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We are studying the theory of the charge transfer of atomic oxygen with a hydrogen
ion in the velocity range of 400-800 km/s (0.18-0.36 a.u.). There are no previous
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range. The quantum close-coupling and semi-classical methods were used in these
calculations. Using previously published adiabatic potentials and nonadiabatic couplings,
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previous calculations and experimental data. The differential cross sections from our
quantal calculations have a peak value that increases with energy and an angular width that

decreases with energy, as in previous experimental results.
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Chapter 1

Introduction

The charge exchange reaction from the coilision of a proton and atomic oxygen
is an important process for a wide range of physical situations.

In the Earth’s atmosphere, about one hundred kilometers above the sur-
face, atomic oxygen has a higler density than other species, such as Ny and O,.
Atomic oxygen is produced by the dissociation of O, by UV radiation. Then
charge exchange between H' and atomic O is an important process in studying
the Earth’s atmosphere [Stebbing, 1964; Spjeldvik and Fritz, 1978; Spjeldvik,
1979; Schunk and Nagy, 1980; Picone et al., 1997; Michelis and Orsini, 1997].

Thermonuclear fusion involves a hot plasma. There are interactions be-
tween the hot plasma and the container wall, which may contain impurity ions,
such as C, O and Fe. Although there is a small fraction of such ions the process
of charge exchange is rapid and therefore important [Bransden, 1992; Janev et

al., 1995].



In the astrophysics of determining the physical state of planetary nebulae,
these objects have a low density hydrogen cloud around the central star. Atomic
H ionized under the stellar radiation forms a plasma, and there are small amounts
of neutral H and ions of other elements, such as C, N, O and Ne in various states
of ionization. The charge exchange process is one process related to the study of
nebulae [Pégiugnot, 1990].

In the solar system there is a type of cosmic rays, i.e., energetic particles,
called anomalous cosmic rays. The charge exchange process helps determine the
ionization of neutral atoms from the interstellar medium in the solar system, and
such so-called pick-up ions can be accelerated at the solar wind termination shock
at the edge of solar system to become anomalous cosmic rays [Stone et al., 1996;
Lee, 1996].

The theoretical cross section of charge exchange of H™ with O at 1000 K
has been calculated by Field and Steigman [1971], using the orbiting approxima-
tion. A more rigorous calculation method was used for an energy corresponding
to the same temperature by Chambaud et al. [1980], using molecular modeling
with the spin orbit coupling interaction. Kimura et al. [1997] recently calculated
the cross section in the energy range of 0.01 to 1.0 keV, using the “close coupling”
method. The differential cross section and cross section at the overlapping energy
range of 0.5, 1.0 and 5.0 keV was calculated by Hedstrém et al. [1998], using the
electron nuclear dynamics method. The cross section in the energy range 0.1-100

keV was calculated by Hamre et al. [1999], using the simple model of the close



coupling method. Several of these works calculated the cross secvion, but there
have been few studies of the differential cross section.

We want to calculate the cross section and differential cross section in
the relative velocity range of solar wind speeds, 400-800 km/s (~0.18-0.36 a.u.).

This range of speeds corresponds to the energy range of 0.8-3.4 keV or, using

7 = K (1.1)

to the temperature range of 0.9 x 10" —3.6 x 10" K, i.e., high temperatures. Only
one previous study [Hedstrom et al. 1998] has examined the differential cross
section in this velocity range, and that study only provided one point in this
range (0.5 keV). Our results may be useful for studying anomalous cosmic rays
and energetic neutral atoms in the heliosphere.

In this thesis, the theory of the close coupling and semi-classical methods
for scattering is discussed in Chapter 2 and the numerical method is discussed in

Chapter 3. Chapters 4 and 5 present the results and conclusions, respectively.



Chapter 2

Theoretical Background

For convenience we first consider the simplest charge transfer reaction: a system
of one electron and two nuclei, i.e., the collision between H and H*. In this thesis,
the system which is considered has a relative velocity that is slow compared with
the electron velocity. The relative velocity of the system is equal to the solar
wind speed, 400-800 km/s (0.18-0.36 in atomic units, a.u.). For atomic collisions
with a relative velocity that is slow compared with the electron velocity, there are
two types of methods that are commonly used: quantum mechanical and semi-
classical (sometimes called “classical trajectory”). The former is expected to be
much more accurate, given the theoretical approximations employed in the semi-
classical formulation. In a quantum-mechanical scattering problem, the system is
considered to be stationary in time, so we use the time-independent Schrodinger

equation [Delos, 1981; Kimura and Lane, 1989; Brandsden and McDowell, 1992],

H(R, 7V (R,7) = BV(R, 7). (2.1)

4



The Hamiltonian 1s

H(R,7) = Ty + h(R,7), (2.2)

where Ty is the kinetic term of the nuclei in the center of mass frame,
Tn = —(2u)"'V%, (2.3)
i is the reduced mass of the nuclei, and h(fi, 7) is the electronic Hamiltonian,
h(F,7) = 5 V2 + V(R ), (2.4)

with V(]:’,, 7) as the total potential energy of the interaction between the electrons
and nuclei. Here R represents the internuclear vector and 7 is the coordinate of
the electron relative to the center of mass. Another way to solve the problem
is semi-classical. In this viewpoint, the nuclei move classically along a fixed
trajectory and the electron motion is quantum mechanical. The electronic wave
function, ¥(7,t), depends on time, so the time-dependent Schrédinger equation
is used:

h(R(t), ) U(F, 1) = ﬁxp(f, t). (2.5)

ot

2.1 Quantum Mechanical Approach

Consider the system of one electron and two nuclei with masses M4 and Mg,
which have coordinates ﬁ% and R%, respectively, relative to a fixed laboratory
origin, given by 7°. The case of many electrons will be considered at the end
of this section. This is a three-body system, so the standard Jacobi coordinate

5



A= (A/[A —MB)/(MA"f‘I\{B)

%(1 +/\) = MA/(AfA -f—MB),%(l - )\) = MB/(MA +MB)

o MA+T§‘mO mg —

Ry = Ma+mo R Mag+mg' 9
B.— Ma+3(14N)m0 3 mg =
AT Ma+mo Ma+mo

= Mp+imo 3 <
RB = % " o
Mp+mo Mg+mo' 9
]—%' . MB—{-—;—(I—)\)TI‘LO 5 mg
B = Mp+mg Mgp+mg

Table 2.1: Relations of Jacobi coordinates [Delos, 1981]

system will be used [Messiah, 1970]. These relations are shown in Table 2.1. The

Schrodinger equation of the system is

HY = (T +V)¥ = EV, (2.6)

where V¥ is the wave function of the system. In Jacobi coordinates, T can be

written as [Bransden, 1992]

T = —(2ua)"'Vi, — (2ma)~'VZ, 2.7)
- (2up) VR, — (2mn) Y, 23)
= —(2u)7'V% - (2m)"IV?, (2.9)

where the masses m and p are defined in Table 2.2.



Figure 2.1: Jacobi coordinates of the system [Delos, 1981]



Coordinate Reduced mass

7—'0 my
30
RA MA
50

R%M Mp = M4+ Mg + myg

Ta ma = meMa/(mo + Ma)
Ra pa = (mo+ Mg)Mp/Mrp
7B mp = m,Mp/[(my + Mp)
Ep pp = (mo + Mp)Ma/Mr
7 m = mo(Mu + Mg)/Mr
R p=MsMp/(Ms+ Mp)

Rest mass of electron (1 in atomic units)
Rest mass of nucleus A

Rest mass of nucleus B

Total mass of system

Electron reduced mass, channel A
Nuclear reduced mass, channel A
Electron reduced mass, channel B
Nuclear reduced mass, channel B
Molecular electron reduced mass

Molecular nuclear reduced mass

Table 2.2: Reduced masses corresponding to Jacobi coordinates [Delos, 1981]



2.1.1 Scattering Boundary Conditions

The electron can be in 2 channels. Let channel A be the state of the electron
which has an asymptotic probability density close to nucleus A when R4 goes to
infinity. In that limit, the operator V of equation (2.6) then becomes the atomic
potential of atom A, V — V(7). The electronic Hamiltonian will be in the

form
h = —(2ma) ' V2, + Vi (7a), (2.10)

and the electronic wave functions are

hgpi="ed @l (2.11)

nA n4ATYNA

The channel wave number, k, 4, is defined by
k. /(2ua)+ e, =F. (2.12)

Analogous quantities can be defined for channel B. Then the Hamiltonian can be

separated into terms which depend on R, or T A,
H — (2p4) 7'V, — 2ma)"'V2, + Vi (Fa).

The solution of the term which depends on I?KA corresponds to a free particle. Let
the incident wave in channel A and initial state ¢ , travel in direction Z4. The

asymptotic wave function for large R4 and finite 74 is [Delos, 1981]

U — ¢?77«A (FA) exp(z'lcmA ZA) + Z anA (FA)fTLAmA (@Aa (I)A) eXp(iknARA)/RAa
nA

(2.13)



while at large Rp and finite rp,

U — > 6y (78) frgms (OB, P5) exp(ikn, R)/Ra, (2.14)

np
where &4, ®p, ©4, and ©p are spherical coordinates, Z,4 is a Cartesian nuclear

coordinate, and we define

]%A — (XA7Y432A) or (RA)GA)QA)a
RJB —= (XB7YB»ZB) or (RB)@B)(pB))

R — (X,Y,Z) or (R,0,9).

2.1.2 Perturbed Stationary States (PSS) and Coupled Equa-
tions

In the Born-Oppenheimer approximation, when determining the electron dynam-
ics we can neglect the motion of the nuclei and take them to be fixed. Then the
electron dynamics is independent of the nuclear motion and the wave function
can be separated between electronic and nuclear wave functions. We can expand
the full wave function ¥ in terms of a linear combination of radial functions and

electronic wave functions [Delos, 1981; Kimura, 1989],

(R, 7) =Y xalB)$(7; R), (2.15)

where ¢, (7 R) is an eigenfunction of the electronic Hamiltonian for a given R.

Putting the wave function from equation (2.15) into equation (2.6), and taking

10



the inner product with ¢, (7; ﬁ), we obtain coupled equations for Xn(ﬁ):
{2u) M [(=6V)? + 2P - (=iV) + Blo] + b — E}xn(B) = 0. (2.16)
where

ﬁmn = <(/)m|_7'6|¢n>
Bfnn = <¢m|_v2|¢n>

Equation (2.16) can be written in another form by use of the assumption of a

complete set [Delos, 1981],
Bfrm — _iﬁR 7 ﬁmn + ﬁml | filna (217)
so equation (2.16) becomes

Lo i "
Z(—N + P’ +h—E| x(R) =0, (2.18)

where underlined symbols indicate matrices in terms of m and n (symbols with
both an arrow above and a line below are therefore third-ranked tensors).
Coupled equations of the form of equations (2.16) and (2.18) are used in
many calculations of slow atomic collisions, but there are errors in these coupled
equations. The most important problems are not satisfying boundary conditions
and Galilean invariance. From equation (2.14), the wave function of channel A

under asymptotic conditions should be

0

U — exp(ipavZa)¢l, (7)) = exp(iuvZ) exp[—im3 (1 — Nv2]¢% (7)), (2.19)

11



but the wave function in the asymptotic region which corresponds to equation
(2.15) is
T — exp(ipv 2) dn(7; B) = exp(ipvZ)dn, (7). (2.20)
In equations (2.19) and (2.20), ¢n, and ¢, , should be the same in the asymp-
totic region, but the wave functions in these equations are different. The second
exponential term in equation (2.19) is valid in equation (2.20).
The coupling matrix P may not vanish at infinite range. For example,

the radial component of the coupling matrix, E, is

Pn(R) = ~i(gml 3 ). (2.21)

This was first calculated for the Hj system in 1960 [Jepsen and Hirschfelder,

1960] by using the Hellman-Feynman theorem to change it into a simple form,

T . —Z<¢m|a_;lz|¢n>
Frn(B) = TR = en(R)]

(2.22)
The result is not zero at large distances but it is constant. It is not correct because
when the two atoms are far apart there is no charge exchange or other coupling.
The other problems about PPS are i) unrealistic coupling between atoms in a

symmetric molecule, and ii) it does not contain the momentum transfer factor.

This error is corrected by the so-called electron translation factor (ETF).

2.1.3 Improved Perturbed Stationary States

We discussed in the above about the defects of PSS. The first correction of the
defect was by using a plane wave translation factor [Bates and McCarroll, 1958;

12



cited by Delos, 1981], but at a low reaction velocity it is better to use a more com-
plicated translation factor. Delos [1981] modified the PSS by using the reaction

coordinate, £, with the wave function expressed in the form,

EDBUNLACENE (2:23)
J
where
§=FR- % (2.24)

(for a dimensionless p in atomic units) and

wj:

(7 B) +A) 7y + %(1 _ )R, (2.25)

Do | =

The function f;(7, R) is called the switching function. The value of the switching

function is between +1 and has these properties:

4

i as R — oo andfor 75 K74
Fi (7 é) =4 =1 as R — oo andfor 74 K73 (2.26)
| 0 as R —0.

The reason a switching function with these properties is introduced is so that
{j ~ R 4 when the electron is close to A, and E; s RB when the electron is close
to B. Various forms of this switching function will be shown in Appendix A. The
form of the coupled equation for x; (f-;) can be found by substituting the wave
function of equation (2.23) into the Schrodinger equation and taking the inner

product with ¢;(7, &):

S {$i(7 E)H ~ Eloi(7,€))x (&) = 0. (2.27)

J

13



We can evaluate the coupled equation by changing the variables H, 7 and ﬁ, to
the reaction coordinates. Let a component of vector & be denoted by a®, where
a = z,y,z or X,Y,Z. Then we can transform the Hamiltonian by using the

relation,

(3163“>,~ = (gébal(a%); (2.28)
(a?a)é . (ai)if (gi)é(%)ﬁ- (2.29)

Defining the new conjugate momenta of (7, f_),

p* = —i(a>

\or*

3
PrLs ok (%) K (2.30)

and

- ow?
Fab — 5= n
v = (G)
- ow?
ab/ = n
) = ( ) , (231)
87' B

the transformed Hamiltonian, H (7, R) — H(F,£), is

H(F k) = —5‘73 = @V%ﬁ V = H(F, &)
1 1 1
= Z{PGPG + 50 P+ PPyt + 5t (' P+ P)

Ll a a ac pe ¢, ac
o [FORP P P Poye)
1 1
+ 5(]_—‘;11be + PbFZb)Pa + 5Pa(F;szPb + PbPZb)]}
L ek V4O 1
TP VO] (2.32)

14



We have neglected terms depending on V f/u which would appear in nuclear

kinetic energy terms. Then the Hamiltonian can be simplified to become

1
H = P SO P+ PP

2=
BN | — A

+ Spt (Y2 PP + PPy

+ = (Ve + 260 L) PP

= | =

% §p"p"' + V(7 6). (2.33)

Thronson and Delos [1978] discussed how the terms of the coupled equation can

be reduced and given by

[(20) (=¥ + B + A)® + b ~ E]x(E) =0, (2.34)
where
Ag(6) = i {T2) - 9, + 597 )) 65). (2.35)
The form of equation (2.34) is same as that of equation (2.16). Matrix A is a
correction to matrix P.

In this thesis we will show the solution of a system which has only radial
parts of matrices P + A. Then in equation (2.34), the potential, coupling and
potential energy terms do not depend on the angle. By using spherical harmonics
in the expansion of the wave function, we can write

{i [-ii + (PR + A™)| + i+l +h—E} F(R) =0. (2.36)

The representation of the above is called an adiabatic representation. It is more
convenient to calculate this in the form of a diabatic representation. Diabatic

15



means that the radial coupling vanishes: P 4+ A% = 0 [Delos, 1981]. Then
we can transform to diabatic form by using a transformation matrix, C, which
satisfies [Smith, 1969]

P(R)C(R) + ib%g =0, (2.37)

where here we use P = P® + A®. Then the transformation matrix, C, is the
solution of the integral equation

C(R)=IL+i /R ~ P(R)C(R)dR, (2.38)

which can be solved by use of an iteration method:

C(R) = _I_+z'/:B(R’)dR’

o0

(1) /: P(R) [~ P(R')AR'AR + . (2.39)

!

Then the coupled equation (2.34) becomes

(—5‘% + z%m) FlR)=0; (2.40)

where V¢ is the diabatic potential,

V4(R) = CY(R)V**(R)C(R), (2.41)
where
V*(R) =1 |h—2uE + 1(%1) : (2.42)

In the adiabatic representation there are avoided crossings of potential curves,
but after transformation to the diabatic representation crossings can occur. The
numerical methods for solving the coupled equation will be shown in Chapter 3.

16



2.1.4 Many Electron Systems

The formulae above were based on a one electron system. However, there are
many systems that have many electrons, so the formulae have to be modified for
many electron systems. Whereas in the above section the wave function depended
on one electron coordinate and multiple nuclear coordinates, in the many electron
system the wave function must depend on all electron coordinates and nuclear
coordinates,

U (7, 7, 7s, . - ., R), (2.43)

where 7; is the coordinate of each electron.

In this case, the solution of the problem is qualitatively similar, but the
calculation of the coupling terms is more complicated and there are other minor
complications which we do not go into here. For details, the reader is referred to
Delos [1981] and Bransden and McDowell [1992].

The many electron wave function was used in calculating adiabatic po-
tentials, h;;, and non-adiabatic matrix elements, (f" + f-l')” In this work we do
not need to use the many electron wave function in calculations, because the

many electron wave function was taken into account in the adiabatic potentials

and non-adiabatic coupling matrix elements.

17



2.2 Semi-classical approach

Consider the system of one electron and two nuclei, A and B. In the semi-classical
approach, the nuclei are considered to move along a classical path due to the
nucleus-nucleus interaction (repulsion), and the electron dynamics use quantum
mechanics. The internuclear distance depends on time, R'(t), and the electronic

wave function satisfies the time-dependent Schrédinger equation,

iaq]é? D _ b7 (2.44)

where ¥ and h are the electronic wave function and electronic Hamiltonian, re-
spectively, and coordinates are defined as in Section 1. A further approximation,
the straight-line approximation [Delos, 1981; Kimura and Lane, 1989; Bransden
and McDowell, 1992|, takes the trajectory to be the straight line, R=10b+ ut,
where b 1 7. As in the quantum mechanical method, when using R and 7, there
are problems regarding Galilean invariance and satisfyiﬂg boundary conditions
[Delos, 1981; Kimura and Lane, 1989]. To solve these problems, the electron
transfer function (ETF) can also be included in this method.

We expand the wave function in the form [Kimura and Lane, 1989]
U(r8) = Y ailt)gs(R(0), 7) Fi(R(2), 7), (2.45)

where the term F; comes from the electron translation factor, and can be written

as
F; = exp[itf - w, (7, R)]. (2.46)

18



Inserting equation (2.45) into the time-dependent Schrodinger equation, and keep-
ing terms only to first order in ), then we get the coupled equation,

z% =[h+7 B+ A)a (2.47)

where matrices 13 and A are defined as in the previous section.
The total cross section can be calculated from the asymptotic transition
probability as a function of the impact parameter, P(b), where the transition

probability is the square of the amplitude at infinity, a;;:
P;;(b) = |ay;(b,t — o0)|?, (2.48)

and the subscripts ij refer to initial and final states, respectively. The total cross
section of scattering can be calculated from the integral of the impact parameter

times the transition probability over the impact parameter,
03 = 21 / bP;(b)db (2.49)
0

The differential cross section normally calculated from the deflection func-
tion O(b) and the corresponding differential cross section is [Bransden and Mec-

Dowell, 1992

dUij £ bdb
dQ  sin @d@P”(b)'

(2.50)

However, in the straight line approximation, we do not have the deflection func-
tion. Instead, the differential can be calculated from a formula found from the
eikonal approximation. The differential cross section from the eikonal approxi-
mation is obtained by starting with the standard scattering amplitude [Bransden
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and McDowell, 1992],
£5(0,8) = - /d3 /d3R<I> 7 R)V; (7, RyU,(7, R), (2.51)

where ¥, is a total wave function corresponding to the state in which the incident
wave is in channel 4, ®; is the unperturbed scattered wave which is asymptotically
in channel j, and V; is the perturbation. The unperturbed wave function, @,

satisfies the equation,
(h—V;)® = 0. (2.52)

For the electron transfer to be system A, (A+e™), V; is
Vj = Vge + Vas, (2.53)

where Vp, is the interaction potential between nucleus B and the electron, and
Vap is the interaction between A and B. The wave function U,(7, R) can be

expressed in the form [Bransden and McDowell, 1992,
(7, B) = Fi(R):(7,1). (2.54)
In the straight-line approximation we can approximate Fz(}_%') as a plane wave,
Fy(R) = exp(iK; - R), (2.55)

where ffi is along the incident direction and K; = pvo. The scattered wave @; is
also the product of a plane wave and the asymptotic wave function of equation
(2.44),

&, (7, ) = expliR; - By (7 ), (2.56)
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where I?j is along the scattering direction, (©,®), and ‘I?zl = ]XJI From the

trajectory R = ot + 5, and 170J_5) then
dR = vod®bdt. (2.57)
Using equations (2.51), (2.55), and (2.56), the scattering amplitude becomes
5i(©,8) = =52 [ s [ Poexpli(Rs - B)- RiwiIVI).  (258)
For small angle scattering we can approximate
(K;-K;) - R~K-b (2.59)
where the K has the magnitude,
= |K; — K| = 2uvgsin %. (2.60)

Using equation (2.58) and (2.59), then

£5(©,8) = =52 [t [ ek HwVis). (261

27r

This expression can be reduced by using the relation,
Viv; = h—i2 ), (2.62)
J¥7 at : J- : )

Integrating equation (2.61) by parts, and because h is Hermitian, equation (2.61)

becomes

£i(0,8) = ~E2 [ @oexp(R -5ty (7, 1) o7, ODIIFS
'l,,U,’UO R -
i [ dbexp(R -Bay(F,t = +o0) (2.63)
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In two dimensions the parameter b lies in a plane normal to the incident direc-
tion, and the direction in the plane can be defined by an azimuthal angle, ¢,.
The amplitude aij(ﬁ) of the reaction of scattering in which the initial state has

magnetic quantum number m; and the final state has magnetic quantum number

m; can be written as [Bransden and McDowell, 1992]
Qi (g) = Q4 (b) exp[i(mi = mj)qbb], (264)

where a;;(b) is independent of the azimuthal angle ¢. Let the direction of inci-
dence be along the z-axis and let the z-axis be along the scattering plane. For
small angle scattering, K lies in the zy plane in a direction specified by @, the
azimuthal angle, so this is also the angle of }?j. The angle between K and b is
(D — ¢), so that

K - b= kbcos(® — ¢y). (2.65)
From a property of Bessel functions,

1

o

27
/0 exp(—ingy -+ iz sin dy)dds = Jo(2). (2.66)
Using equations (2.64), (2.65), and (2.66), then equation (2.63) becomes

. : P o .
[ij(©, ®) = ipvg exp(—iAm®) (1) /0 bdbJ am (214v0b sin E)a(b, t = c0)
(2.67)

The differential cross section of scattering from the state ¢ to state j is the square

of the scattering amplitude, f;;(©, ®):

L= |£,;(0, ). (2.68)
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Chapter 3

Numerical Methods

There are various methods for solving the quantal coupled equations for scat-
tering. The most famous methods are Gordon’s method and the log derivative
method. Others are the finite element and equivalent integral equations methods.
In this thesis the log derivative method was used. We study only open channel
systems, where “open channel” means that the total energy is higher than the
potential; if the total energy is lower we call it a closed channel. The log deriva-
tive method is presented in Section 3.1 and the modified log derivative method

in Section 3.2.

3.1 Log Derivative Method

The log derivative method for solving the scattering close-coupling matrix equa-

tion was constructed by Johnson [1973]. The matrix coupling equation in the last
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chapter can be written in the form

(dd—;l - y) B(R) = 0. (3.1)

Here V is a symmetric potential matrix that includes the coupling matrix, po-
tential energy and angular momentum term, V. = (=E + (I + 1)/R*)I + V% In
index notation, V,,, represents the overlap between channel m and channel n.
The wave function @ is a square matrix, where each column represents a linearly
independent solution, or each element ®;; indicates the amplitude of the scattered

wave of state j, given an initial state ¢. The log derivative is defined by
Y(R) = ®'(R)2'(R). (3.2)

By differentiating equation (3.2) and eliminating the second derivative term in

equation (3.1), we obtain the matrix Ricatti equation,

Y'(R) = V(R) - Y2 (3.3)

Thus the second-order equation reduces to a first-order equation. In the scattering
problem we are interested in the value at large distances, so we want to know @ at
infinity. At the other boundary, R = 0, ¢(0) = 0, because of the infinite Coulomb
barrier there. The inverse of the wave function becomes infinite, ®*(0) = oo, so
the log derivative becomes infinite, Y(0) = oo, Then Y is taken to be a diagonal
matrix with large elements.

Johnson’s algorithm for numerically solving the equation is

Yo = L+ 7Y,) 7Y, + (h/3)wnly, (3.4)
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where R, = Ry + nh, Y(R,) is the exact value, Y, is the approximate value
computed by this method, Y, =~ Y(R,), h is the spacing between integration

points, and

V(R,), n=0,24,..N,
U, = (3.5)

L+ (h2/6)V(R,)] " V(R,), n=1,3,5,N—~1

The weights, w,, are the same as in the Simpson integration rule,

]') n:07N’
Wwn =4 4, n=135,.,N-1, (3.6)
2, n=24,6,.,N—2.

The first term of the right hand side of equation (3.4) comes from esti-
mating the term —Y? in equation (3.3) at the midpoint, n+ %, as approximately

-Y, . Y,.. If we consider the effect of this term alone, we then have

Xn+1 == Xn - th—i—an
Xn+1 = (-I-+ hy—n)—lln (37)
This explains the first term on the right hand side of equation (3.4), and the

second term comes from the modified Simpson’s rule [Secrest and Johnson, 1966].

The number of integration points must be odd, and the error of integration is
Y(R,) = Y, + Ch* + O(h%), (3.8)

where C is some unknown constant matrix, and O(h®) is a matrix of order hS. If
we consider of Ry to be a large distance of integration, then ®(Ry) is the final
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solution. For convenience we let Z = hY, so equation (3.4) becomes
Zyr = (L4 Zo) 72, + (B /3)wnl,.. (3.9)
The initial value at the classical turning point is
Y, = 10%[,
Zo = 10%°L

The wave function at asymptotic distances, R > Ry, can be written in terms of

a reaction matrix (K):

2(R) = J(R) + N(R)K (3.10)

where the matrices are diagonal, and matrix elements of the open channel are the

Ricatti-Bessel functions,
IRy = bik; "y (k;R), (3.11)
N(R)y; = &;jk; " *ny(kjR), (3.12)
and k; is the wave number channel. Differentiating ®(R) in equation (3.10) with

respect to R, and multiplying with its inverse, then the matrix K can be written

in the form

<
I

[I'(R) + N'(R)K][I(R) + N(R)K]™

=
Il

~[Y(R)N(R) - N'(R)] ™" x [Y(R)I(R) — J'(R)]. (3.13)
The S matrix can be calculated from K by the relation,

S = (I+:K)"'(1-K). (3.14)
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The total and differential cross sections can be calculated from the scattering

matrix S by using formulas given in Appendix B.

3.2 Improved Log Derivative Method

Manolopoulos [1986] further developed Johnson’s algorithm. The reference po-
tential was added to the original method, and it improved the convergence of this
method with respect to the number of grid points.

Starting as in Johnson’s method, the log derivative was defined as in equa-
tion (3.2). The log derivative matrix is undefined when the determinant vanishes,
and such a singularity prohibits the standard numerical solution of equation (3.1).
Manolopoulos introduced an imbedding-type propagator, ), which was defined

on an interval [Ry, R»] by

@I(Rl) Zl(RlaRZ) Xg(Rth) '—Q(Rl)
= : (3.15)

| Q(B) | | 2y(Bi,Be) Vu(BiRo) || (Ro)
The propagator matrix is obtained by solving the appropriate boundary value
problem on the interval [R;, R]. Multiplying the first equations of equation (3.15)

through by ®~'(R;) and the second by ®~!(R,) and eliminating ®(R,)®~*(Ry),

then the relation of the log derivative is

Y(Ry) = Y (R, Ra) — Y5(R1, Ry)

x [Y(R1) + Y, (Ri, Ra)] Yy(Ry, Ra). (3.16)
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Let the log derivative matrix propagate in the interval [a, b]. In the inter-

val [a, b] divided into two half-sections, define the midpoint point ¢ and half step

h by
a+b
G o= \
2
b—a
= 3 1
)} 5 (3.17)

The region [Ry, Rp] will denote both half-intervals. The homogeneous problem

can be constructed on the interval [a, b] in the form
U'(R) = Voer(R)¥(R), (3.18)

where ¥ is the homogeneous solution and the reference potential V,,((R) is con-
tinuous throughout the sector. In the Johnson method the reference potential is

zero, but in this method the reference potential is the piecewise constant matrix,
Viet{ R)i5 = 5ijp§, R € [a,b], (3.19)

where p; is constant in the interval. For this reference potential is not difficult
to solve the homogeneous solution analytically. The propagator matrix, y, which

corresponds to homogeneous solutions, is defined by

|p;| coth |p;lh, p} >0
Yi(Ry, Ra)ij = ya(Ra, Ra)ij = 6 (3.20)

Ipjl cot |p;lh, p5 <0
|pjleschlp;lh, p >0

ya(Ri1, Ra)ij = y3(R', R")ij = &y ! (3.21)
|pjl csc |p;lh,  pF < 0.
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These propagators are undefined when the argument |p;|h equals an integer mul-
tiple of 7. However, we use a small step size so this event will not occur.

We define the potential matrix to be

U(R) = V(R) — V,(R),

(3.22)

and use the same quadrature as in Johnson [1973]. Then we get the quadrature

contribution from the tree grid point interval [a, b] given by,

Q@) = 3U(a),
Qo) - 3|i-Fue| Fue
LIJA 52 % N 4
= H\:l“ EH(C)} _El
Q®) = ZUp) (3.23)

The quadrature contribution will be the same as quadrature in Johnson’s method
when the reference potential is zero. The effective halﬂinterval propagator of
the solution of equation (3.1) was defined by Y. It included the effect of the
reference potential and residual potential, so we can write the effective half-

interval propagator in the form,

Y, (Ri, Ry)

~

lz(er RQ)
23(R17 R?)

24(R1a RQ)

y1(R1, R2) + Q(Ry),
yQ(Rl) RQ);
y3(R17 R2))

ya(R1, Re) + Q(Ry). (3.24)
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The log derivative matrix is propagated across the interval from a to b by the

effective propagator. Thus the log derivative matrix can be derived as

Y(R,) = Y,(Ry, Ry) — V4(Ry, Ry)

% [L(R1) + I, (R1, R)] " Vo Ra, Ro). (3.25)
where
Y(a) = Y(a), (3.26)
and
Y(b) = Y(b) + O(h%). (3.27)

Manolopoulos [1986] used a constant in the reference potential equal to

diagonal elements of the potential matrix at the midpoint of the interval,
p; = V(c)s;. (3.28)

This choice can improve the convergence from Johnson’s method.
For the log derivative propagating in the interval [rmin, "max], the radial
wave function can be approximated to be zero, and the WKB method can be used

to initialize the log derivative matrix, so it can be written as a diagonal matrix,
_ 1/2 9
Y(Rmin)ij - 5ij\/(]%min)ij (3"9)

The log derivative matrix at 7 = 7, can be calculated for the K matrix

by the same method as in Section 3.1.
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3.3 Calculation Procedure

In this thesis the quantal calculations start with previously published adiabatic
potentials and non-adiabatic coupling matrix elements [Kimura et al. 1997], fol-
lowed by the transformation from adiabatic to diabatic potentials. The coupling
equation (3.1) was solved by the method of Manolopoulos [1986]. The log deriva-
tive matrix in the asymptotic limit was calculated, and the K, S, and T matrices
were calculated from equations (3.13), (3.14) and (B.7). The cross section and
differential cross section were calculated from the T matrix by using formulae in
Appendix B.

The semi-classical calculations start with equation (2.47), which is solved
by using 4‘h—order.R,unge-Kutta method. The amplitude, a;;(b,t = o0), was
calculated. The cross section can be calculated by integrating 2m|a;(b, ¢t = oo)|?
over the impact parameter, b.

The flow chart of both quantal and semi-classical calculations is shown
in Figure 3.1. The program quantxs from R. J. Allen, from
http://wservl.dl.ac..uk/CCP/CCP6/quantx/, was used for solving the coupled
equations and calculating differential and total cross sections. Figure 3.2 shows
the flow chart for a program written for this thesis, in order to transform po-
tentials from adiabatic to diabatic form, which is a necessary step before using
the quantxs program. The source code is presented in Appendix C. Semi-classical

calculations were performed according to the flow chart in Figure 3.3. The source
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code for this is presented in Appendix D.
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Figure 3.1: Flow chart of the calculation procedure.
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potential.
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Figure 3.3: Flow chart of the semi-classical calculation procedure.
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Chapter 4

The Cross Section and
Differential Cross Section of

Charge Transfer between O and

H+

The ground state of OHT is X*%~ [Kimura et al., 1997; Saxon and Liu, 1986;
Herzberg, 1950], where X3~ refers to the ground state of the molecular ion
(labeled by X), 3 is the spin multiplicity, £ means that the quantum number
m for the angular momentum component along the molecular axis equals zero,
and the minus sign implies odd parity along the molecular plane [Herzberg and
Spinks, 1950]. In general, the capital Greek letter indicates the value of m: &, I1,

A, etc. refer tom = 0,1,2,.... Asshown by Kimura et al. [1997], the OH™ states
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which have important couplings with others during a charge transfer collision are
1Y (X?27), 2827, 3387, 11, and 2'T1. These states have configurations and
dissociated states as [Saxon and Liu, 1986]

135~ 302172 O(P)+HT

2357,3387  3odolw? OT(1S) + H(2S),0T (D) + H(%9)

1M1 3clr®  O(*D)+H*

21 30?401l O*(®D) + H(2S).

The adiabatic potentials and the coupling matrix elements from Kimura
et al. [1997] are shown in Figs. 4.1 and 4.2, respectively. These state configu-
rations were identified by multi-configuration self-consistent field (MCSCF) cal-
culations using the COLUMBUS program [Lischka et al., 1997; Shepard et al.,
1988], because Kimura et al. [1997] did not specify the molecular states, or the
numerical methods used to find the adiabatic potentials and coupling matrix ele-
ments. Kimura et al. [1997] only showed the asymptotic .molecular states, which
are atomic states. We can identify the molecular state by comparing the results
of MCSCF with the results of Kimura et al. [1997]. Those results were only for
cross sections in the energy range 0.1-1 keV, but in this thesis we will calculate
the cross section and differential cross section in the energy range of 0.8-3.2 keV.

The radial coupling dominates in this process [Kimura et al. 1997], so
there are strong transitions only between states of the same angular symmetry.
Therefore, we consider three possible transitions: 132~ ¢ 235~ | 238~ « 338,
and 1'I « 2MI. The angular coupling can be neglected here [Kimura et al.
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Figure 4.1: Adiabatic potentials of OHT [Kimura et al., 1997]. Blue lines are for

3%~ states and red lines are for 1T states.
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1997], but if there were significant angular coupling, transitions between states
of different angular symmetry would occur. The spin-orbit coupling can also be
neglected for this energy range. As discussed by Chambaud [1981], the spin-
orbit coupling increases when the energy decreases to a few eV. If the spin-orbit
coupling is significant, there is coupling between states with different spin multi-
plicity, implying a possible change of spin multiplicity after collisions. However,
at the higher collision energies being considered here, this effect can be neglected.

Then there are also no changes of spin multiplicity in the collisions we consider.

4.1 Quantal Calculations

We use the coupling matrix elements and adiabatic potentials from Kimura et al.
[1997] to construct the diabatic potentials. In this thesis the starting points of the
calculations are at radii lower than the classical turning points. We used the cal-
culation program from R. J. Allen [http://wservl.dl.ac.uk/CCP/CCP6/quantx/].
We have modified the input of the program for using a diabatic potential matrix.

The results for the cross section and differentiavl cross section are shown
in Figs. 4.3 to 4.7. For the results of the differential cross section in Figs. 4.3-4.6,
there are interference effects as the angle is increased. When the energy increases,
the angle of first interference generally decreases.

From equations (B.8) and (B.9) in Appendix B, the formulae for the

cross section and differential cross section, in practice we cannot sum the angular
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momentum quantum number, {, to infinity, but rather we sum the [ to a large
value, lnq:. In the quantxs program, there is a limitation in the sum over [
in that the maximum value, [,,,,, is not large enough, so the results may have a
substantial error. As evidence of this, we have shown that [,,,, actually does affect
the calculations of the differential cross section and cross section. When [,,,,, was
decreased, the cross section and differential cross section decreased. Therefore we
should really sum to a very large value of /., and if the trend continues, this
would increase our values for the total and differential cross sections, bringing
them into closer agreement with other results.

Figure 4.3 shows the experimental results for the differential cross section
[Lindsay et al. 1996]. There are small interference effects between 0.1-1.0 degrees,
as most easily seen in the curve for 0.5 keV. For higher energy, there is a larger
peak at small angles and a more rapid decrease when increasing the angle, though
if we integrate over the scattering angle the total cross sections are of the same
order of magnitude. Figure 4.4 shows the only previous theoretical results for the
differential cross section [Hedstrom et al., 1998]. As in the experimental results,
there are small interference effects between 0.1-1.0 degrees. These interference
effects come from the quantum effects of the scattering. Figure 4.5 shows the
present results, and Figure 4.6 shows the comparison of the present results with
previous results. These results have values lower than the experimental values,
and generally lower than the previous theoretical values, as well as sharper in-

terference effects. We believe that this is because [,,,, in the calculations is not
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large enough for convergence of the results. Our results are different than those
of Hedstrom et al., because we use a fully quantal calculation, which is a time-
independent problem, but Hedstrom et al. [1998] used electron nuclear dynamics
[Hedstrom et al., 1998|, which is a kind of time-dependent problem, and in the
present calculations there was a limit on [, from the program.

Figure 4.7 shows all results for the total cross section, including theoretical
results from others [Kimura et al., 1997; Hedstrom et al., 1998; Hamre et al.,
1999], the present results, and experimental results [Stebbing et al., 1964; Lindsay
et al., 1996]. The results of the present quantal calculations are again lower than
the others, and our quantal results also show an unusual energy dependence.
The lower cross section at higher energy may arise because at higher energy, the
appropiate value of l,,,, at which the cross section converges, increases rapidly
[Bransden and McDowell, 1992]. In this program there is a limit on l,,4,, which
is lower than the appropriate value, and at higher energy we expect greater error.
At any rate, our cross sections are still of the same order of magnitude as previous

results.

4.2 Semi-classical Calculations

For the semi-classical calculations we used the same coupling matrix elements as
in the quantal calculations. We used a straight-line trajectory approximation. A

fourth-order Runge-Kutta method was used to solve the coupled time-dependent
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ODEs, equation (2.47). The result for the cross section is shown in Fig. 4.7. The
differential cross sections from the semi-classical calculations poorly match the
results of Hedstrom et al. [1998] and Lindsay et al. [1996]. Our semi-classical
results for the differential cross section are lower by about 4 orders of magnitude.
The straight-line trajectory approximation assumes no deflection of the nuclei,
so the differential cross section may be severely in error. On the other hand,
the total cross section from semi-classical calculations is smaller than values from
previous studies but of the same order of magnitude. These lower values of the

cross section may also be due to the straight-line trajectory approximation.
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Chapter 5

Conclusions

The charge exchange of O and HT is of interest to many people. Many people
have calculated the total cross section for a range of collision energies, but there
has been little research about differential cross sections. The differential cross
section was calculated only at the energy of 0.5 keV [Hedstrém et al., 1998], and
experimental results are available only for 0.5, 1.5, and 5.0 keV. In this thesis, the
differential cross section and cross section were calculated by quantal calculations
at energies of 0.5 keV, 1.0 keV, 2 keV, and 3.5 keV, because this energy range
corresponds to solar wind speeds, i.e., the collision speeds expected near the solar
wind termination shock.

In the last chapter, the results from approximate semi-classical calcula-
tions are acceptable only in terms of the total cross section. The differential cross
section is lower by four orders of magnitude compared with other calculations

and experimental data. Essentially, the angular region of scattering is far too
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narrow in these approximate semi-classical calculations. We suggest that this
discrepancy may result from the straight-line approximation (i.e., that both nu-
clei travel along straight lines during the collision), which is used because in the
semi-classical formulation we do not know the interaction between the ion and
atom in order to construct the trajectory.

For the quantal calculations, the differential cross section was compared
with those calculated by Hedstrom et al. [1998] and the experiment of Lindsay et
al. [1996]. The cross section was compared with the theoretical results of Kimura
et al. [1997], Hedstrom et al. [1998], and Hamre et al. [1999], and the experimental
results of Stebbings et al. [1964] and Lindsay et al. [1996]. Both types of results
in this thesis are lower, but not drastically different from other results given the
spread among the previous results themselves. In this calculation, the number of
angular momentum values in the partial wave expansion (see Appendix B) was
limited by the numerical algorithm. Therefore, this calculation can be further
improved by increasing the number of angular momentum values considered in

the expansion.
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Appendix A

Various Forms of Switching

Functions

[from Kimura and Lane 1989]

1. By Schneiderman and Russek [1969]:

% (A1)
6. angle between electron motion and internuclear separation of
projectile and target
o: state-independent parameter
2. By Levy and Thorson [1969] (cited by Kimura et al. [1989]):
2 _ .2
= wa
3. By Lebeda et al. [1971]:
tanh(RB,n) (A.3)
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n=(rg—74)/R
Bn: state-dependent parameter

4. By Mittleman and Tai [1973] (cited by Kimura et al. [1989]):

(1 -5%)(1 —e?m)
(14 S?)(1 + e~20m) — 4Se—on

S: overlap of LCAO

a: Slater exponent

5. By Rankin and Thorson [1979] (cited by Kimura et al. [1989]):

tanh R {%5,2 [(Zs + Z4) + (Zg ~ Za)] + aaln %} (A.5)

o, state-dependent parameter

6. By Vaaben and Taulbjerg [1981] (cited by Kimura et al. [1989]):

l ZATSB—ZB’I‘/?:‘ ZA—ZB
2 ZAT3B+ZBT?4 Za+ Zp

7. By Errea et al. [1982] (cited by Kimura et al. [1989]):

R? VA
R’4+ R+«

Z: Z-coordinate of electron position
a,(: state-independent parameter
The state-dependent parameters can be found by optimizing the coupling

matrix according to the variation method of quantum mechanics.
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Appendix B

Partial Wave Expansion

[from Child 1974]

Starting with the Schédinger equation,
[V + k2] W(R) = 5_ Uy(R);(R) (B.1)
J
If the potential is spherically symmetric, V(ﬁ) = V(R); hence the orbital and

rotational angular momenta are both constants of the motion.

We can expand the wave function as

Wj(R) = > Anb(R)Picos), (B.2)
=

where P, is the Legendre polynomial of order /. This leads to equations for the
radial function 1, (R),

d? Wl +1)

g PR = T [ wa(B) = U (R)ga(R). (B.3)

J

Each orbital angular momentum quantum number [ therefore gives rise to a
different set of coupled equations and a different S matrix, SU. The asymptotic
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solution is

A ; .
T/)EZ)(R) ~ sin (kiR — _7r> 2 D) giki R—ilm /2

2 2 n
U (kN ) ens

w(z)( ) -~ e jwi(?)ezk]R—zlw/2’ (B4)
2 \k;) 9

and the choice of the coefficient in equation (B.3), now labelled Al(i), is such
that the incoming part of ¥;(R) behaves as the incoming part of a plane wave.

Equation (B.3) requires the asymptotic form

zk,
where
1 o0
Fall) =~y 2 + DT Picos)
vy =
1 o
= — S22+ 1)(SY — 65)Pi(cos §) (B.6)

and the transition matrix, ' and scattering matrix, S are related by
ﬂj = (L-j = Sij- (B?)

The differential cross section is dependent on the square of scattering amplitude,

dOi]’ . 8 k‘j 9
= = ﬂ,|fu<9>|
o) 2
= g Z 2L+ 1T, Pl(cos 6) (B.8)
i =0
and the cross section is
k]. 2m T
Gi]‘ = “‘/ / |fz](9)| sm@d@dqﬁ
vy Y0 0
T o0
= FZ(21+])| 02, (B.9)
T =0
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Appendix C

Program for Semi-classical

Calculations

This program was written by Suphachai Aukaraputporn, as supervised and mod-
ified by Saree Phongphanphanee. Paisan Tooprakai also helped with debugging.

A flow chart of this program is presented in Figure 3.3.

#include <stdio.h>
#include <math.h>

double H=0.001;

double diff_x1(double vr,double paal2,double hil,double x2,double y1,double y2,
double wi12)

return hlxyl + vr*paal2#*(-y2*cos(wl2)+x2*sin(wi2));

}

double diff_x2(double vr,double paal2,double paa23,double h2,double x1,
double x3,double yl,double y2,double y3,double w2l,double w23)

{

return h2xy2 + vr¥paal2*(-yl*cos(w21)+x1*sin(w21))
+ vrxpaa23*(-y3*cos(w23)+x3*sin(w23)) ;
}

double diff_x3(double vr,double paa23,double h3,double x2,double y2,double y3,
double w32)

return h3*y3 + vr*paa23x(-y2*cos(w32)+x2*sin(w32)) ;
}

double diff_yi(double vr,double paal2,double hl,double x1,double x2,double y2,
double wi2)

return -hlxxl + vrxpaal2*(x2*cos(wil2)+y2xsin(wi2));

+
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double diff_y2(double vr,double paal2,double paa23,double h2,double x1,
double x2,double x3,double yl1,double y3,double w21i,double w23)

return -h2#x2 + vr*paal2*(xixcos(w21)+yl*sin(w21))
+ vrxpaa23*(x3*cos(w23)+y3*sin(w23));
¥

double diff_y3(double vr,double paa23,double h3,double x2,double x3,double y2,
double w32)

return -h3*x3 + vr*paa23+*(x2*cos(w32)+y2xsin(w32)) ;
1
void cubic_splines(double z[],double Bx[],double d2x[],int n)
{
int 1,j,k,N;
double A[100][100],bx[100] ,koon,beta[100],rho[100];
N = n-1;
for (i=1;i<=N-1;i++){
A[i][i] = 2.0%(z[i+1]-z[i-1]1);
ATl [i+1] = z[i+1]-z[il;
Alil[i-1] = z[i]-z[i-1];
bx[i] = 6.0%((Bx[i+1]1-Bx[i])/(z[i+1]-z[i])
) -(Bx[1]-Bx[i-11)/(z[i]l-z[i-11));
for(i=2;i<=N-1;i++){
koon = -A[i][i-11/A[i-1]1[i-1];
A[i][i] += koon*A[i-11[il;
bx[i] += koonx*bx[i-1];

}
d2x[N-1]=bx[N-1] /A[N-1] [N-1];
for(i=N-2;i>=1;i--){
d2x[i] = (bx[i]-A[i] [i+1]=*d2x[i+1])/A(i][i];

0.0;
0.0;

¥
d2x [0]
d2x [N]

¥

double interpolate(double z,int n,double Z[],double B[],double d2[])
{

int i,N;

double D1,D2,DD,T1,T2,T3,T4,Mag;

z=fabs(z);

N=n-1;

if( z<zZ[0] |} 2>Z[N] ) {

printf ("\nThere are not enough data");

exit(1);

for(i=0;i<=N-1;i++){
ir({z = %Ei] && z < Z[i+1]) || z == Z[i] || z == Z[i+1]) {

= Z[i+1]-z;
D2 = =z-Z[i]l;
DD = 2Z[i+1]1-Z[i];
Ti = ( d2[i]#Di*D1*D1 ) / ( 6.0%DD );
T2 = ( d2[i+1]1*D2*D2+D2 ) / ( 6.0%DD ):
T3 = ( (B[i+1]/DD) - (42(i+1]1%*DD/6.0) ) * D2;
T4 = ( (B[il/DD) - (d2[i]*DD/6.0) ) * Di;
Mag = T1+T2+T3+T4;

¥

return Mag;
}
double omega(double hlold,double h20ld,double hi,double h2,double wi12)

{
return wi2+(h2-h1+h20ld-hlold)*H/4.0;

¥
double Runge_kutta(double r,double b,double v,double t,double *x1,double *yl,
double *x2,double *y2,double *x3,double *y3,double r_pal2[],
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double pat2{],double d2_pai2[],double r_pa23[},double pa23(],
double d2_pa23[],double r_hi[],double hhi[],double d2_hi[],
double r_h2[],double hh2[],double d2_h2(],double r_h3[],double hh3[],
double d2_h3[],int n_pal2,int n_pa23,int n_hl,int n_h2,int n_h3)
{
int i,n;
double limit,vr,paal2,paa23,hl,h2,h3,wl2,w21,w23,w32,tt;
double kx1_1,kx1_2,kx1_3,kx1_4,
kx2_1,kx2_2,kx2_3,kx2_4,
kx3_1,kx3_2,kx3_3,kx3_4;
double kyl_1,kyl_2,kyi_3,kyl_4,
ky2_1,ky2_2,ky2_3,ky2_4,
ky3_1,ky3_2,ky3_3,ky3_4;
double hlold,h20ld,h30ld;
limit=-t;
wil2=0.0;
w23=0.0;
if (t<=0)
vr = v*cos(asin(b/r));
else
vr = -v*cos(asin(b/r));
paal2=interpolate(r,n_pal2,r_pal2,pal2,d2_pal2);
paa23=interpolate(r,n_pa23,r_pa23,pa23,d2_pa23);
hi=hlold=interpolate(r,n_hl,r_hl,hh1,d2_hl);
h2=h20ld=interpolate(r,n_h2,r_h2,hh2,d2_h2);
h3=h3old=interpolate(r,n_h3,r_h3,bh3,d2_h3);
wi2=omega(hliold,h20ld,hl ,h2,wl2);
w21l=-w12;
w23=omega(h201d,h301d,h2,h3,w23) ;
w32=-w23;
do{
kx1_1=diff_x1(vr,paal2,hl,*x2,*yl, *y2,ul2);
kx2_1=diff_x2(vr,paal2,paa23,h2,*x1l,*x3,*yl,*y2,*y3,w21,w23);
kx3_1=diff_x3(vr,paa23,h3,*x2,*y2,*y3,w32);
kyi_1=diff_yi1(vr,paal2,hl,*x1,*x2,*y2,wi2);
ky2_1=diff_y2(vr,paal2,paa23,h2,*x1,*x2,*x3,*yl,*y3,w21,u23);
ky3_1=diff_y3(vr,paa23,h3,*x2,*x3,*y2,w32);
tt=t+H/2.0;
r=sqrt ({(b*b)+((v¥v)*(ttxtt)));
if (£<=0)
vr = v*cos(asin(b/r));
else
vr = -v*cos(asin(b/r));
paal2=interpolate(r,n_pal2,r_pal2,pal2,d2_pal2);
paa23=interpolate(r,n_pa23,r_pa23,pa23,d2_pa23);
hi=interpolate(r,n_hl,r_hl,hhi,d2_hl);
h2=interpolate(r,n_h2,r_h2,hh2,d2_h2);
h3=interpolate(r,n_h3,r_h3,hh3,d2_h3);
wl2=omega(hlold,h20ld,hi,h2,wi2);
w2i=-wl2;
w23=omega (h201d,h301d,h2,h3,w23);
w32=-w23;
hiold=hi;
h201d=h2;
h301d=h3;
kx1_2=diff_x1(vr,paal2,hi,*x2+(kx2_1%H/2.0),*yl+(kyl_1%H/2.0),
*xy2+ (ky2_1*H/2.0),wl2);
kx2_2=diff_x2(vr,paal2,paa23,h2,*x1+(kx1_1*H/2.0),*x3+(kx3_1*H/2.0),
*y1+(kyl_1%H/2.0) ,*xy2+(ky2_1%H/2.0) ,*y3+(ky3_1*H/2.0) ,w21,w23);
kx3_2=diff_x3(vr,paa23,h3,*x2+(kx2_1*H/2.0),*y2+(ky2_1%H/2.0),
*y3+(ky3_1%H/2.0) ,w32);
ky1_2=diff_yl(vr,paal2,hl,*x1+(kx1_1xH/2.0),*x2+(kx2_1xH/2.0),
ky2+(ky2_1%H/2.0),wl2);
ky2_2=diff_y2(vr,paal2,paa23,h2,*xi+(kx1_1*H/2.0) ,*x2+(kx2_1xH/2.0),
*x3+(kx3_1%H/2.0) ,*y1l+(kyl_1%H/2.0) ,*y3+(ky3_1xH/2.0) ,w21,u23);
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ky3_2=diff_y3(vr,paa23,h3,*X2+(kx2_1*H/2.0),*x3+(kx3_1*H/2.0),
*y2+(ky2_1%H/2.0),w32);

kx1_3=diff_x1i(vr,paal2, hl,*x2+(kx2_2%H/2.0),*y1+(kyl_2%¥H/2.0),
*y2+ (ky2_2%H/2.0) ,wi2);

kx2_3=diff_x2(vr,paal2,paa23,h2,*x1+(kxl_2*H/2.0),*x3+(kx3_2%H/2.0),
xyl+(kyl_2%H/2.0) ,*y2+(ky2_2%H/2.0) ,*xy3+(ky3_2%H/2.0) ,w21,u23);

kx3_3=diff_x3(vr,paa23,h3,*x2+(kx2_2«H/2.0) ,*y2+(ky2_2*H/2.0),
*y3+(ky3_2*H/2.0),w32);

kyl_3=diff_yi(vr,paal2,hl,*x1+(kx1_2%H/2.0),*x2+(kx2_2%H/2.0),
*y2+(ky2_2%H/2.0) ,wi2);

ky2_3=diff_y2(vr,paal2,paa23,h2,*x1+(kx1_2*%H/2.0) ,*x2+(kx2_2%H/2.0),
¥x3+(kx3_2%H/2.0) , *y1+(kyl_2+H/2.0) ,*y3+(ky3_2%H/2.0) ,u21,u23);

ky3_3=diff_y3(vr,paa23,h3,*x2+(kx2_2%H/2.0) ,*x3+(kx3_2*H/2.0),
*y2+(ky2_2%H/2.0) ,w32);

tt=t+H;

r=sqrt(b*b + vkvxtt*tt);

if (£<=0)

vr = v¥cos(asin(b/r));

else

vr = -vkcos(asin(b/r));

paal2=interpolate(r,n_pal2,r_pal2,pal2,d2_pal2);

paa23=interpolate(r,n_pa23,r_pa23,pa23,d2_pa23);

hl=interpolate(r,n_hl,r_hi,hh1,d2_hl);

h2=interpolate(r,n_h2,r_h2,hh2,d2_h2);

h3=interpolate(r,n_h3,r_h3,hh3,d2_h3);

wl2=omega(hlold,h201d,h1,h2,w12);

w21l=~wi2;

w23=omega (h201d,h301d,h2,h3,w23);

w32=-w23;

hlold=h1;

h201d=h2;

h301d=h3;

kx1_4=diff_x1(vr,paai2,hl,*x2+(kx2_3*H),*yl+(kyl_3xH),
*y2+(ky2_3*H) ,wi2);

kx2_4=diff_x2(vr,paal2,paa23,h2,*x1+(kx1_3*H),*x3+(kx3_3x*H),
*y1+(kyl_3+H) ,xy2+(ky2_3*H) , *y3+(ky3_3*H) ,w21,u23);

kx3_4=diff_x3(vr,paa23,h3,*x2+(kx2_3*H) ,*y2+(ky2_3*H),
*y3+(ky3_3%H) ,w32);

kyl_4=diff_yil(vr,paal2,hl,*x1+(kx1_3+*H) ,*x2+(kx2_3+*H),
*xy2+(ky2_3%H) ,wl2);

ky2_4=diff_y2(vr,paal2,paa23,h2,*x1+(kxi_3*H),*x2+(kx2_3x*H),
*x3+(kx3_3*H) , *y1+(kyl_3#H) ,*y3+(ky3_3*H) ,w21,w23);

ky3_4=diff_y3(vr,paa23,h3,*x2+(kx2_3*H) ,*x3+(kx3_3+*H),
*y2+(ky2_3*H) ,w32) ;

*x1+=Ckxl_1+2.0%kx1_2+2.0%kx1_3+kx1_4)*(H/6.0);

*x2+=(kx2_1+2,0%kx2_2+2.0%kx2_3+kx2_4)*(H/6.0);

*#x3+=(kx3_1+2.0%kx3_2+2.0%kx3_3+kx3_4)*(H/6.0);

*y1+=(kyl_1+2,0%kyl_2+2.0*kyl_3+kyl_4)*(H/6.0);

xy2+=(ky2_1+2.0xky2_2+2.0xky2_3+ky2_4)*(H/6.0);

ky3+=(ky3_1+2.0%ky3_2+2.0%ky3_3+ky3_4) *(H/6.0);

/* printf ("Y1lf YLf  Y1E YLE U1 \n",kxlsxxlekylakyl kx2xkx2+ky2¥xy2,

*x3xkxB+hy3kky3, kX Lakx 1Hky Lhkoky 14k X 2Kk 244y 20k y2+%x 35k X 3+xy3xxy3, 1) ;

*/ t+=H;

} while(t<1limit);

return 0;

void read(double R[] ,double V[],int *N,char name[])
{

int i;

FILE *fp;
fp=fopen(name,"r");
if (fp==NULL){
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puts("open error");

for(i=0;;i++){
*N=1;
fscanf (fp,"%1f",&R[i]);
fscanf (fp,"%41f",&V[il);
if (feof (£fp)'=0) break;

¥
fclose(fp);
T

void main(void)

int i,n_pal2,n_pa23,n_hl,n_h2,n_h3,k;

char ch,name_x1[15],name_y1[15],name_x2([15] ,name_y2[15] ,name_pal2[15],

name_pa23[15] ,name_h1[15] ,name_h2[15] ,name_h3[15] ,name_b1[15],

name_b2[15];

double b,v,bf;

double r=-9.0,t;

double x1,x2,x3,y1,y2,y3;

double r_pal2[150],pal2[150],r_pa23[150],pa23[150],r_h1[150] ,hh1[150],
r_h2[150],hh2[150],r_h3[150] ,hh3[150];

double d2_pal2[150],d2_pa23[150],d2_h1[150],d2_h2[150],d2_h3[150];

FILE *fp_x1,*fp_yi,*fp_x2,*fp_y2,*fp_bl,*fp_b2;

printf (" input value \n");

input_v:

printf ("\n\t v (400-800 km/s) = ");

scanf ("%1E",&v);

v=v/(2.1876e3);

printf ("\n\t b start at (bohr)= ");

scanf ("%1f",&b);

printf("\n\t b final at (bohr)= ");

scanf ("%1f",&bf);

printf("\n\t input filename P+A 12 to read : ");

scanf ("%s" ,name_pal2);

printf ("\n\t input filename P+A 23 to read : “);

scanf ("%s",name_pa23);

printf("\n\t input filename hi to read : ");

scanf ("¥%s",name_h1);

printf ("\n\t input filename h2 to read : ");

scanf ("%s" ,name_h2);

printf ("\n\t input filename h3 to read : ");

scanf ("%s" ,name_h3);

printf ("\n\t input filename to write x1 : ");

scanf ("%s" ,name_x1);

fp_xi=fopen(name_x1,"w");

if (fp_x1==NULL)

puts("open error");

printf ("\n\t input filename to write y1 : ");
scanf ("%s" ,name_y1);
fp_yl=fopen(name_y1i,"w");

if(fp_y1==NULL)

{

puts("open error");

printf ("\n\t input filename to write x2 : ");
scanf ("%s",name_x2) ;
fp_x2=fopen(name_x2,"w");

if (fp_x2==NULL)

{

puts("open error");
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printf("\n\t input filename to write y2 : ");
scanf ("%s" ,name_y2);
fp_y2=fopen(name_y2,"“w");

if (fp_y2==NULL)

puts("open error");

printf ("\n\t input filename to write P1(b) : ");
scanf ("%s" ,name_bl);
fp_bl=fopen(name_bl,"w");
if (fp_b1==NULL){
puts("open error");

printf ("\n\t input filename to write P2(b) : ");
scanf("%s",name_b2) ;
fp_b2=fopen(name_b2,"w");
if (fp_b2==NULL){
puts("open error");

read(r_pal2,pal2,&n_pal2,name_pal?2);
read(r_pa23,pa23,&n_pa23,name_pa23);
read(r_h1,hh1,&n_hl,name_hi);
read(r_h2,hh2,&n_h2,name_h2) ;
read(r_h3,hh3,&n_h3,name_h3);
cubic_splines(r_pal2,pal2,d2_pal2,n_pal2);
cubic_splines(r_pa23,pa23,d2_pa23,n_pa23);
cubic_splines(r_hi,hh1,d2_h1,n_h1l);
cubic_splines(r_h2,hh2,d2_h2,n_h2);
cubic_splines(r_h3,hh3,d2_h3,n_h3);

k=0;
do{
x1=1.0;%2=0.0;x3=0.0;y1=0.0;y2=0.0;y3=0.0;
t=-(sqrt (((r*r)-(b*b))/(v¥v)));
Runge_kutta(r,b,v,t,&x1,&yl,&x2,4y2,&x3,4y3,r_pal2,pail2,d2_pal2,
r_pa23,pa23,d2_pa23,r_hl,hhl1,d2_hl,r_h2,hh2,d2_h2,r_h3,
hh3,d2_h3,n_pai2,n_pa23,n_hil,n_h2,n_h3);

fprintf(fp_x1," %1f %1f\n",b,x2);

fprintf(fp_y1," %1f %1f\n",b,y2);

fprintf (fp_x2," %1f %1f\n",b,x3);

fprintf(fp_y2," %1f %1f\n",b,y3);

fprintf (fp_bl," %1f ALE\n" ,b,x2%x2+y2xy2) ;

fprintf(fp_b2," %1f %1f\n",b,x3%x3+y3*y3);

if ((k%100)==0){
printf ("\n\n’lf Wit U1f %1f WLt b,
x1xxl+ylxyl, x2%x2+y2%y2, x3%x3+y3*xy3, x1*x1+ylxy1+x2%x2+y2xy2+x3*x3+y3*y3) ;

k+=1;
b+=0.0005;

} while(b<=bf);
printf ("Finish");
}
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Appendix D

Program for Transforming an
Adiabatic Potential to be

Diabatic

A flow chart of this program is presented in Figure 3.2.

/*xx%x  Transform to diabatic *¥%x%/

#include <stdio.h>
#include <math.h>
#include "nrutil.h"

#define dr .01
#define NOY .000
#define Pl 3.14
#define NS 5

main()

1
92653589793
/% number of electronic states */

double ***c,*%kcc,**cin,**ch,**uu,**uua;
double ***u,r,rmin,rmax;
int i,j,k,m,kmax;
FILE *fp;
void transmat();
void inverse();
void koon();
void initpot();
fp=fopen("diab.dat","w");
if (£p==NULL){

puts("open error");

printf("\n");
printf("input initial distance : "); scanf("}1f",&rmin);
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printf("input final distance : "); scanf("Alf", &rmax);
kmax=ceil ((rmax-rmin) /dr)+1;
printf ("rmin=Y%1f rmax=%1f k=%d" ,rmin,rmax, kmax) ;
c=f3tensor(1,NS,1,NS,0,2000); u=f3tensor(1,NS,1,NS,0,2000);
cc=dmatrix(1,NS,1,NS);
cin=dmatrix(1,NS,1,NS);
uu=dmatrix(1,NS,1,NS);
vua=dmatrix(1,NS,1,NS);
ch=dmatrix(1,NS,1,NS);
transmat (c,kmax,rmin) ;
initpot (u,kmax,rmin) ;
for (k=0;k<=kmax;k++){
for(i=1;i<=NS;i++){
for(j=1;j<=NS;j++){
cc[i] [j1=chli]l [j1=c[i] [j][k];
wulil (1=ulil (31 [k];
}
}

trpose(ch,cin,NS);
koon(cin,uu,uua,NS);
koon(uua,cc,uu,NS);
for(i=1;i<=NS;i++){
for(j=1;j<=NS;j++)
ulil (33 [k1=uali] [j];

}
}
for(k=0,1i=0;k<=kmax;k++)
if (k%10==0) i+=1;
fprintf(fp,”%d %d\n",i,NS);
for (i=1;i<=NS;i++){
for(j=1;j<=NS;j++){
for (m=0,r=rmin;m<=kmax;r+=dr,m++){
if (r<t){
1f (m%5==0) fprintf(fp,"%1lf ",uli][j][ml);
} else if(r>=1 && r<4){
if (m%10==0) fprintf(fp,"%1f ",ulil[j]1[m]);
} else if(r>=4 && r<10){
if (m%30==0) fprintf(fp,"%lf ",u[i][j][m]);
} else {
if (m%100==0) fprintf(fp,"%1f ",ulil[j][ml);
}
¥
fprintf (fp,"\n");
} }
for (r=rmin,k=0;k<=kmax;r+=dr k++){

if (r<1)A{
if (k%5==0) fprintf(fp,"%1lf ",r);

} else if(r>=1 && r<4){

if (k%10==0) fprintf(fp,"41f ",r);
} else if(r>=4 && r<10){

if (k%30==0) fprintf(fp,"%1f ",r);
} else {

if (k%100==0) fprintf(fp,"%1lf ",r);
}

}

free_f3tensor(c,1,NS,1,NS,0,2000);
free_dmatrix(cc,1,NS,1,NS);
free_dmatrix(cin,1,NS,1,NS);
free_dmatrix(uu,1,NS,1,NS);
free_dmatrix(uua,1,NS,1,NS);

) free_dmatrix(ch,1,NS,1,NS);

void transmat(double x%*%c,int kmax,double rmin)
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int i,j,k,n,m,1l;s;

double xwupa, okl ,r;

void integ(Q);

void initcoup();

pa=f3tensor(1,5,1,5,0,2000);

F=f3tensor(1,5.,1,5,0,2000);

initcoup(pa,c.F,kmnax,rmin);

s=1;

for(n=0;;n++){ /*this loop for iteration =*/
integ(pa,F,kmax};

1=0;
s= —1xg;
for(i=1;i<=5;i++){
for(j=1;j<=5;j++){
for(k=0;k<=kmax;k++){
c[11 (3] fk]+=s*F[1] [§] (k] ;
if (fabs(F[i] [j1[k])>=N0Y) 1=1;
}
}
}
}

free_f3tensor(pa,1,NS,1,NS,0,2000);
free_f3tensor(F,1,NS,1,NS,0,2000);

zoid read(double R[] ,double V[],int *N, char name(]})
int i;
FILE *fp;
fp=fopen(name,"r");
if (£p==NULL){
puts("open error");

for(i=0;;i++){
*N=1;
fscanf(fp,"%lf”,&R[i]);
fscanf (fp,"%1f",&V[i]);
if (feof (£p) 1=0) break;

}

fclose(fp);
¥
void cubic_splines(double z[],double Bx[],double d2x[],int n)
{

int 1,j,k,N;
double A[n+1] [n+11,bx[n+1],koon,betaln+1],rho[n+1];
N:

n-1;
for(i=0;i<=N;i++){
for(j=0;j<=N;j++){
’ A[il[§]1 = 0.;
o

for(i=1;i<=N-1;i++){
Ali][i] = 2.0x(z[i+1]-z[i-11]);
Ali][i+1] = z[i+1]-=z[i];
ATil[i-1] = z[i]-z[i-1];
bx{i]l = 6.0%((Bx[i+1]-Bx[i])/(z[i+11-z[i])
-(Bx[il-Bx(i-11)/(z[i]~-z[i-1]));

}
for(i=2;i<=N-1;i++){
koon = -A[i][i-1]/A[i-1][i-1];
A[i1[i] += koon*A[i-1][i];
bx[i] += koonx¥bx[i-1];

}
d2x [N-1]=bx[N-1]/A([N-1] [N-1];
for(i=N-2;i>=1;i—-){
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d2x (il = (bx[i]-ALi][i+1}=d2x[i+1])/A[1i]1[i];

¥
d2x [0] 0.0;
d2x[N] 0.0;

nol

double interpolate(double z,int n,double Z[],double B[],double d2[])
{
int 1i,N;
double D1,D2,DD,T1,T2,T3,T4,Mag;
z=fabs(z);
N=n-1;
if( z<Z[0] || 2>Z[N] ){
printf ("\nThere are not enough data");
exit(1);

¥
for(i=0;i<=N-1;i++){
1f((2 > Z[l] ¥ z < Z[i+1D) || z == Z[i]1 || z == 2[i+1]) {

D1 = Z[i+1]l-z;

D2 = =z-Z[il;

DD = Z[i+1]-z[i];

Tt = ( da2[i]*D1%DixD1 ) / ( 6.0%DD );

T2 = ( d2[i+1]1*D2%D2xD2 ) / ( 6.0%DD );

T3 = ( (B[i+1]/DD) - (d2[i+1]*DD/6.0) ) * D2;
T4 = ( (B[i]/DD) - (d2[i]%DD/6.0) ) = Di;

Mag = TI1+T2+T3+T4;

¥
by
return Mag;

}

void integ(double #*#**pa,double ##**F,int kmax)

int i,j,k,1,m;
double *x*g;
g=dmatrix(1,NS,1,NS);
for (m=0;m<=kmax ;m++){
for(i=1;i<=5;i++){
for(j=1;3<=5; j++){
glil[j1=0.;
for (k=m+1;k<=kmax-1;k++){
for(l=1;1<=5; 1++)
g[11[31+ pa[l][l][k]*F[l][J][k]*dr

}
for(1l=1;1<=5;1++)
glil [j1+=pali] (11 [mI*F[1] [j] [m]*dr/2.
+pali] [1] (kmax]*F[1] [j] [(kmax]*dr/2.;

}
}
for(i=1;i<=5;i++){
for(j=1;j<=5;j++) F[i] (] mI=g[i1(3]1;

}
}
free_dmatrix(g,1,NS,1,NS);
}

void initpot(double ***u,int kmax,double rmin)

int i,j,k,nh_sl,nh_s2,nh_s3,nh_pl,nh_p2;

double rh_s1[200],h_s1[200],rh_s2[200],h_s2[200],rh_s3[200] ,h_s3[200]
,rh_p1[200],h_p1[200],rh_p2[200] ,h_p2[200];

double d2h_s1[200],d2h_s2[200],d2h_s3[200],d2h_p1[200],d2h_p2[200],r;

char name_hs1[15] ,name_hs2[15] ,name_hs3[15] ,name_hp1[15],name_hp2[15];

double interpolate();

void read();

void cubic_splines();

printf (“\n\t-input filename of 1sigma potential : ");

69



scanf ("%s",name_hsl);

printf(“\n\t input filename of 2sigma potential : ");
scanf ("%s" ,name_hs?2) ;
printf ("\n\t input filename of 3sigma potential : ");

scanf ("Y%s" ,name_hs3);
printf ("\n\t input filename of 1pi potential : ");
scanf ("%s",name_hpl);
printf ("\n\t input filename of 2pi potential : ");
scanf ("%s" ,name_hp2) ;
read(rh_s1,h_s1,&nh_s1,name_hsl);
read(rh_s2,h_s2,&nh_s2,name_hs2);
read(rh_s3,h_s3,&nh_s3,name_hs3) ;
read(rh_pl,h_pl,&nh_pl,name_hpl);
read (rh_p2,h_p2,&nh_p2,name_hp2);
cubic_splines(rh_sl,h_s1,d2h_sl,nh_s1);
cubic_splines(rh_s2,h_s2,d2h_s2,nh_s2);
cubic_splines(rh_s3,h_s3,d2h_s3,nh_s3);
cubic_splines(rh_pl,h_p1,d2h_pl,nh_p1);
cubic_splines(rh_p2,h_p2,d2h_p2,nh_p2);
/* input coupling matrix */
for(i=1;i<=5;i++){
for(j=1;j<=5;j++){
for (k=0;k<=kmax;k++)
uli] [j1[k]=0.;
}

for (k=0,r=rmin;k<=kmax;k++,r+=dr){
u[1] [1] [k]=interpolate(r,nh_s1,rh_si,h_s1,d2h_s1i);
u[2] [2] [k]=interpclate(r,nh_s2,rh_s2,h_s2,d2h_s2);
u[3] [3] [k]=interpolate(r,nh_s3,rh_s3,h_s3,d2h_s3);
ul[4] [4] [k]=interpolate(r,nh_pl,rh_pl,h_pl,d2h_pl);
u[5][6] [k]=interpolate(r,nh_p2,rh_p2,h_p2,d2h_p2);

}

void initcoup(double x**pa,double ***c,double ***F,int kmax,double rmin)
¢ int i,j,k,n_pal2,n_pa23,n_pa4db;

double r_pal2[200],pal12[200]1,r_pa23[200],pa23[200],r_pad5(200],pads[200];
double d2_pal2[200],d2_pa23[200],d2_pa45[200],r;
char name_pal2[15] ,name_pa23[15] ,name_pa45[15];
double interpolate();
void read();
void cubic_splines();
printf("\n\t input filename of Isigma-2sigma coupling : ");
scanf ("%s" ,name_pal2) ;
printf ("\n\t input filename of 2sigma-3sigma coupling : ");
scanf ("%s",name_pa23);
printf ("\n\t input filename of 1pi-2pi coupling : ");
scanf ("%s" ,name_pa45) ;
read(r_pal2,pal2,&n_pal2,name_pal2);
read(r_pa23,pa23,&n_pa23,name_pa23);
read(r_pad5,pad5,&n_pa4b,name_pa4b) ;
cubic_splines(r_pal2,pal2,d2_pal2,n_pal2);
cubic_splines(r_pa23,pa23,d2_pa23,n_pa23);
cubic_splines(r_pa45,pad5,d2_padb5,n_pad5s);
/* input coupling matrix */
for(i=1;i<=5;i++){

for(j=1;j<=5;i++){

for(k=0;k<=kmax;k++)q{
palil[j1{k]1=0.;
if(i==3) { c[i1(31k1=FLil1(j1(k]=1.;}
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else { c[i1031 k1=F[i]1[j]1[k]=0.;}

}
by

for (k=0,r=rmin;k<=kmax;k++,r+=dr){

pal1][2] [k]l=interpolate(r,n_pal2,r_pal2,pal2,d2_pal2);
pal2][3] [k]=interpolate(r,n_pa23,r_pa23,pa23,d2_pa23);
pal4] [5] [k]=interpolate(r,n_pa45,r_pad5,pad5,d2_pa4dh);

/%  coupling is symmetric hermitian */

pal2] 111 [k]=-pal1][2] [k];
pal31[2] [k]=-pa[2][3] [k];
pal5][4] [k]=~pal4][5] [k];
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