
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hence

e A= —a+C(1—g), (3.11)
and

e B=—a+ D(g - 1), (3.12)

where &, = €;/&,.

From Egs. (3.9) - (3.12), the ¢ nts A, B, C, and D can be solved directly.

The results are

(3.13)
(3.14)
(3.15)

(3.16)

0&,
Next, the gradient in ellipfic -_m, | COO ~\' 's sed to calculate the electric

.

field inside the inclusion V&7 (u;u)s The gradient is

(3.17)

s Wi
| 01

-

o~ 0000000000000 R 4
cosh(2 ;?i ------ e Y ‘

where h = '

We obtain Iﬂ | - 0
e NN s,

j% [—A cosh(u) sinfv) cos() —I—ﬁsinh(u) cos(v@n(a)] 0.

i b h b ok o Bl e o

ficient e., because the external electric field is applied in the cartesian coordinates
and the major axis of inclusion aligns in x axis. To obtain E{(u, v) in the cartesian
coordinates, the relationships between unit vectors @ and o in elliptic cylindrical
coordinates and those of  and g in cartesian coordinates are used. These are

= % [sinh(u) cos(v) + cosh(u) sin(v)y], (3.19)

[— cosh(u) sin(v)Z + sinh(u) cos(v)y] . (3.20)

SRS

v =
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By replacing Eqgs.(3.19) and (3.20) into (3.18), we have
—Ey . A
E}(xz,y) = — [Acosat + Bsinay]. (3.21)
a

Substituting the constants A and B of Egs. (3.13) and (3.14) into Eq. (3.21), we
get

EY = Ey( b—l—cem

cos T sin oy ] (3.22)

b + csm ce; + be,y,

We note that Eq. (3.22) confir WC ric field inside the elliptic cylindrical

inclusion (E{) reported by

3.1.3 Effective

The average fi nd Lifshitz [40] is used to

determine the effective li . riciCo, ; which yields:
(3.23)
where E is the volume a ( 3 in the composite constituents
(1/V) [, EdV, and V is t.h‘e;ggqp, LA me. The effective linear coefficient
a-"-" f \.!. r
is defined as D —gm where D is th age of electric displacement.

—E( - x where x is t posmon vector on the compcmte surface, it can be shown

that E = E,. F’T{us equation (3.23) becores

}?"_JWW&_%U? oo

wers b LV dod bl PADBHARE 5 vt

glven by
e m ‘ , E2 : i

Substituting Ey = Ejcos(a)z + Epsin(a)y and E; from Eqgs. (3.22) into (3.25)
yields

e, 1+vi(6i—5m)(b+c)( costla) _sin’(a) )] (3.26)

bEi + cem cE; + bsm

where v; = V;/V is the inclusion packing fraction.
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Note that from Eq. (3.26), for an applied electric field parallel (o = 0°)
or perpendicular (o = 90°) to the major axis of inclusion, it leads to Eqs. (21)
and (22), respectively, as reported by Wei et al. [35]. They have investigated the
effective dielectric responses of elliptical graded cylindrical composites in the dilute
limit under the external electric field. Because the electric fields are applied along
7 and ¥ directions separately, any elliptic cylindrical inclusions are not randomly

oriented.

For totally randomly oriented ellipgicalinclusions, the angular average of £

in Eq. (3.26) is performed to give

o LM Met 1

56/5m:[1+%(€r—l)(lll+M)( : ! )] (3.27)
1

where v; is the volume pagking friction of inclusions; e, = ¢;/¢e,,, and M = ¢/b.

Moreover, for & =gc (M .__:‘1),TEq. (3.27) is also reduced to the well-
: 4

known result of a lineat cylindrical dieleetric composite in the dilute limit of &, =

em |14+ 2v; Ei;im;] . Thefeffactive linear x-téefﬁcient (e.) of Eq. (3.27) is required to
vrem add 3

determine the effective nonliveat: coefﬁci@@fﬁ:a(xe) of strongly nonlinear elliptical

composites by using the decoupling appr_gfcj_ma;ion in the next section.

3.1.4 Resulté‘;md Discussion 1

In Figure 3.4, the relative effectiye limear coefficients (e./e,,,) from Eq. (3.27)
are shown on'the 1ogarithini¢ scale for varying'the linear @ontrast (e,) with the
aspect ratio (M) as parameter forthe inclusiom=packing fractién’ (v;) of 0.08. The
results“show: the fncrease |ingeqy/ i, with' increaging the aspest ratio (M) within
the range of log(e,) > 0.3 (or &, > 2.0). In contrast, within the range of
log(e,) < —0.3 (or ¢, < 0.5), increasing the aspect ratio reduces the effective
linear coefficient .. For small linear contrast (e,.), —0.3 < log(e,) < 0.3 (or
0.5 < &, < 2.0), increasing the aspect ratio does not affect ¢, of linear elliptical

composites.

Figure 3.5 shows the relative effective linear coefficients (e./e,,) for varying

the aspect ratio (M) with the linear contrast (e,) as parameter. The result reveals
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the increase in e, /e, with increasing ¢,. For €, = 10, increasing M slightly affect
€e/€m within the range of 1 < M < 100. In contrast, for €, = 100 and 1000,
increasing M tremendously affect e./e,,. For higher ¢,, ./e,, rapidly increases to
the value which depends on varying parameter M. As seen from Eq. (3.27), e,

becomes more dependent on M as high ¢,.

AULINENINYINg
PRIAATUAMINYAE
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Figure 3.4: The relative effective linear coefficients (e./e,,) for varying the linear
contrast (e,) with the aspect ratio (M) as parameter and an inclusion packing

fraction (v;) = 0.08.
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Figure 3.5: The relative effective linear coefficients (e./e,,) for varying the aspect
ratio (M) with the linear contrast (¢,) as parameter and an inclusion packing

fraction (v;) = 0.08.
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3.2 Weakly Nonlinear Dielectric Composites

3.2.1 Typical Structure

We consider a nonlinear composite with identical inclusion shape in two
dimensions, which has the same microstructure as in linear dielectric composite

described in the previous section. The composite consists of weakly nonlinear

elliptic cylindrical inclusions wi it ape, having the same aspect ratio
(the ratio between semi-ma. ‘ Semi—&sﬁ7 M = ¢/b), randomly oriented
and embedded in a linea leebric "diu@ limit. The relation between
the electric displacemente (D ) fud ¢lacts i : inside the inclusions has the

form D = ¢E + X|E|’B W hel  ‘. 1 neAT: exponent and X|E|/B < €.

xm = 0, respectively. Figure 3.6 ] a weakly nonlinear dielectric composite

with identical inclusic

==t
AUBININInen s
ran A VAN AN SR o s

3.2.2 Effective Nonlinear Coefficient

For weakly nonlinear dielectric composite, the nonlinear response is small

compared to the linear response. We consider the work of Hui and Chung [11]
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which has the same basic relation between the electric displacement (D) and elec-
tric field (E) as this thesis. They have studied the effective nonlinear response
in random composites consisting of weakly nonlinear cylindrical (and spherical)
inclusions randomly embedded in the host medium with arbitrary nonlinear inte-
ger exponents. By using the effective medium approximation, the expression of
effective nonlinear coefficient (x.) with arbitrary nonlinear integer exponents was
derived. In this section, we follow their method in deriving the effective nonlinear

coefficient ().

The effective nonlinear eoefficient (y.)€¢an be defined by using the average
energy method [11]. The'ncrgy of effective meditmiis defined by W = [ D-EdV/,

which equals the sum*of the ciergy of'.lthe inclusion and medium.

X6E5+2V = /X,(x) ]Ei{(m)ﬁﬁd‘/—i—/ Xm(x)|Em(x)|ﬁ+2 dv,
v oA 4

h m
|
L A

i
_ £ <E’ >1 ar fijm <E7€1+2>m (3.28)
- Eg+2 i ‘E€+2 7 |

i a
add 3

where v; = V;/V and < Ef+2>--_'_;‘(.1 7)) fVl[EABH na

The subscripts ¢ and 71 otifside the brackets denote the average over the in-

clusion and mediumn.x

wicnce, we omit them because

the subscripts also z;ppear in the electric field.

For our case of linear medium (x,a= 0), the effective nonlinear coefficient

(Xe) is
1
Xe = o (%Xi(EfH)) , (3.29)
0

where F; i§ the linearselectrie field inside inclusion and v; is the in¢lusion volume

packing fractions.

In fact, the problem in calculation the values of y. is that of the determi-
nation of the volume average of electric field to the power g + 2, (Ef +2> in the
inclusion. There are several methods to obtain (EZB *2) depending on the nature
of problem and the types of composites. If we determine (E’*?) based on the
average energy method and the average field method, we must obtain the ana-

lytical form of the electric field solutions which are more complex and difficult.
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In this research, we are interested in the methods which simplify the calculation.
The simple decoupling approximation, the improved decoupling approximation

and the direct method have been employed.

A. Simple Decoupling Approximation

The (simple) decoupling approximation was originally proposed by Stroud
and Wood [13] and has been widely appliéditostudy nonlinear composites by many
authors [9, 14, 21, 28]. Thismethod directlyrelates the result of linear response
to the nonlinear one for the composiffe with the same microstructure. Moreover,

it also give an approximates (#"7)/in Bq. (3.29).as

(B2 ~ @y (3.30)

The effective nonlinear ¢oefficient ()w)Jmf Eq. (3.30) is alternatively derived in
terms of the volume ‘average of clectri';_:_‘_'iﬁ@_ld to the second power (E?), which
simplifies the calculation. {E?) is evaluated by using the derivative of effective
linear coefficients (g,.) with respect to lin@’f.’éoefﬁcient of inclusion,

S i
E?) = ——Ej3. 3.31
< Z> v; Js; = o ( )

By using Eq. (3.27;- (3.31), the effective nonlinear coefficients (Xe) are obtained

in terms of i, €, v;, 3 and M.

B. Improved‘Decoupling Approximation

However, the! estimatd y¢ frofn (ET?) & (E2)242/2 By wsing the simple
decoupling approximation, is less than the exact value. These is confirmed by
our theoretical prediction that x.(exact) > x.(decoupling) reported in reference
[14, 44]. We previously determined the effective nonlinear coefficient y. of strongly
nonlinear spherical dielectric composites by using the simple decoupling approxi-
mation [14]. In order to analyze the validity, our results of x. are compared with
the experimental results by Gehr et al. [15]. They reported the relative effective

nonlinear coefficient (/X fiuid) of porous-glass-based composites with silica glass
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70 % and spaces 28%. The spaces in the sample were replaced by various nonlin-
ear fluid, such as methanol, carbon tetrachloride and diiodomethane. The relative
nonlinear coefficients of glass (X giass/X fiuia) are 0.62, 0.32, and 0.03, respectively.
In comparison, our results which predict the effective nonlinear coefficient are
lower than the experimental results, which also confirm the theoretical prediction

Xe(exact) > x.(decoupling).

In this section, we aim to u

posed by Lu and Li [12 | for

roved decoupling approximation pro-

/ eir work is the extension of the
work of Hui and Chung prgoos
derivation of (E” +2)

and n > 3,

ethod to improve mathematical

pproximation, when n is odd

(3.32)
For n is even;

(3.33)
These was applied to deriv thejpﬁ_&? online oefficient of cylindrical com-

5,
o
wn
=
@D
0
2
=+
=

=

|
w
o~
ot
QO
=
(=}
E
=

by using the effective medium
approximation. In this researrﬁ—ﬂ,’_ﬂ_fm? 5gs. (3:32) and (3.33), the more accurate

) which the derivation is

¢ AED) =3(E?) () —2(E (3.34)

ﬂ u @411[1;!?; j wﬂi)‘lr] (3.35)
ARIAN ﬂ@?fﬁﬂ)ﬁﬂ?ﬂ Eﬂﬂ ' B

(E}) ~ 12 <E2> —12 <E2> (B2 (3.37)
(ET) ~ 14 (E?)* (E,)® — 28 <E2> S+ 7 <E2> Y8BT, (3.39)

and
(BS) ~ 24 (E2)° (E)* — 8 (B2’ (E)* — 32 (E2) (E)° + 16 (E))* + (E2)". (3.39)

Now, <Ef > is presented in terms of (E?) and (E;), which simplifies the calculations
of xe. Egs. (3.34) - (3.39) are substituted into Eq. (3.29) in order to determine
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the more accurate effective nonlinear coefficient (y.) with the nonlinear integer

exponents § = 2,4 and 6.

(E;) is evaluated from Eq. (3.22) with the definition (E;) = (1/V}) [, [E;|dV,
where V; is the inclusion volume. In addition, (E?) is evaluated by using the simple

decoupling approximation with Eqgs. (3.26) and (3.31).

After the calculation described above, the effective nonlinear coefficients (x%)
are obtained in terms of x;, €., w;, P, M and «. For totally randomly oriented
elliptical inclusions, the angular average of.effcgtive nonlinear coefficient (x?) is

used J
27

1

VA S “dex, 3.40

7 % (3.0)
‘l 0

We then obtain the ciféctiye nonlimear coefficient (Xe) in terms of x;, &, v;, B and

M, as needed. —

C. Direct Method oy Y

In order to compare the/values of ¥ ealculated by using both methods, A
and B, and to check the reliability, we als.qu‘-(j:‘éml.,c;ulate Xe directly by using the direct

method based on ref_erence [4]. This method use the.'x'_a,verage energy method to

define x. in terms Gt the close form of electric poteriﬁéll. Therefore, it provides
the accurate result of y.. However, the direct calculation of y. has difficulty in

determination-ef <Ef +2> heeause ofsthe-complicated mathematical process.

In calculation, we also use the information of a linear composite as in section
3.1, whichthasthesante microstrudture asieconsidened)in weaklymenlinear elliptical
dielectri¢ composite. To determine the volume average of electric field <EZB +2>7

the direct integration is

(27 = /) / B av, (3.41)

where Ez — E0<b + C>€m |:cos(a)§ + sin(a)ﬂ]'

bei+cem ceit+bem

Substituting the result of integration in Eq. (3.41) into Eq. (3.29), we obtain

the effective nonlinear coefficients (y%) in terms of «. Then, the angular average
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results x. are used to predict the effective response of composite in terms of y;,

eq, v;, § and M, as parameters.

3.2.3 Results and Discussion

By using the decoupling approximation, we obtain the relative effective non-
linear coefficients (x./x;) for the composites consisting of weakly nonlinear elliptic
cylindrical inclusions with nonlinear integerexponents § = 2, 4 and 6, and inclu-
sion packing fraction (v;).0f 0.08. as ihown in Iigure 3.7. For the linear contrast
(e,) less than 1, i.e. g, = Oudythe resulfs show theincrease in x./x; with increasing
[, in contrast, for ¢, lasgeér than 1, i.c. NS 10, increasing ( resulting in decreasing
Xe/Xi- The increase (and decrease) inl_ Xe/X; for varying the contrast (e,) is due
to the electric field ingide the diélﬁoctr-fc"inclusion is stronger (and weaker) than
the applied electric fieldffoy'c 4 is less (and larger) than 1. For both ranges of &,
smaller and larger than I, the. eﬁect of varying the aspect ratio (M) upon the
relative effective nonlincar ¢oefficients (Xé'/%(z) reveals the rapid increase in x./x;
with increasing the aspect ratlo Wlthm tbe_range of M < 50. In contrast, within

the range of M > 50, increasing the aspec’c ratio affects the slow increasing x. of

the composites. - 5

In Figure 3.8, ﬁhe effect” of varying the linear‘-contrast Er, UPON Xe/X; 1S
shown, within the range of.0 < ¢, < 1, an_inclusion packing fraction (v;) of 0.08,
for nonlinear integer exponent (3) =2, 4.and 6, and the aspect ratio from 1 to 10
as parameter. The results show the significant_decrease in x./x; with increasing
er. Fop e, approaches 1) ./ slowly décreases to the saméyvalie independent
of varying parameter M from 1 to 10. As seen from Eq. (3.27), . becomes less

dependent on M as ¢, approaches 1.

We note that for = 2, our results of x./x; concur with Eq. (22) of Yu,
Hui and Stroud [4] predicting the effective third order coefficient (x.) of weakly
nonlinear elliptical dielectric composite and confirm their result that x./x; = v;
at e, = 1. For 8 = 4, the result of x./x; is a special case of that proposed by
Potisook and Natenapit (to be published elsewhere) in the studying of higher-
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order weakly nonlinear response of elliptic cylindrical composites. Moreover, we
also determine the relative effective nonlinear coefficients (x./x;) for § = 2,4 and
6 by using the improved decoupling approximation which determined y. with the
more accurate mathematical formulae than the simple decoupling approximation
based on reference [12] in part B and the direct method which determines x.
directly without the decoupling approximation based on reference [4] in part C.

These give the same results of ., pected, since the electric field in inclusions

is uniform. Therefore, the dece g approximation is actually exact.

AU INENTNYINS
ARIANTAUNININGIAE
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Figure 3.8: The relative effective nonlinear coefficients (x./x;) for varying the
contrast (e,) with the aspect ratio (M) as parameter for the nonlinear integer

exponent () equal toa) B =2,b) f=4andc) §=6.
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3.3 Strongly Nonlinear Dielectric Composites

3.3.1 Typical Structure

In this section, we theoretically investigate the effect of variation of the in-
clusion shapes on the effective nonlinear coefficients of strongly nonlinear elliptical

dielectric composites. It is assumed that the relationship between the electric dis-

placement and the electric fi % usions and medium obey the form

D = ¢E + x|E?E where ‘ is"ﬂgst. The composite consists of

parallel elliptical strongly noulin iele@ons having the same aspect

ratio (the ratio betweecpn.sé
cross-sections randomlyriented and emb ifferent strongly nonlinear
dielectric medium in the'dilute .' in Figure 3.9. The axes of any in-
clusions are much loniger ghan g.reﬁpetﬂk e _ jor axis such that the system

0 I
i ol

. dordll adltal. itk | |
is, therefore, considered a ;fgl'.:%_&;f}@

AUBININInends
CE ER b T I I ANY AR et i

shape.

3.3.2 Effective Nonlinear Coefficient

The decoupling approximation has been previously applied to investigate the

effective response of strongly nonlinear cylindrical and spherical composites with
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dilute packing fractions by Gao and Li [38]. In their work, the effective nonlinear
coefficient (x.) of composites has been predicted with the relation between the
electric displacement (D) and electric field (E) of the form D = y|E]?E. Following
their work, we further determine the effective nonlinear coefficient (y.) of strongly
nonlinear elliptic cylindrical dielectric composites and to investigate the shape

effects of inclusions upon the value of ye..

By using the average ener od, the energy of effective medium equals
g&& ium. The effective nonlinear coef-

the sum of the energy of the i

ficient (x.) of composites

Xe =
(3.42)

where F; and E,, aré the linear el ds i '\&he inclusion and medium,
and same microstructure as

considered in linear co it 'rg, echi g v m = 1 —v; are the inclusion

i the relationship

coefficients (x.) of col’jpo ites can be

2
viXi Ume

¢ Yo, = (3.43)

AUYAN ﬁ%iwﬁw

The relations between the volume average of ere!trlc fields to the second

poweraﬁlﬁ{ﬁ?meﬂwﬁ % W Eﬁ ﬁdﬁﬁec’mve linear

coeffici
186
E?Y = ——<F? 3.44
< l> v; 3{51 0> ( )
1 oOe
E2)= ——°F? 4
(En) = o0 Eo: (8.45)

where Eg is the external uniform electric field.

Substituting £ as given by Eq. (3.26) into Egs. (3.44) and (3.45), we

obtain the equations for determining (E?) and (E?) in terms of the aspect ratios
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(M = ¢/b), inclusion packing fraction (v;), the nonlinear contrast (x, = Xi/Xm)
and the angle . By using the relations e, = x.FEj, &; = x; (E?) and &,,, = X (E2)
9], then (E?) and (E?) can be solved self-consistently depending on «. Replacing
the latter (E?) and (FE2), we obtain . in terms of a. Then, the angular average
results of x. are used to predict the effective response of composite in terms of y,.,

v;, B and M, as parameters.

3.3.3 Results and Discussiou

J
By using the decoupling approximation. we obtain the relative effective non-

linear coefficients (x./agn.) fof eomposites with elliptic cylindrical inclusion with
packing fractions (v;)g0f 0.0450. 06 and 0 08, with an aspect ratio (M) of 2, as
shown in Figure 3.10. #/The quults %hows the increase in x./x,, with increasing
Xr. When the nonlinear/coutrast is .:; TPor i — Xon, it gives xe /Xm =1, as ex-
pected. For x, > 1, increasing the Volume packing fraction v; having x; more than
Xm, enhance the effective nonhnear Coeﬂ‘lélent () of the composite. In contrast,
for x, < 1, increasing v; havmg )(% less tha.n, )‘(m, reduces Ye.

] o
s,-a. ' by

To determine the eﬁects of 1nclu81on shapes on X@, we report the variation of

inclusion shapes by varylng the nonlinear contrast (XJ upon the relative effective
nonlinear coefficients (x./xm), with the aspect ratios (M) = 1, 2, 3 and 10, as
parameter, on a logarithmic scale in Figure 3.11 for an inclusion packing fraction
(v;) of 0.08. The results show! the increase 10 X/ Xy With increasing M within
the range of log(x,) > 0.4 (or x,2> 2.5). On_the other hand, within the range
of loglagy) & —0.A(ar x| < 0.4), increasing M teduces theyeffective nonlinear
coefficient x. of the composite. For y; close to x,,, or low nonlinear contrast range
(—=0.4 <log(x,) < 0.4 or 04 <y, <2.5), varying the aspect ratio rarely affects
Xe/Xm of the composites for aspect ratios (M) within the evaluated range of M
from 1 to 10.

In order to confirm the validity of the simple decoupling approximation,
we consider the case of M = 1 that is cylindrical inclusion shape. Our results

determined by using the simple decoupling approximation are compared with those
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Figure 3.10: The relative effective nonlinear coefficients (x./xm), with varying
inclusion packing fractions (v;) of 0.04, 0.06 and 0.08, and an aspect ratio (M) of
2 [21].
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Figure 3.11: The relative effective nonlinear coefficients (x./xm), with varying
aspect ratios (M) between 1 and 10, and with an inclusion packing fraction (v;)

of 0.08 [21].
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determined using the simple variational method of Yu and Gu [8], as shown in
Figure 3.12. A good agreement between the two methods throughout was observed

and the discussion was reported in reference [21].

We also estimated the validity of y. by considering the simple decoupling
approximation used in the derivation of the effective nonlinear coefficients (x.),

where we approximate (E*) ~ (E2)?. Because the electric field inside the in-

~

clusion is exact, it gives (E} erefore, we considered the validity of

f discrepancy (A%). The percent-
E2)*)/ (EL)] x 100 by

approximation (E%) ~
age of discrepancy (A%
using the electric fiel \ Flgure 3.13 shows the per-

1g approximation with an aspect

£0. 04, 0.06 and 0.08. The
\ ithin the illustrated range

\\ eference [21].

centage discrepancy
ratio (M) = 1 and i
percentage of discrep

of x, and v;. The discussi

d
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Figure 3.12: Comparison of the relative effective nonlinear coefficients (xe/Xm)
obtained from the decoupling approximation and the variational method for an

aspect ratio (M)) of 1 and an inclusion packing fraction (v;) of 0.08 [21].
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Figure 3.13: The percentage discrepancy (A%) between (EL) and (E2)” used in
the decoupling approximation with an aspect ratio (M) of 1 and inclusion packing

fractions (v;) of 0.04, 0.06 and 0.08 [21].



CHAPTER IV

Composites with Distributed Inclusion

Shapes

d

In this chapter, we concentrate on elliptic cylindrical dielectric composites
with distributed inclusiom'shapes in t'yvo dimensions. The composites consist of
elliptic cylindrical inclusiongs haying the variation in shape and the random ori-
entation, which are embedded in a dlﬂ'érent dielectrie media in the dilute limit.
The relation between the electrlc d1bp1acement (D) and electric field (E) of the
inclusions has the form D =B + X|E|5 E Where [ is a nonlinear integer exponent
for weakly nonlinear comp081tes For %tr(;li_ély, nonlinear composites, the dielectric

property of both inclusion and medlum satlsfylng D = |E]’E is considered. In

this research, three types of the composﬂ:es linear, Weakly nonlinear and strongly

nonlinear are con&dered. Firstly, the effective linear Coe{“ﬁ(:lent (€¢) of linear ellip-
tic cylindrical compoaosite is determined. Secondly, a brief review of the statistical
approach proposed by ‘Géncharenko [22]%i§ presented. Thirdly, it is applied to
determine the efféetive nonlinear _coefficients (x,) of weakly and strongly nonlin-
ear composites with the same mietostructure as a linear composite by using the
decoupling approximation. We also determine y. directly without the decoupling
approximation for f = 2 in order to confirm the results. Finally, our results y.

are reported including with the effects of inclusion shapes on x. to be predicted.
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4.1 Linear Dielectric Composites

4.1.1 Typical Structure and Model

We consider a linear composite with distributed inclusion shapes, which
composes of variation in shape of elliptic cylindrical inclusions of the volume pack-
ing fractions v;, randomly oriented and embedded in a different linear dielectric
medium of the volume packmg W 1
inclusions and the host m @ @

linear dielectric compositi

— v;. The linear coeflicients of the

espectlvely Figure 4.1 shows a

Ry

ted inclusion shapes.

electmlcnﬁzllljl uﬁmgyjf W E]"iﬁ ﬁaﬁumed The external
OV MGRRIS R M) AT LT

where ofis the angle between E( and the major axis of the inclusion aligned in the
Z direction. We have to determine the electric field inside the elliptic cylindrical

inclusion as shown in Figure 4.2.

4.1.2 Electric Field inside an Elliptic Cylindrical Inclusion

The electric field inside an ellipsoidal inclusion was solved by Stratton [39]

in 1941, and Landau and Lifshitz [40] in 1960. These are widely applied as a
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Figure 4.2: The single i v el for a composite with distributed inclusion
shapes. :
basis in the studying of t ive linear d nonlinear responses of ellipsoidal

composites and related g as Yu et al. [4] and Giordano

18]. Giordano used the effective nmediun cory to investigate the shape effect

[ : y g D

of inclusion on effective lineai :",' 69 soidal dielectric composites. The

electric field insidefthe-eHipsoidak-inchision-was-catenla ed, and then the explicit
»V_f, ' N P

formula of effective lin imed by using the differential

method in terms of ecc‘e,ntrlclty In this research we follow Giordano ’s work to

determine thﬁ%ﬂxﬁj ﬂ?ﬂﬂcﬂtﬁ wg e'y]\ ﬂrﬁl composites.

Generall}llet a uniform elecric field ( EOAbe applied to &y elliptic cylindri-
o G L BTV R B mvon
respectively, as shown in Figure 4.2. The electric field inside inclusion induced by

the external uniform electric field can be written as
Ez‘ = ﬁaclao:z:jj + 5yEOyy- (42)

B; is the field factor (j = x or y) proposed by Stratton [39], and Landau and
Lifshitz [40], which can be expressed by

€m

4.3
em+ Li(ei —em)’ (4.3)

B =
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where L; is the depolarization factor (the ratio of the internal electric field induced
by the charges on the surface of a dielectric when an external electric field is applied
to the polarization of the dielectric). Generally, L; depends on the inclusion shape
and is restricted by L,+ L, = 1. The depolarization factor of an elliptic cylindrical
inclusion depends on its shape by [18]

L‘_%%/Oo
J 2 0 (

system considered here,
—

can written as the suw '

to equation (4.2) by

, (4.4)

du
D/ (u+a2)(u+ a2)

d/' ned along j direction. For the
&v e elliptic cylindrical inclusion
E——

\\\M and 7 directions according

(4.5)
This is an important eq ate the effective linear coefficient
(¢.) by using the average fie
4.1.3 Effective Linea
By using the|ierage-ficld-method-as-buiefiyedestribed in section 3.1.3, the

d'Dy "

"55 Em

+ (& E, ﬁ{r E;dV. (4.6)
Replacing E %oﬂa)gjgo%( }1 gqu] ‘(3.5?;1’50 (4.6), it leads
" AMAINIAUUBPANERNY

For totally randomly oriented elliptical inclusions, we take the angular av-

erage over angle o to Eq. (4.7) with the integral

21
1 (07
Ee — %/Qda. (48)
0
We obtain
Uy
€e=Em + _(gi - 6m) [ﬁx + By] . (49)

2
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Substituting the expression of 8, and 3, given by Eq. (4.3) into Eq. (4.9)
and using the relation L, = 1 — L,, we obtain the effective linear coefficient (e.)

in terms of the depolarization factor L, as

Co = Em {1 ¥ e > o) <5m n Liei ) et (1 Ll””)(& - 6’”>>L‘.10)

For convenience in calculation, we take L, = L to Eq. (4.10) and obtain

o= em [1 + U"(g’;gm) ( : L ! )] L (411)

B LA o + (1 — L) (25 — &m)

We note that inclusions-are still identical shape. For cylindrical inclusions, the
depolarization factors are Le= 4, = L, = 1/2 (L, = 0). Eq. (4.11) leads to the

well-known result of a linear cylindric-‘ql dielectrie composite in the dilute limit of

€e = Em [1 + 2v; EZ;Z:;] ds gkpegted. 2 &

— il

For the compositeswith fthe ellip'yic; cylindrical inclusions having different

shapes (or distributed inglusion shapes); the effective linear coefficient (e.) is re-
lated to the effective linear coefficient of the equivalent composite with identical

inclusion shape (i%ntical) hagdd Gin thie s@i&ieal approach by [22]

N s— [ B, £ (4.12)

where P(L) is ShaI;é- distribution function. P(L)dL is the probability for an in-
clusion to have the depolarization factor L lying within the range between L and

L + dL. The ghape distribution function=is gonsideredsto be normalized to unity:

/ P(L)dL = 1. (4.13)

The form of 'P(L) has been assunied as [27]
1 1 1 1 1
P(L)y=—0(L—=-+=A —+-A-1L 4.14
@ =50(r-5+38)0(5+58 1), (1.14)
where A is the shape distribution parameter and 6 is the heaviside function. Gen-
erally, A can vary from zero, which all inclusions are cylindrical in shape, to unity,
which any shapes of elliptic cylindrical inclusions are equiprobable. Alternative

distribution such as the gamma distribution [41], binary distribution [42] and log-
normal distribution [42] can be treated similarly. However, P(L) given by Eq.
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(4.14) yields the appropriate results of e, very close to that of realistic composites

22, 26).

By using Eqgs. (4.11) - (4.14), we obtain the effective linear coefficient (e.)

of composite with distributed inclusion shapes

O

Moreover, for A — 0, all inclusions are cylindrical in shape. Eq. (4.15) is reduced

to the familiar result of a linear eylindri¢al dielectric composite in the dilute limit

ofe, =¢,, |1+ QUi%] , as expected. Becanse of the same basic field equations

of both the dielectric without-free charge and the conductor without free current,
Eq. (4.15) is also congisténtwith Eq. (17) reported by Gao et al. [27] for the

effective conductivity ofthe e uivalent composite structure with shape distribution
in the dilute limit. T

o
4.1.4 Results and Discussion «
i )
ald % ol e

In Figure 4.3, the relat-i_’_xie'effectiveﬂ}liﬁ_.éar coefficients (e./e,,) are reported

on the logarithmic scale for varying the confrast (¢,) within the range from 0.001

to 1000 with the depj_)larization factor (L) as paramete‘ll} and the inclusion packing
fraction (v;) of 0.087The results show the increase in't. /e, with increasing the
depolarization factor<(L) within the range of log(e;) > 0.3 (or &, > 2.0). In
contrast, within the,rangé-of log(&,) s—=0:34(0r £, < 0.5) dncreasing the depolar-
ization factor(L) réduees the effective linear eoeflicient &.. For small contrast of &,
increasing the depolarization factor(L) rarely affect . of lineaf€lliptic cylindrical
composite with distributed inclusion shapes. These ranges ofia, agree with those
in Figure 3.4, which are analyzed in terms of the aspect ratio (M) but now &,
are analyzed in terms of the depolarization factor (L), as expected. In compar-
ison between Figure 4.3 and Figure 3.4, the inclusion shapes such as the aspect
ratio (M) and the depolarization factor (L) rarely affect €. within the range of
—0.3 <log(e,) < 0.3 or 05 < ¢, < 2.0.

For €, > 1, Figure 4.4 shows the relative effective linear coefficients (e./e,,)

for varying the depolarization factor (L) with the contrast (&,) as parameters for
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inclusion packing fraction (v;) of 0.08. The results reveal the rapid increase in
(Xe/xi) with increasing e, for L < 0.3 and L > 0.7. Physically, the deviation of
inclusions from cylinder to elliptic cylinder in this range affects the rapid increase
in ¢.. In contrast, increasing the depolarization factor within the range of 0.3 <

L < 0.7 rarely affects . of composites.

Moreover, for L = 0.5, the inclusions are circular cylinders or rods. The

results of €. show the symmetry & = 0.5. This symmetry is observed

because of the restriction o

AN, dition, the results of e, concur
with those reported in .s-.-;..._,.‘i 3 .

AU INENTNYINS
ARIANTAUNININGIAE
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Figure 4.3: The relative effective linear coefficients (. /e,,) for varying the contrast
(¢,) with the depolarization factor (L) as parameter for inclusion packing fraction
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Figure 4.4: The relative effective linear coefficients (e./e,,) for varying the de-

polarization factor (L) with the contrast (e,) as parameter for inclusion packing

fraction (v;) of 0.08.
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For linear composite with distributed inclusion shapes, in Figure 4.5, the
relative effective linear coefficients (e./e,,) are reported on the logarithmic scale
for varying the linear contrast (e,) within the range from 0.001 to 1000 with the
shape distribution parameter (A) as parameter and the inclusion packing fraction
(v;) of 0.08. The results show the monotonically increase in ./, with increasing
gr. For small €,, —0.3 < log(e,) < 0.3 (or 0.5 < &, < 2.0), increasing A from 0 to
1 slightly affects on e, /e,,. Therefore,
the variation in shape of inclusions, rarc on g, in this range of €,. However,
for large ¢, log(e,) < —0.3 (or< 0.5) £> 0.3 (or &, > 2.0), A directly

affects on .. For A = dincarly i ith increasing A so ¢, have less

he shape distribution parameter describing

Figure 4.6 sho 3 \ ( cients (e./ep) for varying
the shape distributio near contrast (¢,) as parameters a)
e Tes \ show that e./e,, monotoni-

=, > 1 in Figure 4.6 b), £, /e,

cally decreases with inc 2N ‘; ver, \
or small A, 0 < A < 0.6, increasing

A rarely affects .. In contras
EE220

o

06 < A< 1.0, increasing A affects

rapid increase in &,

Yo

] 3
AuEINENINYINg
RINNIUUNIININY
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Figure 4.5: The relative effective linear coefficients (e./e,,) for varying the linear

contrast (g,) with the shape distribution parameter as parameter.
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Figure 4.6: The relative effective linear coefficients (e./e,,) for varying the the

shape distribution parameter with the linear contrast (£,) as parameter.
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4.2 Weakly Nonlinear Dielectric Composite

4.2.1 Typical Structure

We now consider a nonlinear composite with distributed inclusion shapes in
two dimensions, which have the same microstructure as a linear dielectric com-

posite described previously. The composite consists of nonlinear elliptic cylin-

drical inclusions with distrib omly oriented and embedded in a

linear dielectric medium 1 imi in Figure 4.7. The relation
between the electric displa @eld ) inside the inclusions

\N T e linea and nonlinear coefficients of

inclusions and mediunyare ¢ L X \ ectlvely
w

Figure 4.7: ﬁ.ﬁ\ﬁ ?ﬁr{] W%ﬂﬁﬂ ﬁ ;1 ﬁ ﬁed inclusion shapes.
Chi ﬂﬁﬂ‘im URIAINYIAY

4.2.2 7 Effective Nonlinear Coefficient
Simple Decoupling Approximation

In case of weakly nonlinear dielectric composite, the nonlinear response is
small compared to the linear response. We follow the work of Hui and Chung
[11] which has the same basic relation between the electric displacement (D) and

electric field (E) as this thesis. The effective nonlinear coefficient (y.) can be
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defined by using the average energy method. The energy of effective medium is
defined by W = [ D - EdV, which equals the sum of the energy of the inclusion
and medium. The effective nonlinear coefficient (x.) can be expressed as [11]

1 ~ ~
= | E P2 AV + / mEmBHdv),
o= g (f vIE [ vlE

K3

4.1
1 B+2 8+2 ( 6)
T g (%XAEZ- ) + UmXm (B, >>,

where EZ and Em are the nonlinear electric fields inside the inclusions and medium,

respectively.
J
By using the simplesdecoupling approximation, the nonlinear electric fields

of E, and Em requiredelq. (4.16) arelapproximated to be linear field E; and E,,.

)
The expressions of y.becomes .
| >

X = T (@x (4 *2) + vmxm(Ef”2>) (4.17)

." <

For our case (x,, = 0), the effec‘tive non_'l_’iﬂetir coefficient (x.) is
XA (v;j'(;_{'Ef”)) , (4.18)
=25 =

7

where < EP +2> = (1/‘\/1) [ [Ei|P*2dV, E; is the linear/electric fields and v; is the

inclusion volume paeking fractions. »~

For distributed inclusion shapes, Goncharenko et al. [22-23] successfully pre-
dicted the effect of shiape distribationon:light abserptiontand light scattering of
ellipsoidal composites by using statistical approach. Their work has been widely
appliedstosgemposite with, distributed inclusions, shapes in-various field of physics
[24-32] such ‘as the work of Gao et al.” [27]. In their 'work, the ‘effective nonlinear
response of a two components in two dimensions of strongly nonlinear composite
media in which one component possesses a shape distribution is investigated. The
inclusions are considered to be elliptic cylinders with distributed inclusion shapes.
Based on the statistical approach, the effective medium model and the decoupling
approximation, the effective nonlinear coefficient (x.) of strongly nonlinear com-
posite is determined for all concentrations of inclusion. In this section, we apply

the statistical approach to elliptic cylindrical composite with distributed inclusion
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shapes and then the effective nonlinear coefficient (x.) is determined by using the

decoupling approximation.

Similar to the process in determination on ¢, in section 4.1.3, the effective
nonlinear coefficient (x.) of composite with distributed inclusion shapes is related
to the effective nonlinear coefficient of the equivalent composite with identical

identical

inclusion shape (x* ) based on the statistical approach by [22]

) f) 'p(L (4.19)
By using the shape distribution ctlo& iven by Eq. (4.14) and the ex-

pression of x. given by

1near coefficient of composite

with distributed inclusic (4. 19) is

(4.20)

We invoke the simple de N ilich simplifies the calculation

by
(4.21)

The replacement of Eq (4. 21}@?% 20) leads to the equation for determining
el o

-l

Xes

(4.22)

N /ﬁL.
Z;;:zzi;ﬂﬂﬁﬁﬁzmtm}m r I
ARAINTERREINYNEY o

From Eds. (4.11) , (4.22) and (4.23), we obtain the new results of effective non-

linear coefficient (X.) in terms of v;, €., x;, f and A, as needed.

Direct Method

In order to confirm the effective nonlinear coefficient . of the simple decou-
pling approximation determined in the previous section, we consider that compos-

ite for § = 2.
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According to the equation for determining x. written in Eq. (4.20), we can

determine <Ef +2> directly without using the simple decoupling approximation by

(E})dL, (4.24)

where (E}f) = (1/V;) [, [Ei|*aV".

To calculate (E}), ic field inside the elliptic cylindrical

inclusion given by Eq. T + B.FEosin(a)y. For totally
randomly oriented ellipti: e angular average of electric

field inside the inclusio
(4.25)

where the field factors [ 1.3) for j = x and y with the

depolarization factor L, integration of |E;|* yields (E4) as a

function of L,, which is replace e substitute the result of (E!) into

Eq. (4.24). The effective nonlinear coefficient () of elliy jtic cylindrical composite
16 RONINEAT COONCE -

with distributed inclusio o*tx

(AEEE)° 32442 8A  4A

ﬂﬁﬁ?%ﬁ%ﬁﬂﬁwﬁﬁﬁc

where A = ¢;4€,,, B = —smanéiC’ A2+1&€J€m—|—(A —1)&?,

At aeamfwau 3&’}% ‘iﬂoﬂﬂﬁﬂ hact and fisly

reported in this research.

(4.26)
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4.2.3 Results and Discussion

For composites with distributed inclusion shapes, we obtain the relative
effective nonlinear coefficient (x./x;) with the nonlinear integer exponent () as
parameter for an inclusion packing fraction v; = 0.08 and the contrast a) &, = 0.1,
b) &, = 0.01 and ¢) &, = 0.001, as shown in Figure 3.8 The results in Figure 3.8
a) reveal the rapidly increase in x./x; with increasing A for 0.4 < A < 1.0 but
for A less than 0.4, increasing the A slightly affect the increase in x./x;. Similar
behavior also perform with-the enhancetnent ofy./x; for €, = 0.01 and 0.001, as

reported in Figures 3.8 b)and ¢). respectively.

Figure 3.9 showsdhic relaiive effective nonlinear coefficient (x./x;) for vary-
ing the contrast (e,) with v bhape dls)’trlbutlon parameter (A) equal to 0, 0.4 and
0.8 and the nonlinear mteger exponents are a) f.=2.b) f=4and c) B =6. For
B = 2, the results revealithe mcreasmg.\:pf Xe/xi for decreasing e, which are more
pronounced for larger values of A 111 the.rr{a,nge of 0 <&, <0.6. On the other hand,
for the contrast (¢,) near 1 varvmg of 15 ﬁ’om 0 to 0.8 affects the slow increase in
Xe/Xi- The similar analy51s as fOJ_ F 1<Ture_3_g “but now ¢, is from equation (4.11).
Similar behaviors as seen in F‘lgure 3.9 a,)' are also observed for =4 and =6

but the enhancement—ef—xjﬁx—ts—nmeh—mefe—pwfwﬂfmed for larger values of the

nonlinear integer exponent (B).

Moreover, for f ==2athe exact valuesiof x./x; given by Eq. (4.26) obtained
without using the decoupling approximation concur with. the numerical values
of those obtained by using the decoupling approximation throughout. For A
approaghes 0 which “all /inclusions are ¢ylindrical|shape, ouryresults agree with

those reported in Figure 3.8 a) for M = 1, as expected.
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{—p=2
----p=4
10'{ -B=6
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Figure 4.8: The relative effective nonlinear coefficient (x./x;) for varying the shape
distribution parameter (A) with the nonlinear integer exponent () equal to a)

e, =0.1, b) &, = 0.01 and c) &, = 0.001.
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Figure 4.9: The relative effective nonlinear coefficients (x./x;) for varying the
contrast (g,) with the the nonlinear integer exponent (/) equal to a) § = 2, b)
B =4andc)=6.
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4.3 Strongly Nonlinear Dielectric Composite

In the literature search, the effective nonlinear response of a two-components
strongly nonlinear elliptic cylindrical dielectric composite in which one component
possesses a shape distribution was investigated by Gao et al. [27]. In their work,
the numerical results of the effective nonlinear coefficient was determined for arbi-
trary inclusion packing fraction by using the effective medium approximation and
the decoupling approximation, which inclades the dilute limit expression. How-
ever, in such work does not discuss more information about the effect of inclusion
shapes on y.. In order to obtain the‘finformation of inclusion shape effect on .
very close to realistic compositeé as possible, we further analyze that work in case of
dilute limit. Moreover Jthe more infori"nation about the effect of inclusion shapes
on Y. have been discusged. :

4.3.1 Typical Structure

)
/N

We consider the strongly nonlinear @p’tﬁc cylindrical dielectric composite in
two dimensions, which consists-of variation i’ﬁéhape of elliptic cylindrical inclusions
randomly orientedrand-embeddedin-a-different-diclecttic medium in the dilute
limit, as shown in Figure 4.10. It is assumed that thé:‘relationship between the
electric displacement (D) and the electric field (E) for both inclusions and medium
has the form D=0y [BPEAvhens s ov|BZ i§ of interests The nonlinear coefficients

of inclusion andymedium are y; and Y,

4.3.2 9 Effective Nonlinear Coefficient

We begin with a linear composite, which has the same microstructure as
strongly nonlinear composite. The linear coefficients of the inclusions and the
host medium are ¢; and ¢,,, respectively. The average electric field inside the

inclusion (E;) subject to a uniform external field (Eg) is assumed to be

E; = BE,, (4.27)
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Based on the statiftighl Ap ., ) | [22], the average field factor () of com-

the field factor of the equivalent

(4.28)

Substituting the thefield-factoi-{(G)-and-the-shape ‘"-“R' yution parameter (P(L)),

as given by KEgs. including with the domain of

integration 3 z_ A < L < + 1A as mentlon in section 3.2.2, the average field

“r gy angpantang,

Agi+em) A+ (1+ Aeyy,

s TV QTS THE LR e

inclusiont as follow:

(4.29)

E =" Sin [ (4.30)

(14+A)e; + (1 — A)ey, B
Agi+em 0

(1-=A)ei+(1+ Ay,
The average field method proposed by Landau and Lifshitz [40] is used with sim-
ilar processes as proposed in Eq. (4.6). The effective linear coefficient (e.) for
composite with distributed inclusion shapes is

e =t <1 + %ln {8 i i;i i 8 . i;iﬂ) . (4.31)
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Eq. (4.31) is consistent with Eq. (4.15), although the approaches of calculation

are different. These confirm the result of ¢,.

The relations between the volume average of electric fields to the second
power in the inclusions and host medium and the derivative of the effective linear

coefficients are given as [9]:

(4.32)

(4.33)

where Eg is the extern i clectric fie! 1 v; and v,, = 1 — v; are the
inclusion and medium v

Substituting e, as 5y = int 5. 4.32) and (4.33), we obtain

the equations for deter erms of the shape distributed

parameter (A), inclusi nd the nonlinear contrast (y, =
Xi/Xm). By using the relations = s % . = xi (E?) and g, = xm (E2%) [9],
then (E?) and (EZ . depending on A, v; and X,
as parameters. y"_Tm_T e ~of the composites can be

determined from themla C

vixs (B2)? vmxm (E2)?

(4.34)

ﬂuaﬁwﬁM5Wﬂﬁﬂi

with the decolipling approx1mat1(ap assumlng that (E?) 82 and (El) =~

“RRIANN TN UN1INYAY
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4.3.3 Results and Discussion

By using the decoupling approximation, the effect of varying the nonlinear
contrast between the nonlinear coefficients of inclusions and media (x,), with
the shape distribution parameter (A) as parameter, upon the relative effective
nonlinear coefficients (x./xm) are shown on a logarithmic scale in Figure 4.11 for
an inclusion packing fraction (v;) of 0.08. Our results confirm the similar work of
Gao et al. [27] which used the effective medium approximation in the dilute limit
to predict the effective nomlinear coefficients (n.). The sigmoidal relationships
shows the increase in Y: /¥, with ificreaging the shape distribution parameter
within the range of log( )™= (or v, > 10) aud that x./xm = 1 when x, =1
Or Xi = Xm. In contrast awithinthe ra.ﬁ}ge of log(xr) < 1 (or x, < 0.1), increasing
the shape distribution parameter feduces the effective nonlinear coefficient y, of
the composite. For small Contra_s_t,—thegesplts also show that increasing A rarely
affect on Y. of compofites within the %ngg of =0.3 < log(x,) < 0.5 (or 0.5 <
Xr < 3.2). For higher contrast,l-xin_'%ﬁhin tiil%__j:;mge of log(x,) < —0.3 (or x, < 0.5)
and log(x,) > 0.5 (or x, > 3..__2),‘in(:1'easir}g'l;__4§p strongly affect on y,.

In Figure 4.12, we plot'»‘thé"relativ"é!"ﬁélﬂéctive nonlinear coefficient (Xe/Xm)
against the shape dlsléﬂbﬂﬂeﬂ—paf&meﬁei—é&—fei—mduslon packing fraction v; =
0.08, and the nonli-r,;ear contrast a) x, = 0.1, 0.01 arId 0.001, and b) x, = 10,
100 and 1000. Figufg 4.12 a) reveals a monotonicz;ﬂy decrease in x./x;, with
increasing A.(Fot!siall A} 05 A< /0.3; increasing W-slightly affects on xe/Xm-
Therefore, thegsmall deviation of inclusion shapes from circular cylinder rarely
affectsron gyt FHowever cforclarge 1Ay 0.3 s<rAr< 1.0, oy g strongly depends on A,
especially, for high contrast (x, = 0.001) and high A™0.6 < A™< 0.1). Similar
behaviors also observed in Figure 4.12 b) but x./x,, monotonically increase with

increasing A.

In addition, for A = 0, all elliptic cylindrical inclusions are cylinder. The

results of x./xm agree with those reported in Figure 3.11 for M = 1 throughout.
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CHAPTER V

Conclusions

We have investigated the electric ficld zesponses and the effects of inclusion
shapes on the effective nonlinear cocfficiont (Xc) of weakly and strongly nonlin-
ear elliptic cylindrical dieléctusic composites. Two types of composites, that with
identical inclusion shape and that Wi‘_kh distributed inclusion shapes have been
considered. For both typesy the ifichusions are randomly oriented and embedded
in the host media. "The dielect_-rig prgperty of the inclusions is that the rela-
tion between the displacement__{_ie_ld‘ (D)‘and the electric field (E) satisfies a form
D = ¢E + x|E|’E where /3 isé_lgbnlinéé;‘r_gi‘nteger exponent with ¢ > Y|EJ? for
weakly nonlinear composites:’ lFQ}r stroné;%fé;‘honlinear composites, the dielectric
property of both inclusion -and medium?;;{iﬁisfying D = Y|E’E is considered.

Then, the effects ofiinclusion shapes on the effective monlinear coefficient (x.)

are investigated in femns of the aspect ratio (the ratio between the semi-major
and semi-minor axes for identical inclusions) and thé shape distribution parame-
ter for compositesywith identical inclusion-shapesandsdistributed inclusion shapes,

respectively.

Baséd on) the average: energy! methed, thé! efféctive fionlinear coefficient
(xe) relates to the volume average of electric fileds to the power § + 2 in the
inclusion, <EZ6 +2> and in the host media (E2™). These are difficult to ob-
tain. In this research, the determinations on <Ef +2> and (EZ™) are simpli-
fied by using the simple decoupling approximation. This approximation allows
us to convert the established results on linear composites to nonlinear composites

with the same microstructure. Moreover, it also give an approximate results of

<E-B+2> ~ <E2>(5+2)/2 and <E6+2> ~ <E2 >(5+2)/2'
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In the first type of composites with identical inclusion shape, we firstly
consider a linear composite which consists of linear elliptic cylindrical inclusions
with identical shape, having the same aspect ratio, the ratio between major and
minor axes (M), randomly oriented and embedded in a different linear dielectric
medium in dilute limit. The linear coefficients of inclusions and medium are ¢;
and g,,, respectively. The electric filed inside the elliptic cylindrical inclusions
(E;) is derived by using the elliptic gylindrical coordinates and then applied to
determine the effective linear coefficient (€.) based on the average field method.
The effective linear coefficient () is reporbed in.terms of the aspect ratio (M),
which the effects of inclusion shapesJon £, 18 predicted and reported in section

3.1.4.

|
Secondly, we eonsider a Weakl}f: n,onlinear composites with the same mi-

crostructure as in theflingar compebltes Wthh inclusions are randomly oriented
and embedded in the linear medlum Bﬁ/ us1ng the simple decoupling approxima-

tion, the effective nonlingar coefﬁments (Xe) ‘of the weakly nonlinear elliptic cylin-
|*

drical composite are detetmmed f“01 the nonhnea,r integer exponents () equal to
Ak

2,4 and 6. In order to conﬁrm Ot 1ebult__f“xe, we also determine Y. by using the

improved decoupling, approxmlatlon and the dlrect method These give the same

results of x. becausgg-the electric field in the 1nclus1on§_1s uniform. The results of

Xe and the effects of iﬁclusion shapes on v, are reportéd in section 3.2.3.

Thirdly, we focus o strongly nonlinear composites.with the same microstruc-
ture as the linear '[domposites. The effective nonlinear coefficients (y,.) are deter-
mined by using the simple decoupling approximation. These &esults on x. when
the aspect ratio equals 1 agree well with those of Gu and Yu([8], and also confirm
the work of Gao and Li [38]. The effects of inclusion shapes on x. is reported in

section 3.3.3.

In the second type of composites with distributed inclusion shapes, we fur-
ther consider the composites which have the same microstructure and same di-
electric property as described for composites with identical inclusion shape but
now the inclusions have variation in shapes. The electric filed inside the ellip-

tic cylindrical inclusions is derived in terms of the depolarization factor (L) and
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then applied to determine the effective linear coefficient (&) in terms of the shape
distribution parameter (A) based on the average field method and the statistical

approach. The effects of inclusion shapes on €, is analyzed and reported in section

4.1.4.

Next, we extend the work to the weakly nonlinear composites with inclusions
having variation in shapes randomly embedded in the linear medium. Based
on the statistical approach, the effeetive; nonlinear coefficient of composite with
distributed inclusion shapes is related to.that of the composites with identical
inclusion shape and then the effectivegnonlinear coefficient (y.) is determined by
using the simple decoupling approximation. LThe effects of inclusion shapes on y.

is investigated and reported in sectiori"14.2.3.

Finally, we concénb—r‘ate oh strongly nonlinear composites with the same mi-
crostructure as the hneal COIIlpOSIteb \wth distributed inclusion shapes. The dif-
ferent approach as that repmted for llnea:r composites in section 4.1.2; is employed
to determine the effective lifiear c.oefhmen;t ‘56 However, agreement between the
two approach is observed, thig confirm oun‘-gy@rk. By using the simple decoupling

approximation, the effective nonlinear COQ?QQ?}]_‘J (Xe) is determined and the effects

of inclusion shapes on Y is discussed and reported in _:S'rqction 4.3.3.

. J '

This work provide fundamental information forevaluating the electric field
response of weakly nonlinear elliptical dielectric comﬁgsite, and also for designing
nonlinear optical ‘matérials: for applicationstin' photonie dévices or optoelectronic

technologies.

In fact, the efiective responses of nonlinear composites in‘external AC electric
field hasreceived much attention for both strongly nonlinear and weakly nonlinear
composites. Therefore, the effects of inclusion shapes on electric responses of
nonlinear composites in external AC electric field with arbitrary nonlinear integer

exponet is suggested for further study.
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Appendix A

Improved Decoupling Approximation

,,/@mcal inclusion shape in section

to determine the effective
] \\‘Kh 111 this Appendlx we have to
I (E?) and (

N

1 Li [12] proposed a new decou-

pling approximation to express {£/). W sodd and n > 3, it requires
(A1)

and also n is even;: Ce
7

m B (A.2)

“ﬁﬁﬁﬁ%ﬂ@?ﬂﬂ%ﬂ? »
anda@fﬂmmmm URNINYAY

(B} ~ 4 (E?) (E)* — 4(E)" + (E?)”. (A4)

For n =

For more n, by using Eq. (A.1) with n = 5, we have to calculate (E?) and obtain

(B = (E3))°) =

(E5 — 5B (E;) + 10E? (E;)> — 10E2 (E;)’ + 5E; (E;)" — (E;)*) =0

(E3)” — 5(E}) (B;) + 10 (EP) (E;)* — 10 (E?) (E;)° + 5(E;) (B;)" — (E;)° =0
(E:)° = 5(E (B;) — 10(E2) (E;)* + 10 (E2) (E;)* — 5(E;) (E;)" + (E;)°.
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Substituting (E3) and (E}) from Egs. (A.3) - (A.4) into (A.5), we get (E?) as
proposed in Eq. (3.36)

(B ~5 (B} (E) — 4 (E)°. (A.6)

A.2 Derivation of (E?)

For n = 6, the left hand side (L.H.S) of Eq. (A.2) gives

20E3 (E;))* +15E2 (E;)*

(A7)
Replacing (E?), ( and (A.6) into (A.7), we

obtain

{(B: — (B =% =) () Y e - (E)°.
From Eqgs. (A.8) @9 e (B?) and g@ the expression of (E?) as
given in Eq. (3.37) by ¢

ﬂ {Hfﬁl ’3%%%] j%ﬂ’}ﬂ ‘}2> (A.10)
A3 lﬂﬁ'}ﬁ‘@ﬂﬁm URIAINYIAY

We take n = 7 to Eq. (A.1) and get
(Ei = (E))") =0
= (E7 — TES (E)) + 21E5 (E;)* — 35E4 (E;) + 35E3 (E;)* — 21E2 (E;)°
+HTE; (E;)° — (Ey)T)
0= (E]) — 7(ES) (E;) + 21 (E?) (E;)* — 35 (E}) (E;)® + 35 (EP) (E;)*

—21(E2) (E:)° + T(E:) (E)° — (E))".
(A.11)
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Egs.

(A.3), (A4), (A.6) and (A.10) are substituted into Eq. (A.11); therefore
(ET) can be written as given in Eq. (3.38) by

(ETY ~ 14 (B2 (B)° — 28 (E2) (B))° + T(E?)’ (E) +8(E)".  (A.12)

A.4 Derivation of (E?)

For n =8, L.H.S of Eq. (A.2

( |

i)+ 2B 56 E; (E;))* + T0EX (E)* — 56 E} (E;)°

28 (BB — 56 (D) (B + 70 (E2) (Ey*

8(E;) (E:)T + (E:)°.

(A.13)
We substitute Egs.

(B — (E)*) = (E) +

For the R.H.S of Eq. (A.2), we al obta

(B; — (B =

— 4(B7) (B)° +(E)°.

aﬂ%&lm’a WA
<E8>QW§W‘§%W%%%’W
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