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CHAPTER I

INTRODUCTION

A harmonic function on a Riemannian manifold can be viewed as a geralization

of the classical notion of a harmonic function on a Euclidean space.

A harmonic function on R2 is a C2 function u : R2 → R which satisfies

∂2u

∂x2
+

∂2u

∂y2
= 0.

It follows that |∇u(0)| ≤ Cr−1 sup
B(0,r)

|u| on the ball B(0, r) where C is inde-

pendent of u and r.

This gradient estimate has many applications. One of them is the Liouville

theorem which says that there is no non-constant bounded harmonic function

in R2. A harmonic function on an n-dimensional Riemannian manifold is the

generalization of a harmonic function on Rn by using the following notion.

A harmonic function on a smooth n-dimensional Riemannian manifold M

equipped with a metric (gij) is a differentiable function u : M → R such that

locally

∆gf =
1
√

g

n∑
j=1

∂

∂xj

(
(
√

g
n∑

j=1

gjk ∂f

∂xk
)

)
= 0,

where

∆g =
1
√

g

n∑
j=1

∂

∂xj

(
(
√

g
n∑

j=1

gjk ∂

∂xk
)

)
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is the Laplace-Beltrami operator on the n-dimensional Riemannian mani-

fold. In any smooth Riemannian manifold, we also have the notion of gradient

which will be clarified in the next chapter. In 1975, S.T.Yau gave a general-

ization on a certain smooth Riemannian manifold as the following. For more

details see [1].

Theorem 1.1. (S.T.Yau) Let M be a smooth Riemannian manifold equipped

with metric (gij) such that M has a non-negative Ricci curvature and x a fixed

point in M . If ∆gu = 0 on Br(x), then

‖∇u(x)‖ ≤ Cr−1 ‖u‖∞ ,

where ‖u‖∞ is the supremum norm of the function u on Br(x) and C depends

only on the dimension of M.

In fact, he also extended Theorem 1.1 to a Riemannian manifold with Ricci

curvature bounded from below (see [1], [2]).

Theorem 1.2. (S.T.Yau) Let M be a smooth Riemannian manifold equipped

with metric (gij) such that RicM ≥ −A, where A ≥ 0 is a non-negative constant

and x a fixed point in M . If u is positive and satisfies ∆gu = 0 on Br(x), then

‖∇gu‖
u

≤ C

(
1 + r

√
A

r

)
,

on where B r
2
(x) and C depends only on the dimension of M.

In our work, we will establish the spacial case of Theorem 1.2 by using

more elementary method. In particular, we will obtain the gradient estimate

the of the harmonic function u on the 2-dimensional Poincare disc DP . The
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Poincare disc DP is the set

DP = {(x, y) ∈ R2 | x2 + y2 < 1}

equipped with Poincare metric

(gij(x, y)) =
4

(1− (x2 + y2))2

1 0

0 1

 .

The Laplace-Beltrami operator and the gradient can be computed as

∆g =
(1− (x2 + y2))2

4

(
∂2

∂x2
+

∂2

∂y2

)
and

∇g =
(1− (x2 + y2))2

4

(
∂

∂x
,

∂

∂y

)
,

respectively.

For the motivation, we consider the case which our 2-dimensional Rieman-

nian manifold is just a 2-dimensional Euclidean space B1(0) ⊆ R2.

Define the cutoff function η(x) = 1− |x|2, so that |∇η| ≤ 2 and ∆η = −4.

We compute that

∆(η2 |∇u|2) ≥ −4 |∇u|2 − 16η |∇u| |Hessu|+ 2η2 |Hessu|2

≥ −(40) |∇u|2 ,

where the last inequality used the A.M.-G.M. inequality 16ab ≤ 2a2 + 32b2.

In particular, the function w = 20u2 + η2 |∇u|2 is superharmonic on B1(0)

(i.e.,∆w ≥ 0) By the maximum principle, the maximum of w occurs on the

boundary so that

|∇u|2 (0) ≤ w(0) ≤ max
∂B1(0)

w = 20 max
∂B1(0)

u.
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Therefore, we easily have the desired gradient estimate of harmonic func-

tion.

In general, the difficulties arise from the fact that it is not easy to find the

cutoff function η in the Poincare disc as above. Thus, we cannot mimic this

proof in the Poincare disc. Our main result is a simpler proof of S.T.Yau’s

gradient estimate on the Poincare disc. Our approach is to use the normal

coordinate to simplify the expressions of ∆g and ∇g. In the process we apply

the Bochner-Weitzenbock identity to get a certain equality. Finally, we are

able to construct a cutoff function and use the maximum principle to obtain

the gradient estimate as following.

Theorem 1.3. Let u be a positive harmonic function on the Poincare disc

and Br(x) is a geodesic ball. Then

‖∇gu‖
u

≤ C ′
(

1 + r

r

)
on B r

2
(x)

where C ′ is a constant independent of x and r.
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Definition 2.1. A smooth abstract surface (or smooth two-dimensional

manifold) is a set M equipped with a collection of one-to-one functions called

coordinate charts or patches

A = {xα : (Uα ⊆ R2) → M ; α ∈ A}

such that

(1) Uα is an open subset of R2,

(2)
⋃
α

xα(Uα) = M ,

(3) If α and β are in A and xα(Uα)∩xβ(Uβ) = Vα β 6= ∅, then the composite

x−1
α ◦ xβ : x−1

β (Vα β) → x−1
α (Vα β)

is a smooth mapping (called a transition function) between open sets of

R2. The collection A generates a maximal set called an atlas of charts on

M . That is, if x :U →M is another chart such that x−1
α ◦ x and x−1 ◦ xα are

smooth for all α ∈ A, then x is in the collection generated by A. The atlas

generated by A is called a differentiable structure on M .

Examples

(1) The simplest surface is R2 with the identity chart.

(2) Let RP 2 denote the set of lines through the origin in R3. A set of

algebraic coordinates may be defined for RP 2 by taking the equivalence classes

of 3-tuples, (x, y, z) ∼ (rx, ry, rz) whenever r 6= 0. In each equivalence class

there are two representatives satisfying x2+y2+z2 = 1. If we take a coordinate

chart for S2 such that xα(Uα) ∩ −xα(Uα) = ∅, then this defines a coordinate
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chart on RP 2 by identifying lines with their representatives on S2. The surface

RP 2 with the atlas generated by these charts is called the real projective plane.

(3) The unit sphere S2 is a smooth surface. One method to cover S2 with

coordinate patches is to use the six coordinate patches

x1, x2, y1, y2, z1, z2 : D2 −→ S2

where

D2 = {(x, y) ∈ R2 | x2 + y2 < 1}

given by

x1(

s

t

) =


√

1− s2 − t2

s

t

 , x2(

s

t

) =


−
√

1− s2 − t2

s

t

 ,

y1(

s

t

) =


s

√
1− s2 − t2

t

 y2(

s

t

) =


s

−
√

1− s2 − t2

t

 ,

z1(

s

t

) =


s

t

√
1− s2 − t2

 z2(

s

t

) =


s

t

−
√

1− s2 − t2

 .

Each of these coordinate patches covers an open hemisphere (see [6]).
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Definition 2.4. A Riemannian metric on an abstract surface S is a choice

of positive-definite inner product 〈 , 〉p on each tangent space, Tp(S) for p ∈ S,

such that the choice varies smoothly from point to point.

In detail, we require 〈 , 〉p to satisfy, for X, Y and Z in Tp(S), and r ∈ R,

(1) 〈rX + Y, Z〉p = r 〈X, Z〉p + 〈Y, Z〉p.

(2) 〈X, Y 〉p = 〈Y, X〉p.

(3) 〈X, X〉p ≥ 0 and 〈X, X〉p = 0 if and only only if X = 0.

For a particular coordinate chart x : (U ⊂ R2) −→ S, the inner product

may be represented by a symmetric matrix of smooth functions (gij(x
1, x2)).

If X =
∑

i a
i ∂
∂xi and Y =

∑
i b

i ∂
∂xi are tangent vectors at p = x(u1, u2), then

〈X, Y 〉p =

[
a1 a2

]
(gij(u

1, u2))

b1

b2

 .

Independence of the metric on the choice of a coordinate chart requires that

the functions gij form a ( 0
2 )-tensor. We call (gij) =

E F

F G

 the metric

tensor, or the first fundamental form of S.

Definition 2.5. A differentiable vector field X on a smooth surface S is

an association p 7−→ Xp ∈ TpS, for each p ∈ S, such that in every coordinate

chart x : (Uα ⊆ R2) → S with coordinates x1, x2, the coefficients ξi : U → R

in the representation (valid at a point)

Xp =
n∑

i=1

ξi(p)
∂

∂xi

∣∣∣
p

are differentiable functions.



10

Definition 2.6. Let X,Y be (differentiable) vector fields on a smooth surface

S, and let f : S → R be a differentiable function. Through the relation

[X, Y ](f) := X(Y (f))− Y (X(f))

we define a vector field [X, Y ], which is referred to as the Lie bracket of X, Y

(also called the Lie derivative LXY ) of Y in the direction X). At a point

p ∈ S we have [X, Y ]p(f) = Xp(Y f)− Yp(Xf).

Definition 2.7. A Riemannian connection ∇ on a Riemannian manifold

(S, 〈, 〉) is a map

(X, Y ) 7−→ ∇XY,

which associates to two given diffentiable vector fields X,Y a third differ-

entiable vector field ∇XY , such that the following conditions are satisfied:

(f : S → R denotes a differentiable function):

(i) ∇X1+X2Y = ∇X1Y +∇X2Y ;

(ii) ∇fXY = f · ∇XY ;

(iii) ∇X(Y1 + Y2) = ∇XY1 +∇XY2;

(iv) ∇X(fY ) = f · ∇XY + (X(f)) · Y ;

(v) X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉;

(vi) ∇XY −∇Y X − [X, Y ] = 0.

Remark: Instead of connection one also speaks of a covariant derivative

and instead of Riemannian connection, one also uses the term Levi-Civita

connection.
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The metric tensor provides a full set of geometric multi-index quantities

defined at each point of S:

g = det(gij);

(gij) = (gij)
−1; that is, gijg

ik = gikgij = δk
j ;

The Christoffel symbols of the first kind: Γij,k =
〈
∇ ∂

∂xi

∂
∂xj ,

∂
∂xk

〉
p

=

1
2

(
∂gik

∂xj +
∂gkj

∂xi − ∂gij

∂xk

)
;

The Christoffel symbols of the second kind: Γk
ij =

∑2
l=1 gklΓij,l (as well as

Γij,k =
∑2

l=1 glkΓ
l
ij.

By using notations above, the Remannian connection can be expressed ex-

plicitly in the following. Let X =
∑2

i=1 ξi(x1, x2) ∂
∂xi and Y =

∑2
j=1 ηj(x1, x2) ∂

∂xj

be vector fields. In order to determine ∇XY , it is sufficient to know the quan-

tities
〈
∇XY, ∂

∂xk

〉
p

for all k. From the definition of the connection, we get the

equation

∇XY =
2∑

i=1

ξi∇ ∂

∂xi
Y

=
2∑

i=1

ξi

2∑
j=1

∇ ∂

∂xi

(
ηj ∂

∂xj

)

=
2∑

i,j=1

ξi

(
∂ηj

∂xi

∂

∂xj
+ ηj∇ ∂

∂xi

∂

∂xj

)
,

and consequently

〈
∇XY,

∂

∂xk

〉
p

=
2∑

i,j=1

ξi

(
∂ηj

∂xi
gjk + ηj

〈
∇ ∂

∂xi

∂

∂xj
,

∂

∂xk

〉
p

)

=
2∑

i,j=1

ξi

(
∂ηj

∂xi
gjk + ηjΓij,k

)
.
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Remark: The first fundamental form (gij) uniquely determines the Christof-

fel symbols and thus also the covariant derivative through the equation

∇XY =
2∑

i,j,k=1

ξi

(
∂ηk

∂xi
+ ηjΓk

ij

)
∂

∂xk
,

whereX =
∑2

i=1 ξi(x1, x2) ∂
∂xi and Y =

∑2
j=1 ηj(x1, x2) ∂

∂xj . For more details

see [7].

Observe that if we can choose some suitable coordinates so that all Christof-

fel symbols vanish, the form of covariant derivative is the same as directional

derivative in the Euclidean space. Practically, working on the form of direc-

tional derivative in the Euclidean space enables us arrange terms of variables

in many situations easier. We will find such coordinates by using the notion

of geodesic and exponential map.

The Riemannian metric determines the Riemannian connection, and this in

turn determines the notion of parallelness in the same way that the covariant

derivative in the Euclidean space.

Definition 2.8. 1. A vector field Y is said to be parallel, if ∇XY = 0 for

every X.

2. A vector field Y along a (regular) curve c is said to be parallel along the

curve c, if ∇c′Y = 0 (this is independent of the parametrization).

3. A non-constant curve c is called a geodesic, if ∇c′c′ = λc′ for some

scalar function λ. This is equivalent to the equation ∇c′c′ = 0, provided c

is parametrized by arc length.
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Physical interpretation: If we view c(t) as the motion of a mass particle,

then the expression ∇c′c′ = c′′ is just the acceleration vector in the Euclidean

space. The motions free of acceleration (the lines) are characterized by the

vanishing of this expression. Similarly, on the surface the expression ∇c′c′ is

the vector of acceleration on the surface, i.e.,the tangential component of the

acceleration. In this sense the geodesics are the motions on the surface which

are free of acceleration (meaning without consideration of the forces which

act perpendicular to the surface). On the surface of the sphere, the geodesics

are precisely the great circles. The consideration of ∇c′c′ requires only the

knowledge of the first fundamental form. From this it is clear that geodesics

are quantities of the intrinsic geometry of a surface.

Definition 2.9. (Exponential mapping)

For a fixed point p ∈ M let c
(p)
V denote the uniquely determined geodesic

through p which is parametrized by arc length in the direction of a unit vector

V. In some neighborhood U of 0 ∈ TpM , the following mapping is well defined:

TpM ⊇ U 3 (p, tV ) 7−→ c
(p)
V (t).

Here the parameters are chosen is such a way that (p, 0) 7→ p. This map is

called the exponential map at the point p, and it is denoted by expp : U 7−→

M. For variable points p one can define a mapping exp in a similar manner by

the formula exp(q, tV ) = expq(tV ) = cq
V (t).
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Lemma 2.10. The exponential mapping expp, restricted to a certain neighbor-

hood U of the origin neighborhood U of the origin in TpM , is a diffeomorphism

expp : U −→ expp(U).

The inverse mapping exp−1
p thus defines a chart at p. The corresponding co-

ordinates are call normal coordinates or Riemannian normal coordi-

nates.

Examples

1. In R2 the exponential mapping is nothing but the canonical identification

of the tangent space TpR2 with R2 itself, where the origin of the tangent space

is mapped to the point p. More precisely, expp(tV ) = p + tV .

2. For the unit sphere S2 with south pole p = (0, 0,−1), the exponential

mapping can be expressed in the following manner using polar coordinates,

writing a tangent vector as r cos φ ∂
∂x

+ r sin φ ∂
∂y

, the exponential mapping can

be written as

expp(r, φ) =
(
cos φ cos(r − π

2
), sin φ cos(r − π

2
), sin(r − π

2
)
)

.

The circle r = π
2

in the tangent plane gets mapped to the equator, while the

circle r = π maps to the north pole. At this point the exponential mapping

degenerates.

Lemma 2.11. (Normal coordinates) Let X1, X2 be an orthonormal basis in

TpM and let

expp : U −→ expp(U)
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be the diffeomorphism of the previous lemma, defined on an open neighborhood

of the origin U ⊂ TpM . The associated coordinates are the normal coordinates,

and we denote by ∂i the elements of a basis of these coordinates on M , so that

in particular ∂i|p =
(
D expp

)
|0 (Xi).Then all Christoffel symbols vanish for

these coordinates at the point p.

Definition 2.12. The gradient of f with respect to a metric g, written grad f

is the vector determined by the relation 〈grad f, X〉p:=∇f(X) = ∇Xf .

In local coordinates, the components f i of the gradient result from the

components fj = ∂f
∂xj by raising indices, f i =

∑2
j=1 fjg

ji. In standard chart

of Euclidean space there is no noticeable difference between f i and fi, but in

polar coordinates with (gij(r, θ)) =

1 0

0 r2

 and (gij(r, θ)) =

1 0

0 r−2

 , one

has fr = ∂f
∂r

, fθ = ∂f
∂θ

and similarly f r = frg
rr, f θ = fθg

θθ = fθr
−2.

Definition 2.13. The second covariant derivative of f is given by ∇2f =

∇∇f . Explicitly,

∇2f(X, Y ) := (∇X∇f)(Y ) := (∇X∇f(Y ))−∇f(∇XY ) = (∇X∇Y )f−(∇XY )(f).

∇2f is also referred to as the Hessf or the Hessian of f .

for a local coordinate (x1, x2), we have ∇2f( ∂
∂xi ,

∂
∂xj ) = ∇i∇jf := ∇ifj :=

∂2f
∂xi∂xj − Γk

ijfk. Since all Christoffel symbols vanish in standard chart of Eu-

clidean space,

(Hessf )ij(x, y)) =

 ∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2


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Definition 2.14. Let M be a 2-dimensional smooth Riemannian manifold

equipped with metric (gij) and f a differentiable function. Laplace-Beltrami

operator of f is defined by

∆gf =
1
√

g

2∑
j=1

∂

∂xj

(
√

g
2∑

j=1

gjk ∂f

∂xk

)
,

where (gij) = (gij)
−1.

2.2 Curvature

In general, there are two types of curvature: extrinsic curvature and intrin-

sic curvature. The extrinsic curvature of curves in two and three-space

was the first type of curvature to be studied historically, culminating in the

Frenet formulas, which describe a space curve entirely in terms of its curvature,

torsion, and the initial starting point and direction.

After the curvature of two and three-dimensional curves was studied, at-

tention turned to the curvature of surfaces in R3. The main objects to study

are mean curvature and Gaussian curvature. Mean curvature was the most

important for applications at the time and was the most studied, but Gauss

was the first to recognize the importance of the Gaussian curvature.

A flat plane can be wrapped around a cone or cylinder without stretching

or tearing; we say that the plane can be developed on the cone or cylinder.

In fact, any one of these three surfaces can be developed on any one of others.

More generally, we say that a surface S1 can be developed on another surface S2

if there is a map f : S1 → S2 that preserves distances. A distance-preserving
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map is called an isometry.

Under what considerations can one surface be developed on another? Gauss

took up this question in his long paper General Investigations of curved

surfaces(1827) and determined that the surfaces must have the same Gaussian

curvature at corresponding points. The crucial step in Gauss proof is a formula

that expresses the curvature function of a surface entirely in terms of the

metric tensor and its derivatives. Because Gaussian curvature is intrinsic,

it is detectable to two-dimensional inhabitants of the surface, whereas mean

curvature is not detectable to someone who can’t study the three-dimensional

space surrounding the surface on which he resides.

Riemann and many others generalized the concept of curvature to higher

dimensional underlying space such as sectional curvature, scalar curvature, the

Riemann tensor, Ricci curvature.

Gaussian curvature is an intrinsic property of a space independent of the

coordinate system (see [7]). Let x : U → S be a coordinate chart. The

Gaussian curvature can be given entirely in terms of the first fundamental

form

(gij) =

E F

F G

 ,

and the metric discriminant

g ≡ EG− F 2.

In terms of tthe first fundamental form, Gaussian curvature can be com-



18

puted as

K =
1

2g

[
2

∂2F

∂x∂y
− ∂2E

∂y2
− ∂2G

∂x2

]
− G

4g2

[
∂E

∂x

(
2
∂F

∂y
− ∂G

∂x

)
−
(

∂E

∂y

)2
]

+
F

4g2

[
∂E

∂x

∂G

∂y
− 2

∂E

∂y

∂G

∂x
+

(
2
∂F

∂x
− ∂E

∂y

)(
2
∂F

∂y
− ∂G

∂x

)]
− E

4g2

[
∂G

∂y

(
2
∂F

∂x
− ∂E

∂y

)
−
(

∂G

∂x

)2
]

.

In particular, if F = 0 (see [8]) the Gaussian curvature takes the form

K = − 1

2
√

EG

(
∂

∂y

(
Ey√
EG

)
+

∂

∂x

(
Ex√
EG

))
.

2.3 The Poincare Disc

One of the most familiar examples of a surface whose geometry is usually

defined intrinsically by a metric rather than by an embedding in space is the

Poincare disc D. It arises in the study of classical non-Euclidean geometry,

which follows all the axioms of Euclid except for the famous parallel postulate:

given a line and a point not on that line, there exists precisely one line through

the point that is parallel to the line. In non-Euclidean geometry this postulate

is modified in two different ways, leading to two different geometries: Either

assume that there is no parallel (Elliptic geometry) or assume that there are

many parallels (Hyperbolic geometry).

Poincare(1854 - 1912) devised a model of hyperbolic 2-dimensional space,

a conformal image of the hyperbolic plane with distance invariant under inver-

sion. In one of his popular and philosophical writings, Science and Hypothesis

1901, he wrote of his model as an imaginary universe occupying the interior
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In some situation, it is easier to deal with the geodesic polar coordinates around

an arbitrary (but fixed) point (see [9]), the metric of the Poincare metric has

the following form:

(gij(r, θ)) =

1 0

0 sinh2 r

 .

Here r denotes the geodesic distance from a fixed point.

Now we can compute the Gaussian curvature of the Poincare disc.

Since

(gij(x, y)) =

E F

F G

 =


4

(1− (x2 + y2))2
0

0
4

(1− (x2 + y2))2


and F = 0, we get

K = − 1

2
√

EG

(
∂

∂y

(
Ey√
EG

)
+

∂

∂x

(
Gx√
EG

))
= −(1− x2 − y2)2

(
8y2

(1− x2 − y2)2
+

8

1− x2 − y2
+

8x2

(1− x2 − y2)2

)/
8

= −1.

Therefore, Poincare disc is a space of constant negative curvature.

2.4 The Bochner formula

On a Riemannian manifold M equipped with metric (gij), a very useful Bochner

formula (see [10]) asserts that for any function f on M

1

2
∆g ‖∇gf‖2 = ‖Hessf‖2 + 〈∆g∇gf,∇gf〉+ RicM 〈∇f,∇f〉 .

For the 2-dimensional case

RicM is just the Gaussian curvature K.
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Two special cases of this formula are particularly useful. When u is a

distance function, that is, when ‖∇gu‖ = 1, then the above formula reduces

to

0 = ‖Hessu‖2 + 〈∆g∇gu,∇gu〉+ RicM .

This is the so-called Ricatti equation. The other useful special case of the

Bochner formula is when u is a harmonic function. In this case, the Bochner

formula reduces to

1

2
∆g ‖∇gu‖2 = ‖Hessu‖2 + RicM 〈∇u,∇u〉 .

2.5 The Maximum Principle

Let Ω be, as usual, an open subset of R2. In this paragraph, we consider linear

elliptic differential operators (see [11]) of the form

Lf(x) =
2∑

i,j=1

aij(x)
∂2f

∂xi∂xj
+

2∑
i=1

bi(x)
∂f

∂xi

which fulfill the following conditions:

(i) aij(x) = aji(x) for all i, j, x,

(ii) uniform ellipticity: there are constants 0 < λ ≤ µ < ∞ with

λ|ξ|2 ≤
2∑

i,j=1

aij(x)ξiξj ≤ µ|ξ|2

for all x ∈ Ω, ξ ∈ R2,

(iii) there is a constant K such that |bi(x)| ≤ K for all x ∈ Ω, i ∈ 1, 2.
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Theorem 2.15. Let Ω be bounded and let f ∈ C2(Ω)
⋂

C0(Ω) satisfy Lf ≥ 0

in Ω. Then f assumes its maximum on ∂Ω, i.e.

sup
x∈Ω

f(x) = max
x∈∂Ω

f(x). (1)

If Lf ≤ 0, then the corresponding statement holds for the minimum.

Proof. We first consider the case that Lf > 0 in Ω. We claim that in this

case, f cannot have a maximum in the interior of Ω. Namely, at an interior

maximum x0,

Df(x0) = 0,

and

D2f(x0) =

(
(

∂2f

∂xi∂xj
(x0)

)
i,j=1,2

is negative semi-definite. As the matrix A = (aij(x0)) is, by assumption,

positive definite,

Lf(x) =
2∑

i,j=1

aij(x)
∂2f

∂xi∂xj
(x0) = tr(A ·D2f(x0)) ≤ 0

(tr denotes the trace of a matrix), contradicting the assumption Lf(x0) > 0.

Thus, in this case f cannot have maximum in the interior of Ω. We now

consider for α = constant.

Leαx1

= (α2a11(x) + αb1(x))eαx1 ≤ (λα2 −Kα)eαx1

,

by (ii) and (iii). So, for sufficiently large α

Leαx1

> 0. (2)
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We now fix an α which satisfies (2). Then, for every ε > 0

L(f(x) + εeαx1

) > 0.

Therefore by what has already been shown

sup
x∈Ω

(f(x) + εeαx1

) = sup
x∈Ω

(f(x) + εeαx1

).

Now (1) follows by letting ε → 0.

Definition 2.16. f ∈ C2(Ω) is called a subsolution of Lf = 0 if Lf ≤ 0,

and a supersolution of Lf = 0, if Lf ≥ 0 in Ω. A subsolution, respectively

supersolution, of 4f = 0 in Ω is called subhamonic and superharmonic,

respectively.



CHAPTER III

GRADIENT ESTIMATE

A further application of the maximum principle is a gradient estimate for

solutions of the Laplace’s equation in the Euclidean space. Gradient estimates

have played a key role in both geometry and PDE. These are probably the most

fundamental apriori estimates for elliptic and parabolic equations, leading to

various results such as Liouville theorem.

A typical example for linear equations is the well-known gradient estimate

of S.T. Yau for harmonic functions:

Theorem 3.1. (S.T.Yau) Let M be a smooth Riemannian manifold equipped

with metric (gij) such that RicM ≥ −A, where A ≥ 0 is a non-negative constant

and x a fixed point in M . If ∆gu = 0 on Br(x), then

‖∇gu‖
u

≤ C

(
1 + r

√
A

r

)
,

on B r
2
(x) where C depends only on the dimension of M.

To give something of the flavor, we will use the maximum principle to prove

the previous theorem on the Euclidean unit ball B1(0) ⊂ R2. For more details,

see [10].

Proof. (for B1(0) ⊂ Rn.) For convenient we let u1 = ∂
∂x

and u2 = ∂
∂y

.

Define the cutoff function η(x, y) = 1 − (x2 + y2), so that ∇η = (−2x,−2y)
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and ∆η = −4.

Thus, |∇η| =
√

4(x2 + y2) ≤ 2.

Note that

∆ |∇u|2 = ∆
[
(u1)

2 + (u2)
2
]

= ∆(u1)
2 + ∆(u2)

2

= 2[(u11)
2 + u1u111 + (u12)

2 + u1u122

+ (u21)
2 + u2u221 + (u22)

2 + u2u222]

= 2[(u11)
2 + 2(u12)

2 + (u22)
2

+ u1(u11 + u22)1 + u2(u11 + u22)2]

= 2[(u11)
2 + 2(u12)

2 + (u22)
2 + 0 + 0]

= 2 |Hessu|2 .

Since ∆fg = f∆g + g∆f +∇f · ∇g, we have

∆
(
η2 |∇u|2

)
= η2∆ |∇u|2 + |∇u|2 ∆η2 + 2∇η2 · |∇u|2

= η2
(
2 |Hessu|2

)
+ |∇u|2 (2η∆η + 2∇η · ∇η) + 4η∇η · ∇ |∇u|2

≥ 2η2 |Hessu|2 − 8 |∇u|2 − 8η
∣∣∇ |∇u|2

∣∣ (1)

(
2η∆η + 2 |∇η|2 ≥ 2η∆η ≥ −8, |∇η| ≤ 2

)
.
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Next, we consider
∣∣∇ |∇u|2

∣∣2 ,

∣∣∇ |∇u|2
∣∣ = (2u2u21 + 2u1u11)

2 + (2u2u22 + 2u1u12)
2

= 4[u2
2u21 + 2u2u1u21u11 + u2

1u
2
11 + u2

2u
2
22 + 2u2u22u1u12 + u2

1u
2
12]

= 4[u2
2(u

2
21u

2
22) + u2

1(u
2
12 + u2

11) + 2u2u1u21(u11 + u22)]

= 4[u2
2(u

2
21 + u2

22) + u2
1(u

2
12 + u2

11) + 0]

≤ 4(u2
1 + u2

2)(u
2
11 + 2u2

12 + u2
22).

Thus, ∣∣∇ |∇u|2
∣∣ ≤ 2 |∇u| |Hessu| . (2)

Substitute (2) in (1), we obtain that

∆
(
η2 |∇u|2

)
≥ 2η2 |Hessu|2 − 8 |∇u|2 − 16η |∇u| |Hessu|

= −8 |∇u|2 +
(
2η2 |Hessu|2 − 16η |∇u| |Hessu|

)
≥ −8 |∇u|2 +

(
2η2 |Hessu|2 −

(
2η2 |Hessu|2 + 32 |∇u|2

))
(By A.M.−G.M. inequality, 16ab ≤ 2a2 + 32b2)

≥ 40 |∇u|2 .

Let w = 20u2 + η2 |∇u|2 , we get

∆w = 20(2u∆u + 2 |∇u|2) + ∆(η2 |∇u|2) ≥ 40 |∇u|2 − 40 |∇u|2 = 0.

Hence, w is superharmonic. By the maximum principle, the maximum of w

occurs on the boundary so that

|∇u|2 ≤ w(0) ≤ 20 max
∂B1(0)

u2.
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Therefore, |∇u| ≤
√

20 ‖u‖∞ on B1(0).

Next we rescale u on Br(0).

Define ũ : B1(0) → R by

ũ(x, y) = u(rx, ry), for (x, y) ∈ B1(0).

Then we get

∇ũ(x, y) = ∇ (u(rx, ry))

= r∇u(rx, ry).

Thus,

|r∇u(0)| = |∇ũ(0)| ≤ max
∂B1(0)

|ũ| ≤ max
∂Br(0)

|u| .

Hence we obtain the desired gradient estimate.

In general, the difficulties arise from the fact that we cannot find the cut off

function η in the Poincare disc as above. Since we only work on the Poincare

disc which is a 2-dimensional Riemannian manifold, we are enable to give

a simpler proof of Theorem 3.1. The proof of the gradient estimate in the

Poincare disc can be briefly explained as the followings:

Step 1. Use normal coordinate and Bochner formula to compute that

for every point p ∈ DP

‖∇gu(p)‖∆g(‖∇gu(p)‖) + ‖∇gu(p)‖2 = ‖∇g(‖∇gu(p)‖)‖2 .

Step 2. Define φ =
|∇gu|

u
6= 0.

use the formula in step 2 show that ∆gφ ≥ −φ + φ3.
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Step 3. Use geodesic polar coordinate to verify

∆gd(x) = coth(d(x)).

Step 4.

∆gd
2(x) ≤ C(1 + d(x)),

where C is independent of x0 and x

Step 5. Define cutoff function on a geodesic ball Br(x)

by η(y) = (r2 − d(y)2),

where d(y) is a distant function from a point x.

Step 6. Define

F (y) = (r2 − d(y)2)φ(y) = (r2 − d(y)2)
‖∇gu(y)‖

u(y)
,

and use maximum principle to get the gradient estimate.

Now we are give the details of those steps in the sequence of lemmas.

Lemma 3.2. Let u be a harmonic function on the Poincare disc equipped with

metric (gij). Then for every point p ∈ DP

‖∇gu(p)‖∆g(‖∇gu(p)‖) + ‖∇gu(p)‖2 = ‖∇g(‖∇gu(p)‖)‖2 .

Proof. Let { ∂
∂x1 ,

∂
∂x2}|p be an orthonormal basis in a normal coordinate of TpM,

ui and uij denote ∂u
∂xi and ∂2u

∂xi∂xj , respectively, for 1 ≤ i, j ≤ 2.

Using the Bochner formula we have at a point p

∆g(‖∇gu‖2)

2
= ‖Hessu‖2 + 〈∇g(∆gu),∇gu〉 − 〈∇gu,∇gu〉

=
2∑

i,j=1

u2
ij + 0− ‖∇gu‖2 .
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Thus,
2∑

i,j=1

u2
ij − ‖∇gu‖2 . (1)

We can choose the normal coordinates at p so that

u1(p) = ‖∇gu(p)‖ , u2(p) = 0.

Then

∂

∂xj
‖∇gu‖ =

∂

∂xj
(
√

u2
1 + u2

2)

=
u1u1j + u1u2j√

u2
1 + u2

2

=
u1u1j + u2u2j

u1

= u1j, for j = 1, 2.

Thus,

‖∇g(‖∇gu‖)‖2 =

∥∥∥∥u11
∂

∂x1
+ u12

∂

∂u2

∥∥∥∥2

= u2
11 + u2

12. (2)

We have

∆g(‖∇gu‖2) = 2 ‖∇gu‖∆g(‖∇gu‖) + 2 ‖∇g(‖∇gu‖)‖2 . (3)

Substitute (2) and (3), we have

2∑
i,j=1

u2
ij − ‖∇gu‖2 = ‖∇gu‖∆g(‖∇gu‖) + u2

11 + u2
12.
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Therefore

‖∇gu‖∆g ‖∇gu‖+ ‖∇gu‖2 =
2∑

i,j=1

u2
ij − u2

11 − u2
12

= u2
11 + u2

12 + u2
21 + u2

22 − u2
11 − u2

12

= u2
21 + u2

22.

Since ∆gu = u11 + u22 = 0, u2
11 = u2

22.

Using this and (2), we get from the above equality that

‖∇gu‖∆g(‖∇gu‖) + ‖∇gu‖2 = ‖∇g(‖∇gu‖)‖2 .

Lemma 3.3. Let u be a positive harmonic function on the Poincare disc and

φ =
|∇gu|

u
6= 0. Then ∆gφ ≥ −φ + φ3.

Proof. Note that

∇gφ =
∇g ‖∇u‖

u
− ‖∇u‖∇gu

u2
. (1)

Since ‖∇gu‖ = φu, at any point where ∇gu 6= 0 we have by Lemma 3.2

∆g(‖∇gu‖) = ∆g(φu)

= u∆gφ + φ∆gu + 2 〈∇gφ,∇gu〉

= u∆gφ + 2 〈∇gφ,∇gu〉

∆gφ =
∆g(‖∇gu‖)

u
− 2 〈∇gφ,∇gu〉

u

=
‖∇gu‖∆g(‖∇gu‖)

‖∇gu‖u
− 2 〈∇gφ,∇gu〉

u

≥ (‖∇g(‖∇u‖)‖2 − ‖∇gu‖2)

‖∇gu‖u
− 2 〈∇gφ,∇gu〉

u

=
‖∇g(‖∇gu‖)‖2

‖∇gu‖u
− φ− 2 〈∇gφ,∇gu〉

u
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If follows from (1) that

2 〈∇gφ,∇gu〉
u

=

2

〈
∇g ‖∇gu‖

u
− ‖∇gu‖∇gu

u2
,∇gu

〉
u

=
2 〈∇g(‖∇gu‖),∇gu〉

u2
− 2 ‖∇gu‖3

u3

≤ 2 ‖∇g(‖∇gu‖)‖ ‖∇gu‖
u2

− 2φ3. (2)

Condsider

2 ‖∇g(‖∇gu‖)‖ ‖∇gu‖
u2

=
2 ‖∇g(‖∇gu‖)‖

(‖∇gu‖u)
1
2

‖∇gu‖
3
2

u
3
2

= 2

(
‖∇g(‖∇gu‖)‖2

‖∇gu‖u

) 1
2
(
‖∇gu‖3

u3

) 1
2

≤ ‖∇g(‖∇gu‖)‖2

‖∇gu‖u
+
‖∇gu‖3

u3
(by A.M −GM inequality)

=
‖∇g(‖∇gu‖)‖2

‖∇gu‖u
+ φ3. (3)

Using (2) and (3) we get that ∆gφ ≥ −φ + φ3.

Lemma 3.4. Let x0 be a fix point on the 2-dimensional Poincare disc and

d(x) a geodesic distance function from x0 to x.

Then

∆g (d(x)) = coth(d(x))

Proof. On the 2-dimensional Poincare disc, the metric in the geodesic polar

coordinate (r, θ) is in the from

(gij) =

1 0

0 sinh2 r

 .
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Note that r(x) = d(x).

Since

∆gf =
1
√

g

2∑
j=1

∂

∂xj

(
(
√

g

2∑
j=1

gjk ∂f

∂xk
)

)
,

∆gd(x) =
1

sinh r

[
∂

∂r

(
sinh r

∂d

∂r

)
+

∂

∂θ

(
sinh r · sinh−2 r

∂d

∂θ

)]
=

1

sinh r
· cosh d + 0

= coth d(x).

Lemma 3.5. Let x0 be a point in the Poincare disc and d(x) a geodesic dis-

tance function from x0 to x.

Then

∆gd
2(x) ≤ C(1 + d(x)),

where C is independent of x0 and x.

Proof. From the Lemma 3.4, on the Poincare disc we have

∆gd(x) = coth(d(x)).

It follows that

∆gd
2 = 2d∆gd + 2 〈∇gd,∇gd〉

= 2d∆gd + 2 ‖∇gd‖2

= 2d∆gd + 2 (‖∇gd‖ = 1)

= 2d coth(d) + 2.
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Note that lim
d→0

d coth(d) = 1 and lim
d→∞

coth(d) = 1.

Let m = max
0≤d≤1

d coth(d) and M = max
1≤d<∞

coth(d).

Then for 0 ≤ d ≤ 1,

∆gd
2 = 2d coth(d) + 2

≤ 2m + 2

≤ (2m + 2)(1 + d),

and for 0 ≤ d ≤ ∞,

∆gd
2 = 2d coth(d) + 2

≤ 2dM + 2

≤ (2M + 2)(1 + d),

Let C = max{2m + 2, 2M + 2}. Then

∆gd
2(x) ≤ C(1 + d(x)),

where C is independent from x0 and x.

Lemma 3.6. Let F be the function on geodesic ball Br(x) defined by

F (y) = (r2 − d(y)2)φ(y) = (r2 − d(y)2)
‖∇gu(y)‖

u(y)
,

where u is a positive harmonic function and d(y) the distance function from x

on the Poincare disc.

Then

F (y)2 − C1(1 + r)2r2 ≤ 0,
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where C1 is independent of x and y.

Proof. Since F |∂Br(x) = 0, if ∇gu 6≡ 0 then F must achieve its maximum at

some interior point x0 ∈ Br(x).

Note that the Laplace-Beltrami operator and the gradient of F are

∆gF =
(1− (x2 + y2))2

4

(
∂2F

∂x2
+

∂2F

∂y2

)

and

∇gF =
(1− (x2 + y2))2

4

(
∂F

∂x
,
∂F

∂y

)
, respectively .

Thus,

∇gF (x0) = 0. (1)

By the Maximum principle, we get

∆gF (x0) ≤ 0. (2)

By (1) and (2) we have at x0

∇gd
2

r2 − d2
=
∇gφ

φ
, (3)

−∆gd
2

r2 − d2
+

∆gφ

φ
− 2 〈∇gd

2,∇gφ〉
(r2 − d2)φ

≤ 0. (4)

It follows that

∆gφ

φ
− ∆gd

2

r2 − d2
− 2|∇gd

2|2

(r2 − d2)2
≤ 0. (5)

Notice that |∇gd
2| = 2d|∇gd| = 2d and by Lemma 3.5 we get

∆gd
2 ≤ C0(1 + d),
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where C0 is a constant. Using these and Lemma 3.3 in (5) we obtain

0 ≥ ∆gφ

φ
− C0(1 + d)

r2 − d2
− 8d2

(r2 − d2)2

≥ −1 + φ2 − C0(1 + d)

r2 − d2
− 8d2

(r2 − d2)2
.

Note that by (3) we have

〈∇gφ,∇gu〉
φu

=
2d 〈∇gd,∇gu〉

(r2 − d2)u
≤ 2dφ

(r2 − d2)
.

Substituting this into the previous inequality it and use the fact that F =

(r2 − d2)φ we get

0 ≥ F 2 − C0(1 + d)(r2 − d2)− 8d2 − (r2 − d2)2

≥ F 2 − C0(1 + r)r2 − 8r2 − r4

≥ F 2 − C1(1 + r)2r2,

where C1 are constant independent from x and y.

Finally, we can prove our main result which is the gradient estimate on the

Poincare disc as followings:

Theorem 3.7. Let u be a positive harmonic function on the Poincare disc

and Br(x) is a geodesic ball . Then

‖∇gu‖
u

≤ C ′
(

1 + r

r

)
on B r

2
(x)

where C ′ is a constant independent of x and r.

Proof. From Lemma 3.6, we have at x0,

0 ≥ F 2 − C1(1 + r)2r2

= F 2 + BF + C
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where B = 0, C = −C1(1 + r)2r2.

Consider the solutions of the equation

X2 + BX + C = 0,

we get X =
−B +

√
B2 − 4C

2
.

Since 0 ≥ F 2 + BF + C, we have F ≤ −B +
√

B2 − 4C

2
.

Thus,

F (x0) ≤
−B +

√
B2 − 4C

2

= 0 +
√

0 + 4C1(1 + r)2r2

≤ C2r(1 + r), where C2 = 2
√

C1.

Therefore,

sup
Br(x)

F = F (x0)

≤ C2r(1 + r).

Since in B r
2
(x)

F (y) = (r2 − d2)φ(y)

= (r2 − d2)
‖∇gu‖

u

≥
(
r2 − (

r

2
)2
) ‖∇gu‖

u

=
3r2

4

‖∇gu‖
u

,



37

we have that

3r2

4
sup

B r
2
(x)

‖∇gu‖
u

= sup
B r

2
(x)

3r2

4

‖∇gu‖
u

≤ sup
B r

2
(x)

F

≤ F (x0)

≤ C ′r(1 + r), where C ′ =
4

3r2
C2.

Thus sup
B r

2
(x)

‖∇gu‖
u

≤ C ′
(

1 + r

r

)
.
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