CHAPTER IV
DEM SIMULATION

Discrete numerical simulation of particles has been used in a wide range for
research of physical phenomena, including galaxy formation, plasma behavior and fluid
turbulence. This technique was known as Distinct or Discrete Element Method (DEM).
P.A. Cundall and O.D.L. Strack (1979) proposed this method for analyzing the stability of
fractured rock slopes. DEM has been used primarily to study the fabric and structure of
granular media and to assist in the development of constitutive relations of soil. In recent

years, DEM Simulation has been proved that it is a powerful tool in powder technology.

4.1 Distinct or discrete element method

The principle of distinct element method (DEM) is based on the nature of a
fictitious material. In the DEM, the equilibrium contact forces and displacements of a
stressed assembly of discs or spheres are found through a series of calculations tracing
the movements of the individual particles. These movements are the result of the
propagation through the medium of disturbances originating at the boundaries: a
dynamic process. The speed of propagation is.a function of the physical properties of
the discrete medium. The DEM is based upon the idea that the time step chosen should
be sufficiently small that during a single time step disturbances cannot propagate from
any particle further than its immediate neighbours. At all time the resultant forces on any
particle are determined exclusively by its interaction with the surrounding particles with

which it is in contact.

4.1.1 Calculation cycle

The calculations in DEM rely on the application of Newton's second law to
the particles and force-displacement law during the contacts. Newton’s second
law gives the motion of a particle resulting from the forces acting on it. The force
displacement law is used to find contact forces from displacement. The
deformations of the individual particles are small in comparison with deformation of

a granular assembly as a whole. The latter deformation is due primarily to the
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movements of the particles as rigid bodies. Therefore, precise modeling of particle
deformation is not necessary to obtain a good approximation of the mechanical
behavior. The particles are allowed to overlap one another at contact point in the
calculation algorithm. The overlapping behavior takes place in lieu of the
deformation of the individual particles. The magnitude of the overlap is considered
to be related directly to the contact force. It should be noted that these overlaps
are small in relation to the particle size. To illustrate how forces and displacement
are determined during a calculation cycle, the case 2-dimentional represented in
Figure 4.1(a) will be considered. Two weightless particles, labeled as particle x
and particle y, are squashed between a pair of rigid walls. The walls move toward
each other at a constant velocity v. Initially, at time t = t, , the wall and discs are

touching and no contact forces exist. At time At later, the wall has moved inward
over a distance v At In accordance with the assumption that the disturbances
cannot travel beyond a single disc during one time step, both particles are
assumed to maintain their initial positions during the time interval from t = ttot=t,
+ At. Overlap therefore exist at time t, = t, + At at contacts A and C as shown in
Figure 4.1(b) and are of magnitude An = v At. Points A(D) and A(W) in Figure
4.1(b) are points of the particle and the wall, respectively, lying on the line drawn
perpendicular to the wall-and through the center of the particle. The contact A is
defined as the point halfway between Ap) and Ay, The relative displacement
(An(A))“ at the contact (the overlap) is defined as the displacement of point A
relative to that of point A, occuring over one time increment. The subscript t, in
(An(A))n, refers to the time. The relative displacements occuring at contacts A and
C attime t, = t, + At as shown in Figure 4.1(b) are used in a force-displacement
law for the calculation of contact forces. An increment force-displacement law of

the following form is used

AF, = k (4n), =k v At (4.1)

n
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Where k, is the normal stiffness and AFn represents the increment in normal force.

Defining the positive 1 direction as pointing from particle x to particle y (Figure
4.1(b)) the sums of force F(x), and F(y), for particle x and y at time t, = t, + At

become, taking F(x), and F(y), to be position in the positive 1 direction

F(x), = k, (4n),, F(y), = -k, (4n), (4.2)

These forces are used to find new accelerations using Newton's second law

Where X,and y, are accelerations of particle x and y in the 1 direction. The
subscripts (x) and (y) in the masses mg, and mg, refer to particle x and y. The

accelerations found from Equation (4.3) are assumed to be constant over the time

interval from t, = t, + At to t, =t, + 24t and may be integrated to yield

velocities
. ) % F,
[xl ]rz =| £ |ar [xz]m: 2\t (4.4)
m(X) I (v)
The relative displacement increments at contacts A, B and C at time L=t +

2 At are found from

F
(4n,, )’2 = (v - { m“” }AIJAI (4.5)
(x)

F, F
(A”(H)),z =ﬂ - }At-[ﬂ]m At (4.6)
m(«r) m(,v)
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F,
(A”(w ).z = I: - :|A’ ~[-v]jar (4.7)

m(y)

Where Anw , An(B, and An(c) are taken as positive for compression. This cycle
may be repeated again and again: forces corresponding to the displacements are
found using the force displacement law, Equation (4.2), and the force sums for the
two particles are substituted in Newton's second law, Equation (4.3), to obtain
displacements. In the general case of an assembly of numerous particles, the
force —displacement law is applied at each contact of any disc and the vectorial
sum of these contact forces is determined to yield the resultant force acting on that
particle. When this has been accomplished for every particle, new accelerations

are calculated from Newton's second law.

—~ - -

(Al = vt —_————Ae— s s A
(Aul(_.J ), = var (Anw Sy (MW ) (.xu“.,),l I an )2
(@) (L) (c)

Figure 4.1 Two discs compressed between rigid walls (the overlaps are exaggerated)

@t=t: () t=t, =t,+At: (c)t=t,+2At

4.2 Equations of particle and fluid motion
The basic equations for the gas and particle motion, and the general concept of

the calculations are explained as follows.
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4.2.1 Particle motion

Particles and quasi-static flow are in contact with the surrounding particles
or the wall. Since each particle has elasticity, a particle assembly forms a
complicated vibrationary system having multiple degrees of freedom. Moreover
the contact points change with time. The influence of a particle on the other
particles far from it propagates in a disturbance wave. It is very difficult to consider
the interaction between one particle and remote ones. If the time step in numerical
calculation is chosen sufficiently small, it can be assumed that during the single
time step disturbances do not propagate from any particles further than its
immediate neighbors. In other words, the instantaneous motion of each particle is
determined by contact forces between that particle and the particle which it is in
contact with. An assembly of spherical particles of uniform size is considered.
Individual particles have two types of motion as follows: translational and rotational

motions. Equations of translational and rotational particle motion are the following:

Where vis the particle velocity vector, m is the particle mass, F is the sum of
forces acting on the particle, g is the gravity acceleration vector, @ is the
angular velocity, T is the net torque caused by the contact force, / is the moment
of inertia of the particle, and superscript (.) denotes a time derivative. The force F
consists of contact forces and fluid forces. The new velocities and position after

the time step At are given by

Ve =v, +v At (4.10)

r=r,+v,At (4.11)
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0 =0,+n,At (4.12)

where v is the velocity vector, subscript 0 denotes the old value, and subscript s
refers to the particle. The force F can be divided into the contact force and fluid

forceas F = f.+ f,

4.2.2 Modeling of contact forces

Cundall and Strack (1979) use the model shown in Figure 4.2(a) to
formulate the contact forces between two spheres. The model consists of a spring,
a dash-pot and a slider. The model of the contact with the wall is shown in Figure

4.2(b). The effects of these mechanical elements on particle motion appear
through the following parameters: stiffness (k), damping coefficient (77) and friction

coefficient (44, ).

O =)
£ Qe

Figure 4.2 Models of contact force: (a) particle-to-particle (b) particle-to-wall

@)

Wall
®)

When particle i is contact with particle j, the normal component of the contact
force, me.j, acting on particle i is given by the sum of the forces due to the spring

and the dash-pot:

mej = (— kémj _nnvnj 'nij )’:j (413)
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i)

Where 5",.j. is the particle displacement caused by the normal force, v, is the
velocity vector of particle i relative to particle j, and n,is the unit vector from the
center of particle i to that of particle j. The tangential component of the contact

force, f,;is given by

Sy =—koy =, (4.14)

where k, and o, are the stiffness and displacement in the tangential direction
respectively. The suffixes n and t are the components corresponding to the normal
and tangential directions respectively. v is the slip velocity of the contact point,

which is given by
Vsij :vn‘j“("ry'”)"+’.;(‘0i+w,~)x” (4.15)

where r is the radius of the sphere. When particle j is replaced by the wall,
’vjf =lw; =0. If the following relation is satisfied

3fCtij§>,uj }fcmj" (4.16)

then particle i slides and the tangential force is given by

fC"i =—H; ‘vf(.‘nij ;tu (4.17)

instead of Equation (4.14) . Equation (4.17) is the Coulomb-type friction law. The

displacement is given by

v 1
Op = [k Jf(,‘lij (4.18)

—

t jis the unit vector defined by
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The damping coefficient can be determined from coefficient of restitution (e) as

n= _ﬂ (4.20)

7+ (ln(e))2

The same relations as the above equations are derived for contact with the wall if
particle j is replaced by the wall. In general, a few particles are in contact with
particle / at the same time. Therefore the total acting on particle i is obtained by

taking the summation of the above forces with respect to j:

Ja = Z(f(_m] +an_'j) (4.21)

J

T, £ Y (rngcrE (4.22)
J

4.2.21 Time step
The time step should be set smaller than a certain critical value in
order to make the calculation stable. However, the time step should be as
large as possible to save computation time. Therefore, a suitable time step
should be chosen. There are two kinds of time step must be considered. The
time step requires for calculating particle motion and fluid motion. From the
viewpoint of the stability of calculation, the critical time step for particle motion
is much less than that of fluid motion. Cundall and Strack (1979) proposed a
method for determining the time step for calculating particle motion, which is
based on the characteristic natural frequency of a spring-mass oscillation
system. Reffering to their method, the time step is determined by the following
procedure. First, we randomly distributed the particles in the vessel as the
initial condition according to a uniform probability distribution. Fluid motion

was neglected. Using the DEM, we calculated the motion of these particles
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falling from the initial still condition under the effect of gravity and neglecting
interaction with the fluid. The oscillation period of the spring-mass system used

to model contacting particles is given by

T=2nmImlk (4.23)

One half of the above period was divided by a factor of n to obtain the time
stime step. Tsujj et. al.(1993) investigate a suitable n for time step. They found
that a suitable nis 5.

Therefore, the time step is as follow.

4.2.2.2 Stiffness or Spring Constant

The stiffness’ can be determined from the material properties with
Hertzian theory. When the Cundall's model is applied to a sand or snow
avalanche, it is not practicable to take the smallest sand or snow particle as
the distinct element but a particle assembly of suitable size should be taken as
one particle (virtual particle) because of the limit of memory size and
computation time. In such a case, the stiffness of the virtual particle is
expected to be smaller than that of an actual particle. It is often difficult in
practice to use the stiffness calculated by Hertzian theory, because the time
step required for numerical integration becomes so small that an excessive
amount of computational time is needed. The time step should be less than
one-tenth of the natural oscillation period 27rm of a spring-mass system.
Therefore, a small value of stiffness is assumed for convenience of the

calculation.

4.2.3  Fluid motion
The locally averaged equation of continuity and equations of motion were

used for the calculation of the fluid motion. The finite difference method was used
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to calculate fluid motion. The flow domain was divided into cells, the size of which
is larger than the particle size. All quantities such as pressure and fluid velocity are
averaged in the cell. The void fraction of each cell can be defined as the number
of particles existing in the cell. The basic equations are as follows.

Equation of continuity

O+ 2 (au,)=0 (4.25)

+ £, (4.26)

where &, u, p and L, are the void fraction, fluid velocity, pressure and fluid
density, respectively. Fluid is treated as inviscid except the interaction term ()

between the fluid and particles.
v, ~u,) (4.27)

where v . is the average particle velocities. The coefficient ,Bis derived from

Ergun’s equation for dense phase and Wen and Yu's equation for dilute phase.

/‘g;:)[lsou —&)+1.75Re]  (£<0.8)

B = ! (4.28)
431 c, “(1{; £) g2 g, (e >0.8)
(&

P

(4.29)

D

_[24(1+0.15Re* )/ Re  (Re <1000)
0.43 (Re >1000)

v —up,ed
Re= " b A (4.30)
g
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where C,is the drag coefficient for a single sphere, d, is the particle diameter, and

M is the viscosity.

4.3  Numerical technique

Finite difference method used to solve PDE in this work. The concept of the finite
difference  method is shown in this section. Most common finite-difference
representations of derivatives are based on Taylor's series expansions. For example,
referring to Figure 10, if u;; denotes the x component of velocity at point (i), then the
velocity u,,, . at point (/i+17,j) can be expressed in terms of a Taylor series expanded about

point (i, j) as follows:

2 2 3 3
Uiy, =U, . + il Ax + Y . (Ax) + 8u (Ax) +... (4.31)
sJ U ax . ax2 o 2 ax3 ., 6

Equation (4.31) is mathematically an exact expression for u,,,.j if (1) the number of terms

1

is infinite and the series converges and/or (2) Ax—>0. Solving Equation (1) for

(au/c?x),_j , we obtain
0 U1 S 3 2
(uj = *"z{’ Ax = 6% (Aj) + ... (4.32)
ax iJj Ax ax — Ox o 6
* 1) ik
L | |
Finite
difference Truncation error

representation

In Equation (4.32), the actual partial derivative at point (i, j) is given on the left side. The
first term on the right side is a finite-difference representation of the partial derivative.
The remaining terms on the right side constitute the truncation error. That is, if we wish to

approximate the partial derivative with the above algebraic finite-difference quotient,

6Ll ul+ - ui ]
( j P (4.33)
i)

TI219 0 5% 4
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then, the truncation error in Equation (4.32) tells us what is being neglected in this
approximation. In Equation (4.32), the lowest-order term in the truncation error involves
Ax to the first power; hence, the finite-difference expression in Equation(4.33) is called

first-order-accurate. We can more formally write Equation (4.32) as

(@) =L TH L o(a) (4.34)
ij Ax

ox ).,

)

Foe+ 2= )+ Lar oy L&)

ox x> 2

L | | I |

First guess Add to capture Add to account
(not very good) slope for curvature

Figure 4.3 lllustration of the first three terms in a Taylor series

In Equation (4.34), the symbol O(Ax) is a formal mathematical notation which represents
“terms of order Ax” Equation (4.34) is a more precise notion than Equation (4.33), which
involves the “approximately equal” notion; in Equation (4.34) the order of magnitude of
the truncation error is shown explicitly by the notion. Also referring to Fig.1, note that the
finite-difference expression in Equation (4.34) uses information to the right of grid point
(i)); that is, it uses u,,,j as well as u;. No information to the left of (i) is used. As a resuilt,
the finite difference in Equation (4.34) is called a forward difference. For this reason, we

now identify the first-order-accurate difference representation for the derivative
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(au/ax),, , expressed by Equation (4.34) as a first-order forward difference, repeated

below

(&) =" ol
iJ

Let us now write a Taylor series expansion for u., ., expanded about U

i1

ox ), 2 ox’

2 2 3 3
. =u ,J{@) (—Ax)+(a f] (-4x) +[a “j CA)', s
>/ 1) ” ax y y

or

ul—],j

ox ). ox? 2 ox* 6

2 2 3 3
=u,_j—(@) Ax+(a “j () _[a ”] [ (4.36)

Solving for (6u/6x),.,j , we obtain

(%)i , = L7 Yg ;:"“f +O(Ax) (4.37)
The information used in forming the finite-difference quotient in Equation (4.37) comes
from the left of grid point (i,j); that is, it uses u.;as well as u,. No information to the right
of (i) is used. As a result, the finite difference in Equation (4.36) is called a rearward (or
backward) difference. Moreover, the lowest-order term in the truncation error involves
AXx to the first power. As a result, the finite difference in Equation (4.36) is called a first —
order rearward difference.

In-most application in computational fluid dynamic (CFD), first-order accuracy is
not sufficient. To construct a finite-difference quotient of second-order accuracy, simply

subtract Equation (4.35) from Equation (4.31):

Oou o’u (Ax)3
uMJ — U e 2(5)1 ‘Ax+2(¥),j T +se (438)

)
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Equation (4.38) can be written as

(?ﬂ) =li’ﬁf_’:1;f’;';f_+O(Ax)2 (4.39)
)y 2Ax

The information used in forming the finite-difference quotient in Equation (4.38) comes

from both sides of the grid point located at (i)); that is, it uses u,

w1y @s well as v, . Grid

point (i) falls between the two adjacent grid point. Moreover in truncation error in
Equation (4.37), the lowest-order terms involves (Ax)2 ,which is second order accuracy.
Hence, the finite-difference quotient in Equation (4.38) is called a second order central
difference.

Difference expressions for the y derivatives are obtained in exactly the same

fashion. The results are directly analogy to the previous equations for the x derivatives.

They are:
(ui J+1 - ui J y
Mz,fA, " 4 0(Ay)  Forward difference
34
U, —u, ,
[éuj =0 ey o(ay) Rearward difference (4.40)
V), A
Ui o Ui 5 4
AL S O(Ay) Central difference
| 20y

Equation (4.40) is the equation of finite-difference quotients for first partial derivatives. If
we are dealing with inviscid flows only, the governing equations are the Euler equations.
Note that that highest-order derivatives which appear in the Euler equations are first
partial derivatives. Hence, finite differences for the first derivatives use for the numerical
solution of inviscid flows. On the other hand, if we are dealing with viscous flows, the
governing equatipns are the Navier-Stokes equations. Note that the highest-order
derivatives which appear in the Navier-Stokes equations are second partial derivatives.
Consequently, there is a need for discretizing second-order derivatives for CFD. We can

obtain such finite-difference expressions by continuing with a Taylor series analysis, as
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follows. Summing the Taylor series expansions given by Equations (4.31) and (4.35), we

have
2 4 4
Uy +Uy,; =20, +(g~xg] (Ax)’ +[@u] gAx) ¥ (4.41)
b)) i

Solving for (azu/ax),‘, ;

2 —2u. . :
Qiz‘ = Seatp ” u’%f iy O(Ax)’ (4.42)
ox i (Ax)

In Equation (4.42), the first term on the right-hand side is a central finite difference for
the second derivative with respect to x evaluated at grid point (ij); from the remaining
order-of-magnitude term, we see that this central difference is of second-order
accuracy. An analogous expression can easily be obtained for the second derivative

with respect to y, with the result that

2 o =2u. W
[2;2‘] -t P T Loy (.49
i

Equations (4.42) and (4.43) are examples of second-order central second differences.

For the case of mixed derivatives, such as @’u/dxdy, appropriate finite-difference

quotients is:
o’u Ui Ui — Ui YU 2 2
— = — =+ O(Ax)",(A 4.44
[Etcay]l J 4AtAy " [( ) ’( y) ] ( )

Equation (4.44) gives a second-order central difference for the mixed derivative,

(0%u/axay),
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4.3.1 Staggered grid

The staggered grid for the velocity components was first used by Harlow
and Welch(1965) in their MAC method and has been used in other methods
developed by Harlow and co-workers. It forms the basis of the SIVA procedure of
Caretto, Curr, and Spalding (1972) and the SIMPLE procedure of Patankar and
Spalding (1972).

In the staggered grid, the velocity components are calculated for the
points that lie on the faces of the control volumes. It is easy to see how the
locations for the velocity components v and w are to be defined. In Figure 4.4, a
two-dimensional grid pattern is shown, with the locations for v and w placed on the
respective control-volume faces.

The important advantages are twofold. For a typical control volume (shown in
Figure 4.4), it is easy to see that the discretized continuity equation would contain
the differences of adjacent velocity components, and that is would prevent a wavy
velocity field from satisfying the continuity equation. The second important
advantage of the staggered grid is that the pressure difference between two
adjacent grid points now becomes the natural driving force for the velocity

component located between these grid points.
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O o ©)
i-1j+1 i+l i1+
SO o O : pressure, void defined
i1 ij i+l
(®) O
i-1j-1 ij-1 i+1-1
—— — > e
i1+ it i+1lj+1
p- —1» —> ’ : v defined
ij
i-1} i+l
b - e
i-1j-1 i, i1 i+1lj-1
Mt W
l I
i-1j+1 ij+1 i1+
A 4 ?
|
i1 ij i+1,j T : w defined
A A ?
I

i-1j-1 i, j-1 i+1-1

Figurer 4.4 Staggered locations for pressure, void, v and w
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4.3.2 Discretization method

A numerical solution of a differential equation consists of a set of numbers
from which the distribution of the dependent variable ¢ can be constructed. A
numerical method treats as its basic unknowns the values of the dependent
variable at a finite number of locations (called the points) in the calculation
domain. The method includes the tasks of providing a set of algebraic equations
for these unknowns and of prescribing an algorithm for solving the equations. In
focusing attention on the values at the grid points, we have replaced the
continuous information contained in the exact solution the differential equation with
discrete values. We have thus discretized the distribution of ¢ and it is

appropriate to refer to this class of numerical methods as discretization methods.

From Equation (4.25), the continuity equation can be written as

2 e+ L)+ LK (4.45)

From Equation (4.26), the equation of motion can be written as

In y-direction
0 0 0 cop K,
— —_— —— = ——— - 4.4
5 )+ay(8vv)+ 5 () TN (4.46)
In z-direction
2 )+%(€vw)+a—az(sww)=—%%+% (4.47)

4.3.2.1 Discretization of momentum equations
Discretization of momentum equations (Equation 4.46) in y-direction
0

B ol (e

ot dy 0z Py p

sop K,
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Integrate the equation of motion (Equation 4.46) in the control volume as

shown in Figure 4.5.

t+At n e t+At e n

1 I (ev)arcydz + | | j_ (ewlayazdr-+ | [ [ (evwhad

ws t SW 1 ws

1+A1 n e K
[( L) )dydzdt+ Y AyAzAt
p

—

: v defined
o ~tPyol/ZzZ” o I
i-1j+1 il i+l O . pressure, void
defined
o ZPP/M I NI TR T
i-1) 1y i+l
Control
Az
volume
o “I¥ /R R >
i1fe1 i, j41 i+11j-1
>
Ay

Figure 4.5 - Control volume for calculating v

e nt+A1

11T 2 atarz = (o), - ) Javae

w S 1

where ( )0 is value at time t

1+AL

(12 (evw)ayazat = (ew), Azt~ (ewv), Azt = J, A1~ T, A

[l = (&), - (o),

t

1+

/

(svw)dzdydt = (evw), AyAt — (evw), AyAt = J At — J At

Loy = (evw), = (evw),

Sl

I

[
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1+At n e £ ap c
II — 222 Uydzdt =2 (p, — p, )AzAt
Paw\ POy p

£ & £

_p[p]e—w =_p-(‘pe _pw):-_p(pli _pl’)

p p p

(&v), - (&), £ K,
T Az 4 =, +d, =T, === (p, — py)hz + = ayaz
At P P

Integrate the equation of continuity in the same control volume (Control volume

for v)

0 0 0
584-5( )+§(€W)—0

0

SP—E
» \AyAZ 4 F. = F, < F,—F. =0

At

AZ?Z gz(vp —vz)+ (Jc —v,,Fe)—~ (Jw —vaw)+ (J" v, F, )— (Jx —va\.)

K
= —%(pli —pp)Az+7'VAyAz

where

J, = (gvv)e Az, J, = (gvv)w Az, J, = (awv),, Ay, J, = (awv)_,, Ay

vi‘j + vi+l,j

F = (gv)eAz =g,v,Az = €,

F

w

Il

(ev),Az=¢,v,Az=¢,, U—z'*l_JAZ

g .+& +& .., +E&; w,. . +w. .
_ _ o i+l,j ij+l i+, j+1 iJ i+l,j
Fn - (m)nAy - gnwnAy - 4 >
F = (6‘W)\,Ay —swAy= Eij e, Y& it EL Wi in T Wi

Je = (gvv)c AZ = (EV)‘ AZ ’ V(’ = F‘( ’ vc

F, = flow rate through e-surface as shown in Figure 4.5
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For v,use upwind method Fe >0, v,=v; or Fe<0,ve=v

i+1)
J,=F,-v,=v, ,max[F,,0]-v,,  max[-F,,0]

VpF‘e = vi,j max[Fe ’0] _vi,l maX[—Fe ,0]

i-1j+1 ij4 i+ 1+
n
—T> <+
i1 A P € il
ij
S
i-14j-1 P NS i+1j-1

Figure 4.6  Surface of control volume for v

Therefore

Je - vae = max[—F; ’0](vi.j — vi+|,j) - ae (vj,j - vi+],j)
J,, —vaw = max[F, :0](vi-|,j _vi,j) = aw(v,'_lj —Vij
J. - va" = max[-F, ,O](v,.,j =V, =a,(v,; -V, )

J, —v, F, =max[F,0)(v; .y =v; ) =a,(v, 5=V,

1&;+&.,,;
= b + _/—if( - )AZ
AV, S0V TV T ALY, TAY, D, o 5 Pij — Pin,j

(4.48)

0
AyAz gi,j + €i+l,j_

where a,=a,+a,+a,+a, + T >

' 0 0
A Az gi j +£i+ j Kvi /
= =P C Loy0 4 TN ApAZ

b ;
At 2 Yp

¥
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Discretization of momentum equations (Equation (4.47)) in z-direction in the

same way
2 o)+ —ow)+ () =2 2 K.
ot o) 0z poy p

Integrate the equation of motion in the control volume as shown in Figure 4.7.

A A A
i-1j+1 ijt+l i+1j+1
A A A
i-1j AR ‘ i+l
A A A
i-1j-1 i, j-1 i+1,-1

T > w defined

Figure 4.7 Surface of control volume for w

1¢6,+¢

AP +;—2—i+l’_j(pi,j ~Pin, )Ay

a,w,;=aw,,  +aw_ +aw  +aw

e i+l ) w Q=N j n Ui, +l

(4.49)
AYAz €5 + &

where a_ =a,+a, 6 +a +a. +
y4 e w n s At 2

0 0
Az €+ 6y v
_ Ay i i+l 0 Thzi AyAz
Yo,

At 2 o

a, =max[-F,,0], a, =max[F,,0], a,=max[-F,,0], a, =max[F,,0]

6‘»-+6‘-l-+8.-1+6‘-,-]V--+V.+|-
Fe =(€V)8AZ= 1. i+l,j i,j+ i+l j+ ;] i+l,) AZ
4 2
E €, +E i tELia Vi TViain
Fw =(gv)wAz= i,J i-1,j i,j+1 i=1,j+1 Ti-lj i-1,j+ AZ
4 2
w; + W
J i,j+1
F, =(ew)"Ay=£ Ay

ij+l 2
W,.)j + W,

Fs‘ = (gw)s Ay = gi,j+l —,)l—_l—Ay

P
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Summary of discretization of momentum equations

In y-direction

ij i+l,) ( )5
a[lvl, aevl+lj +awvl -1,/ +anvi,j+l +a, v‘, j— +b‘ +; 2 pi,j _—pi+l,j

a, v, Zav+b + 1€, +25',+I/ (pi,j —P,HJ)AZ (4.50)

where d, =4, ;

Zav: AV, tAY ;T AV, Ay

wi-1,j n"ij+l s i,j-1
In z-direction
1 op +6‘HL! ( )A
a,w,, =aw, +aw_;+aw ,+aw +b, +;——— g — Brir s JAY
1 & +g,+1,
aI""J Zaw+b +p o) ( J _pi,j+l)Ay (451)
where af =guo

Zaw =aw,  taw. +aw . +aw,

4.3.2.2 Discretization of continuity equation

0 0 0
5€+5(W)+5‘2.‘(8W)— 0

Integrate the continuity equation in the control volume as shown in Figure 4.8

nt+\r a 1+M n e 1+AM e n

= (e)drdyez + | j | % (ev)dyetzdt + | | j —(ew)dzdydt = 0

1

Tt

s r ws
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AyAZ 0 g + €in J R iJj+l
_F(gi’j —8i,j)+ &—2 i,jAZ——————*z vi—l,jM+_2 i,jAy
& HE
_ ) 2 ’JIW,J_|=0
(4.52)
©) (e] O
i-1j+1 ij+l i+ j+1
n
w (e} e O
i1 ij i+1j
$
O O
i-1-1 ij-1 i+1,j-1
O ' pressure, void defined
Figure 4.8 Surface of control volume for continuity equation
4.3.2.3 Modify pressure and velocity
v=v +V'
w=w +w
p=p +p
where v*, w* p*are assumed values
viw’ o) ” are modified value
In y-direction
] S +g:+l
AoyijVi Zav+b + > L (pi,j —pi+l,j)AZ (4.53)
Substitute assumed value into Equatnon (4.53)
1 g +8l+ * *
apVIJVIj—zav +b + ——= lJ(p i,j'—pi+l,j)AZ (4.54)

Yol 2
Equation (4.53)-Equation (4.54)
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’ ’ 1 gi,j +gi+l,j ’ ’
a,iVij = 2,9v +; > (pi,,' _pi+l,j)AZ
Neglecting Zav’
’ 1 gi, ;+ gi+l, ] ’ '
v, = L (pr — pl,, Az (4.55)
ap_vi,jp 2
In z-direction
1 gl,j +gl+|,j
Ap:iWij = Zaw+ b, + ;—2—(1’:',/ —Pijn )Ay (4.56)

Substitute assumed value into Equation (4.56)

* * 1 gl, + gi+ J * *
apzi,jwz,j =Zaw +bz +;%(pi.j —pf._/+] )Ay (457)
Equation (4.56)-Equation (4.57)
’ ’ 1 gl\ + 8'+L‘ ' '
A, Wi = L AW +; ’ 5 g (p,,J —Pijn )Ay

Neglecting Zaw'

, 1 Ei’v+€,+’- ) )
W, = P10, ~ LNy (4.58)
apzi,jp

1,7

Substitute Equation (4.55) and Equation (4.58) in v=v" +v'and w=w" +w'

s v 1 8'}/ +£’+1J (pv ' )
V5 =Wy TV = ij ~ Pin,j )0z (4.59)
a 2
pvi,jp
1 &, +¢&
_ * ro_ * 1,J i+l,j r ’
Wig =Wy TW; =W, + (pi,j = Diju )Ay (4.60)
apzi,jp 2

Substitute Equation (4.59) and Equation (4.60) in Equation (4.52)

{ r r N r =
CoPij =CePisj TCuPio; TCoDi i +('.vp;,j—l +b (4.61)



50

where

c,=c¢,+c,+c, +c,

2
¢, = ! (f”w +“"f+u] Ag?
pVij
5 +€
pv: l/p
8

¢, =— [ 8'+“JAy2
p:l,jp 2

)
Il
|
/——\
}m
9 | +
03
NG
&
N

Aviz g, . +E, . . £, +E,, . EiytEim
*Z (e” ~ ,~0,)— -VV’LE—f]"—v, I +—iz—"’v,_UAz—r 5 Ciad ~w; Ay +
; , | :
£, +E . .
*’—i* wlj—]Ay
(4.62)

If v* and w* are correct, b=0. If b¥0, modification p' is obtained from Equation

(4.61). The algorithm of modify pressure and velocity is shown in Figure 4.9.

4.3.2.4 Relaxation factor

The modify pressure is prone to diverge unless some relaxation is used

p=p +a,p' (4.63)

where (& is a relaxation factor. When the relaxation factor is between 0 and 1,
its effect is underrelaxation. When the relaxation factor is greater than 1,

overrelaxation is produced.



Assume p*

.

Calculate v* and w* using Eq. (4.54) and (4.57)

|

Calculate b using Eq. (4.62)

b=0

no

Calculate p' using Eq. (4.61)

l

Calculate modified velocities v and w using Eq. (4.59) and (4.60)

Figure 4.9 Algorithm of modify pressure and velocity
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4.3.3 The SIMPLE method

The procedure that we are developing for the calculation of the flow field has been

the name SIMPLE, which stands for Semi-Implicit Method for Pressure-Linked

Equations. The procedure has been described in Patankar and Spalding (1972)

and Patankar (1975).

4.3.3.1 Sequence of operations

1)
2)

6)

Guess the pressure field p*.

Solve the momentum equations, such as Equations.(4.54) and (4.57_) to
obtain v*, w* |
Solve the p /equation from Equation (4.61)

Calculate p from p=p" + p' by adding p "to p*

Calculate v, w from their starred values using the velocity-correction
formulas Equations (4.59) and (4.60).

Solve the discretization equation for other ¢s (such as temperature,
concentration, and turbulence quantities) if they influence the flow field
through fluid properties, source terms, etc. (if a particular ¢ does not
influence the flow field, it is better to calculate it after a converged solution
for the flow field has been obtained.)

Treat the corrected pressure p as a new guessed pressure p*, return to
step 2, and repeat the whole procedure until a converged solution is

obtained.

The algorithm of the SIMPLE method is shown in Figure 4.10.



Initial guess p*, u*, v*

Solve discretised momentum equations

1 g +gl+l_/ * *
Zav +b = (p i,j—pi+l,j)AZ

set

lej i’ p 2
1 g +gl+l * *
Ap:i Wi Zaw +b +— - (pi,j _puﬂ)Ay
Yol 2
v, w*

Solve Modify pressure equation

" N ’ ’ s
(’ppi‘j - (’epi-H,j +('wpi-l,j +cnpi,j+l +L.\'p1,j—l + b

p
Modify pressure and velocities
p=p +p
1 E . +e&
R R —— iJ i+1,) ’ i )
Vij =Vi,; TV IR (pi,_/ —Disj Az
5]
apyi,jp e=d
1 g, ,t¢e
_ * — * i+l,j ’ ’
Wi = O T > ( ij T Pijn )Ay
apzi,jp i

pouv

No Is the continuity equation

satisfied ?

Solve all other discretised transport equations

a,@p =a,p, +aydy, +aydy +agps +b

Figure 4.10 The algorithm of the SIMPLE method
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