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Chapter 1

The discover Seansioo! t e taeeby Edwin Hubble in 1920
suggested that the uni 1t g fly the observations of Type Ia

in 1998 [1], followed by the
_the universe is not only
oiving rise to the late-time
novae Type la observations
1 the form of the dark energy.
\ t 4% of the total energy

ano

*
dlmé in addition to left-right,
we. If spacetime has the extra di-

mensions, they need to be % ----'-m hidden from us. A way to compactify the
extra dimension is the K&Wﬁ‘s n 0 compactify the dimensions in the

shape look li e o d gether with cosmological

-
measurements Ome problems such as sm to stabilize the
size of the extra_di ile the three spatial dimen-

sions grow large.

Recently, Brian &ene and Janna Lq} suggest that Casimir energy of some
proble larzatio asi er ulk scalar and

fermlom eld with different mass, the total Casglnr energy is a fu t n of the

QoL mmmrm leEfTﬁ 3 -

e accelerated expansion of the universe. This proposal is called Casimir dark

energy.

However, the Casimir dark energy model fails to stabilize the extra dimen-
sion if we include the matter content. During the matter dominant epoch of the

universe, the matter energy density was modify the Casimir energy potential in



which there is no minimum. In this thesis we introduce a Lorentz violating vector
aether field to solve this problem [4].

This thesis is organized as the following way. In chapter I, we review the
action principle in the general relativity, the standard hot big bang model and the
dark energy problem [5, 6, 7, 8,9, 11, 12]. In chapter II, we consider the Casimir

d massive fields in the M3 x T2

ted expansion of the late time

energy of certain combinations of me

In chapte ‘ [ ; ime el, the Kaluza-Klein
theory and the ADD Vn ' Is oY . Then we review the
: ) that breaks Lorentz

symmetry. Then n in 5-dimensions [18]
and apply this model oidally compactified extra dimen-
sions.

We study the eff tion mechanism in Chapter
IV. In the first part of this chag e,: w osmological equation of motion in
our M3 x T? spacetlm.e-ﬁq;ds.é;ﬁ' ? with acther ficld. Then we calculate the

Casimir energy lin' the case that a scalar f 0 an aether field with a

1 field in the stabilization
ﬁ a dimensio and the matter dominated

universe. Finally we summarize our results in chapter V. '

1 g AL VPRI AN B

In the framework of general relatlﬁty, gravity is net'the force from SOIMddlthﬂal

Feraa AR

e grav1tat10n 1s the metric tensor ibing the geometry of the spacetime 1tself

In other words, gravity is a manifestation of the curvature of our spacetime.

To obtain field equation governing the spacetime curvature in the presence

of matter and energy, let us consider the Einstein-Hilbert action [5, 6]



where R = ¢g""R,, is the Ricci scalar and g is the determinant of the metric
tensor. The Greek indices p, v, ... run from 0 to 3 while the Latin indices i, j, ...
run from 1 to 3, the same convention applies to the whole thesis except when
indicated otherwise. We use the Einstein’s summation convention that when the
term has the same upper and lower indices, we sum over all the indices a,b" =

aol® + arb' + asb* + azb®. Because ayb* = q,b”, the repeated indices are called the

(1.2)
Note that g, satisfies there 7 ' = 0" wheie 0/ is the Kronecker’s delta,
oF =1 for p = v and oherwise /' = herefore e inverse metric tensor.

From a variatio

. ion of the Christoffel

connection

(1.3)
where

(1.4)
Hence

Fl);l, + 5F;‘V = 0l Gvo + 69vs) — 05 (9w + 09,)]

ﬁu gﬂl/)

(1.5)

S : -
keeping the Ef_ > ‘ is straightforward

to express relatiﬂbe wee and the inverse metric

i
= —¢° ’\”‘59@ (1.6)

sinefl o) %EW]’?W g1

Y Lo (00090 $:0u09v0 — 0509u)- g 4

&m@»mwadmwma ﬂ

Vi09use = 0,0 — I‘Wcsg,,(7 2,090 1.8)
hence

au(sgp,a + 8,u5,guo - 805.gw/ = VI/(Sg[LO' + vudgllo' - VU(ng, - Fg'yéglip' (19)



Then a variation of the Christoffel connection in Eq.(1.7) can be written in the

form

1
51“2‘1, - EgAa(Vyég,w + V090 — Vobgu). (1.10)

The variation 6T'),, is the difference of two connections and it is a tensor. However,

the connection FI’)V itself is not a tensor because it is defined by partial derivatives.

A
+F O, (1.11)
then contracting the
[N ) A ST? (1.12)
[ 0 7 ¥ V.A;‘I.,‘ //)\7
with a little algebra 1 - 7
V0T, — V0 R PNSTE, R I%6T, — T, 6T, — TA, 4T
W\ : (1.13)
Ricci tensor is defin
(1.14)
then the first order in v
A . ":;-'- S A TP
OR, = Oxol',, — R o~ -1 5FM, (1.15)
or
N IR P (1.16)
this relation is now
1
We have ’I‘I‘
‘géSEH = (65)1 + (09)2 + (65)s, (1.17)

WhefeﬂUEJ’JVIEWﬁWEJ’lﬂi

/d :U\/_RM,,ég’“’ (1.18)

AR fNﬂ‘@ﬂi YA 1811 8 B
_ / A an/=gg" R (1.20)

From the Palatini identity we can show that the last equation is a total divergence,

V=99""0R,. = /—=g(VA0l), — V,.0I))) (1.21)
= V=g [Va(g"oT,) — V(g™ o)) - (1.22)



The formula for the divergence of a vector can be written in the form
1
VVH = ——0,(v/=g V"), 1.23
WP = =0 V) (1.23)

and g“"‘éFl’)R is a vector, hence

V=99" 0 Ry = "I 10T5,) = 0u(v/=g g""0T},)
\ 1

N)
é (1.24)

By the Stokes’ theore asantegral jover volume element can be converted to

an integral with respect Because variation of the

5 _suriac
metric is zero onsthe bg -/{ End h \\t\\ﬁ’ does not contribute to
the variation. " \
We can calculafe (35) by fising-the fo 18, 1dentity
< (1.25)

Take the square matzis then M~! is ¢ and

det M = g, so
(1.26)
Multiply Eq.(1.6) with gm,, h ;#_' ndex \ and o with p and v respec-
tively, ; :
4 |

= —g’“’égu,,, (1.27)
becaus ves a variation
F’I il T‘I“ﬁ‘"ﬁ ﬁ'

= —gg“"égwj 1 28

] (1.29)

from Eq.(1.26) and Eq.(1.29) and therefore

1

V==

g =5 \/ gm/(sg (130)



Remember that (45); does not contribute to the action, therefore

1
5SEH = /d4.'17\/ -9 <R,uu - §Rg;w) 5glﬂ/_ (131)

From the functional derivative of the action

S

)i,

111 2 cIﬂ') d"z, (1.32)
where ® is a complete s ‘a riable

M ciple of least action leads to
95 — 0, s0 — 7 —

5P n

(1.33)

‘ natter and energy, the

this equation is ca

For the Ei

action with minimal gour:

(1.34)
where Sy is the action for e magter. Vagying ¢ is action using the same proce-
dure as above, we obffain & & ' '

1 A 1 5SM
— : — =0. 1.35
g™ (1:35)
We define
(- (1.36)
to be the y_
i ]
E G = Ry — = Ry = S7GT (1.37)

2
. - . . o
is a co inst _ i is.the Einstein _tensor. The left-
hande e tlgin ein’s fi (%,ti ¢ ze tﬁgﬁetry of space-

time th the right-handed-side describes energy and momentum of matter. It is

_useful to rewrite Vt,hiS, equation inﬁ different formi=By contracti;ﬁ F§137
q

since 0 = 4, contraction gives R = —87GT where Rl; = R and T} = T'. Plugging
this into Eq.(1.37), we obtain

1
R" = 87G (TW - §Tgw,> . (1.39)



1.2 The Standard Cosmological Model

At small scales the universe consists of very rich structure of stars, galaxies, lo-
cal group of galaxies and cluster of galaxies. However, the large scale structure
of the universe in order around 3,000 Mpc (1Mpc = 3.26 x 10° light years) ap-
pears to be the same in every direction, the property called isotropy. In fact, it
is not reasonable to assume that we are im special position in the universe, so
the isotropic condition (or any physical/cenditions) is identical throughout the
universe. We call this propeity a horIEPgeneity. ‘heisotropy and homogeneity of
the universe on large scale structure are knowi as the “Cosmological Principle”.
The Einstein’s field equations of general relativity explain how the energy den-
sity change withetine. Butavithout the Cosmological principle these equations
are difficult to solye. Therciare many]] equations and each equations depend on
the other. The Cosmélogical priniciple réduce the many equations that describe
the entire universe to arsingle Friedmmansequation. Remarkably the cosmological
principle allows us touinderstand the eV(alutﬁ,on of our spacetime background. The
small scales structire igmot satisfying the cosmological principle. However, it can
be described throughiperturbations arm_md the smooth background. The recent
data from the observation such as the C‘rég-fnic Microwave Background Radiation
(CMBR) reveal that the CMB photons co,mH}g from different places of the sky
have almost the same temperature This ﬁﬁe crucial evidence for the validity of
the Cosmological Principle [7;°8,9]. -

1.2.1 TheBig Bang Model and Hubble’s Law

In the hot big baﬁg model it is believed that the universe began in a very hot and
dense state called theBig Bang. At early timies, the universe was filled with a hot
plasma of elenientary particles such|as electrons, protons, jand photons. At the
temperagure higher than the binding energy between nucleons in the nucleus and
binding energy between proton and electron in the hydrogen atom, photons can
scat tor withmuelei and atom’ to knock them out of bound state, heneg nuclei and
atoms could*not form. "Aceording to'the modern cosmology-it is strongly believed
that the universe must have undergone a period of rapid expansion during the first
moment after the big bang. Such a period of accelerating expansions in the very
early universe is called the inflation. The idea of inflation was proposed in the
1980’s to solve some cosmological problems such as the flatness problem, horizon

promblem and the monopole problem [7]. After the end of inflation the universe



cooled down, if it cools below the temperature characterized by the binding energy
of hydrogen atom then an electron can combine with a proton to form a hydrogen
atom. This era is known as the recombination (electron and proton recombined
into a neutral hydrogen). In the recombination era the universe is sufficiently

cold so that photons do not scatter much with elementary particles leading to

In the expansi ' Wogeneous and isetropic universe, the relative
= k-.ﬁ. )

velocity and dis ) of obser 1 Ok oy the Hubble's law
(1.40)

where H(t) is a foufd o on! time called the Hubble parameter.

where

O and O are obserﬁer

Sﬁ'ﬁﬂﬂﬁ NENINEINT

7” is a pc tlon vector of point P g\nth respect to observer o',

Wﬂmmmummma Bl

7(7,) =T () — (), (1.42)

denote that o (f;) is the velocity of point P with respect to observer O, @ (7,)
and ¥ () is the velocity of point P and velocity of observer O relative to ob-

server O respectively. The cosmological principle states that no special position



in homogeneous and isotropic universe therefore Eq.(1.40) should have the same
functional form at any point which implies the Hubble’s law. It can be verified by

the following steps

7(r,) = HU)T,—Ht)7y
(7
' (1.43)
you can see that the Hubble 4 A al form under the translation
from one to anothe — '
Let us rew

(1.44)
and integrate i

(1.45)
or

(1.46)

, cal [actor with cosmic time ¢. The

where a(t) = elo H(t
coordinate x is known' as fhie comoving ate. A freely falling particle is
or Eq.(1.44) tells us how distance

homogeneous and isotropic

at rest in this coordinate.

between two points_chani

universe all gbjécts mov c away (or contract) from thi ¢ observer at any points.
ﬁﬂ; —

Differentiate Bl ) ‘

>

. I‘!‘
ﬂ =v= =—_H(t)F, (1.47)
we turrﬁ the Hub‘lﬁaw and hence the'Hubble girameter is equal to

ummmw M s
meﬁﬁ?ﬁﬂﬂ%ﬂ NYIA

he assumption of homogeneity and isotropy force the line element into the form

dr?

1 — kr?

ds* = g datds” = —dt* + a® (t) { r? (d92 + sin? 9d¢2)] , (1.49)
which is called the Friedmann-Robertson-Walker (FRW) metric. a(t) is the scale

factor and coordinate (z!,z% 23) = (r,0,¢) are the comoving coordinates. In
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Eqs.(1.49) the Greek indices p and v run from 0 to 3. However this metric has
isotropy in space but not in time direction. Constant k£ in the FRW metric de-
scribes the geometry of the spacetime where £k = 0,41, —1 corresponds to flat,

sphere, and hyperbolic geometry respectively [5, 6, 7, 8, 9].

From the FRW metric, the non zero Christoffel symbols are given by

(1.50)
The non zero comp
(1.51)
- (1.52)
where a dot denote S time t. Eq.(1.49)

show that the !I e factor a(t) mly single dyn cal variable therefore

the information aout dynamics of the universe is contalned in it. To derive the

differenti volutio scale c the Einstein’s
ﬁ ill ﬁ Q@% rgy filling the

field e
unlvers he energy—momentum tensor then take the form
ﬁ m jj mj§ eEJ -
,l @eﬂgf]ej ressur ylﬂ :]e@ given
T=T!=-p+3p. (1.54)

Plugging these objects into the Einstein’s field equation in the form

1
R,, =8rG <Tlﬁ‘ — §gu,,T) . (1.55)



11

The pv = 00 equation is

a ArG
-—=—— 3 1.56
C =T (o), (1.56)
known as the acceleration equation and the pr = ij equation is
i a\® _k
—+2 (—) +2— =4nG (p+ 3p), (1.57)
a a 0

Use the acceleration equation derivative in Eq.(1.57), we obtain
(1.58)
this is known as the
The Einstei
N\ ' (1.59)
From the Einstein v that the enc oy-momentum tensor
vanishes ' \

A ‘ (1.60)
which gives the energs ’ ONe d the Euler equation fa-
miliar in fluid mechani ...:,;, ......... t onsider the zero component
of Eq.(1.60) =

= .:‘ —:;.';::'_:;2 ol
Y. o

ﬂp+3 (p+p) = 0 | s (1.61)

Y RHAMHNANAOND......

is the acceleration equation Eq.(1456), the Frlednﬂn equation Eq.(1 and the

AICTARLT AR mmmmm

quatlon with respect to cosmic time, ¢t and use the continuity equation to elim-
inate p term. Thus, we have three unknowns, the scale factor a (t), the energy
density p (t), and the pressure p () with two independent equations. Therefore we

need another condition. The additional equation called the equation of state is
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a relation between the pressure and energy density of the component in the uni-
verse. Fortunately, in cosmology we usually deal with low density fluid for which

the equation of state can be written in a linear form
D= wp, (1.62)
/ rewrite the continuity equation in the

//// (1.63)

» equations so a system of

where w is a dimensionless number.

following form

Now we have thre
equations can be can integrate Eq.(1.63)
to obtain

(1.64)

The recent obs is close to a spatially

flat geometry, k = riedmann equation in flat

geometry to ob hat de b the time evolution of

our flat universe
(1.65)

where t( is the initial time. two welllknown cos ological fluids are matter

or non-relativistic par ivistic particles. The pressure of

non-relativistic particles is neg guation of state is w ~ 0. Then the

3

evolution of the univers lera is given by pimatter < @~

and a o< (t —1g)3. For relativistic particles such as photon g, thie equation of state

" ‘g atistical mechanics

and classical eleﬂ)dy A ntion oﬁe universe during the
radiation dominated era is then given by p,eq o< a=* and (t — to)%.

2 Db ek bttt ) Y 717
U
From the previous sections we Idhow that ordinafys matter such as Basfyons and

e R
e co ts will cause xpansion of the universe to slow down."On the

other hand, the direct evidence of late-time cosmic acceleration was reported by

Perlmutter and Riess from the Supernovae Type Ia in 1998 [1, 2]. The source for
current acceleration of the universe was called dark energy. The word dark mean
its still mystery for us to answer the question What is the physical cause of the

dark energy?
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The first candidate for dark energy is the cosmological constant A [11, 12].
Historically, it was introduced by Einstein to obtain a static universe. Let us
consider in static universe, @ = @ = 0 then the equation of state give w = —%
hence the universe was filled by a fluid with negative pressure. However, what
physical matter has a negative pressure so the Einstein’s field equation has no
static solution. In order to solve thi

the left hand side of his fiel

oblem he introduced an extra term into

-~ ‘ (1.66)

;un
q In fact the Einstein’s
te covariant derivative of

, G* and the energy-

where the addition
field equations all

the metric tensor
momentum tensor st ti ; V,.G" = 0 and energy

ation of state p = 0

(matter dominate - (e s Thedifl tion for the scale factor
(1.67)
Tt is shown that a‘positive A represent,. i to balance the attrac-
tive gravitational forge fr ST ’} Ty matte ‘ instein abandoned the A
term from his equation is e expansion of the universe
in 1929 is confirmed, meanifig that the whivessé is not static. In addition, after

the discovery of the acceler nsiono; =

universe in 1998 the cosmological
constant is baﬁagam as a canﬁ&atef(‘)f" da

e physical cause of the cosmolog] 1ca "4. ? In the quantum
18 1ot really empty. It

permits particle—ld tiparticlé pa ear and then annihilated

in a vacuum. This fact inspires some cosmologists to interpret the cosmological
const time geometry
or gra ‘mﬂﬁ,ﬂt WEZ; feieﬁgy—momentum
tensor pdrt or 1nto the right hand side of the Einstein’s field equation. Let us
con51der the equatlon of state vac 1S & conth in time
A mﬁa I Terpb Yok T

qlece e and a vacuum plece s : —PYuv, the Einstein’s field equation is
R, — 5Rg,w = 87G(T2" = poacGuw)- (1.68)

Comparison with Eq.(1.66) we see that the cosmological constant is equivalent to

the vacuum energy density

A

—_— 1.
G (1.69)

Pvac =



14

As a result vacuum energy has a behavior like cosmological constant representing
a repulsive force to cancel the attractive gravitational force which is the hallmark

behavior of the dark energy.

Quantum field theory is an important theoretical background for the cos-

mological constant. Cosmological constant corresponds to the vacuum energy of
quantum field in the ground state. 'f/ m energy or zero-point energy of a

(1.70)
is ultraviolet dive - J, correct up to a certain
momentum cut A ‘ _ ‘ﬂh ~ 10 GeV. We then
obtain the vacuum

(1.71)
According to the cos celerati  . Ay} We re ] ¢ the energy density of the
cosmological con il \ 7

(1.72)

mplies that 22 ~ 10720 [8, 9].

one per 10'%° around the Plank

much smaller than the pvai-.'j '."Z )5

Thus px needs to be fine tuned at the le
epoch in orderso satisfies urrent’ cosmic ion expansion. An extreme

ﬁne tun]ng 1 "f" IHI-IIIrllll-’llll-nll-llllﬂmlrlﬁﬁii':ﬂ\f Sica,l cause Of the

cosmological o

If the source of dark energy is not the cosmologicﬂonstant then we seek
some alternative m(fels to describe the lat -time accelerated expansion of the uni-
verse. entl odels of dark
energyﬁuﬂ ﬁrﬂﬁmﬁ wg ﬁ]eﬂ tensor in the right

hand si f the Einstein’s field e ation. This approach is called modified matter

TR AT

hand side of the Einstein’s field equation. The models that an element to this
class such as f(R) gravity [25], scalar-tensor theory [26], Gauss-Bonet dark energy
[27] and DGP (Dvali Gabadadze Porrati) model [28].



Chapter 11

ﬁnergy Model

chap*r p@gly believe that the uni-

dubbed dark energy, which contributes to the

Casimir Da

According to
verse consists of a
accelerated expansio = _. Ié 15. Ho "«'Sv he physics and dynamics of
dark energy has " ' Ly, it was found by Brian
Greene and Janna'l " it the ir ene L‘ e from fields fluctuations in
ial role in the accelerated expansion

a crucla
)¢ f\ \
\\L \‘a d spins, the total Casimir
i

lmark | of dark energy [3]. In fact
_'1 ent
abilizes the size of extra

of time then the large direc-

d PN

uum energy to accelerate expansion

However, the shape in tra dimensions were not consid-

ered in the previo e this chapter is a review

)

- .

of some works ef-Burikiamretmai-f3{=to-inci < 1n the cosmological
h i ] . .

dynamics by assuuning This review is organized as

the following. In section 2.1, we review the moduli spac the torus. In section

2.2, we have constr ted the cosmologlcal dynamlcs on M3 x T? spacetlme In

section e the Casimir
energy u g\ sire laﬁ e space 1th toroidally
compact d extra dimensions. Then we go on to construct eﬁectlve potential con-

trib H rd by é?asmur energy of ma sive and_massl 111 M 143 J241 section

3 Tt AT INETa Y

2.1 The Moduli Space of the Torus

We can construct a two-dimensional torus by identifying a region in the complex

plane as shown in Figure 2.
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Im(2)

A two-dimensiona omplex parameter 7 =

1 + 179 called the
(2.1)

Note that 7 is a istorted. We can define

a complex coordinatg

(2.2)
where yt, y? € [0,

(2.3)
because the vohw ei e determinant is 1. Fherefore the interval
on the torus e .,;,fnam.....;..m.. ‘I;i"'

| (2.4)

.!I
|
W

this implies the ﬂat etrlc on the torus

I
iF |

ﬂ‘LlEJ’J NENINRINT =

For 1 = 0 and 75 = 1 this would®e the metric dapal29]. However, thére'are some

VAR SR N RE

T transformations we can identify the region in the complex 7-plane containing
points that represent equivalent torus. It is called the fundamental domain for the

moduli space of the torus:

1
) < Re(T) < Im(r) >0, |7|>1 (2.6)

N[ —
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2.2 Cosmological Dynamics in M x T? Space-
time

Begin with the Einstein Hillbert action on the product space M!*™ x TP between

a (14+n)-large dimensional spacetime and a compactified p-dimensional toroidal

space
tn) — p(1+n)] , (2.7)

ensity. It is a function of

the metric h;;, gravitati “Con Ricei scalar in (14-n)-dimensional

spacetime respectivel fe asSurnc . qa-.. Om ogeneous but anisotropic

M (2.8)
where the four dimensigna Ir = W1 - L = 5, ,n is the Friedmann-
Robertson-Walk gric fin f t univers 0). ' The metric h;; represents
the p-dimensional dct Sp fthC Smpact coordi ate y' € [0, 27]. Note that
hj=1..p. " el 5 ' ! ‘. ' .

amics of a 4-dimensional
2). The metric h;; on the

ologic
A

torus is

(2.9)
where 7 = 7 ,’r “1s the volum a actor for the extra
dimensions. To ebta scale factors a(t) and b(t)

that describe dyz !I ic of the universe. First, we calculate .ln e Finstein tensor and

energy momentum Iiensor for our matter 1 and then plug it into the Einstein’s

oon AL R ] zmw 3 1 o Il

Note thﬂfrom the above notatlgl we rewrite a metrlc tensor for our spacetlme

QWﬂﬂﬂ‘in%ﬂﬂmﬂﬂﬂ

0 a2
0 0 a2 0 0 0
) = : 2.10
(ab) 0 0 0 &2 0 o (2.10)
0 0 0 0 & ©n
T2 T2
\ 0 0 0 o o ¥
T2 T2
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(-1 000 0o 0 )\
0 % 0 0 0 0
0o 0 L 0 o 0
ab 2
= a 2.11
R I (2.11)
0 f Ju
The Christoffel conne
(2.12)
the non-zero co
bi)TQ,
}! 5 - 27_227
Ruuyy, (2.13)

~AuidnEningng
AN TIiIa Y™
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For our metric tensor, the non-zero components of the Ricci tensor are

R = —52--%-3%-22

oo bab  b? C1BRE 10*2 b 167
¥ g _ ‘ 271 9w 27
briab b ats ) foallg® 10°m77  30ar
R56 = 3 ! + e . - 172 - !
2 amy
1b%7
2 T2 ’
3b2 o .
R65 _ 5 aTy
aTy
1 b%%
Res = LS
b2T17L17L2
2 17.:2 T b27'1’};1.
2
Next, the Ricci scalar can be-caleulated .T following

ﬁﬁ'?" ,L..-‘

- (2.15)

At this point, t EI instein te

ab - ngab (2 16)

e AU INENSHY DT e

equatloﬂf motion for the scale f ctors. In our spacetlme background using the

QW]Mﬂ‘iﬂJ UNIINYAY
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above results we obtain the non-zero components of the Einstein tensor Gy as

a2 ab B 172 142
Gy = -3— —6———+-—= L
0 a? ab b2 + 472 472
a2 ab B 172 1+ G b
G = GP=@G3= S B A ) D)
1 2 3 a? ab b2 41 472 a ’
5 d2 2 3 T16.L7.'1 ’7'167.'1 T17L17L2
Gy = 35— R 3
a _ 2 ars br; TS
37
473
' b7'1 7'267.'1
G2 = -1
6 br3
8 =
7'167’1 7'1’i'17"2
G6 _ - -
6 b7 it
4 7'22
The energy-momentunm tensor ¢ .: 1he ca ed from the action for matter field
‘ _ e +n)(h”), (2.17)
5?,? = :
therefore TN

" AUNIBEASHEINT e

From thalieﬁnmon of the energy- Jnomentum tensor in Eq.(1.36) we obtaln

QW]Nﬂ‘iﬂwﬁ%ﬂﬁl']ﬁ g

1th one index raised and use the chain rule in the second term this takes the

convenient form

Tba = gac cb
(2.20)

o a ac ob 87'1 87'2
= —pdy +2g ( ag° D 5 O0np+ agcb872p>
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where
1
21 1
po— [955966 (4™ ] ’
56
o= _g )
456
We obtain the non-zero omentum tensor

Ty
T!
T3
Ty
Ty

T3

Using the following €oml a‘%

J

" ¥

we obtain the dlffelf.ntlal equations govern the cosmologlcal dynamics

AU TNERTNGINT
Wﬁﬁﬁﬂ%@ﬁhﬁﬁwmﬁ@ o)

7'1 2T 2
1- babpﬁD — 2710n, pop + —Orypep ¢
T

T2

87G
H, + 2H? + 3H,H, = —WT {—2p6D +

To

bt
7+ <3H +2H, — 2= ) i = —167GT3 { 3bP6D + 207, psp — o 872P6D}

T2 T2
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Fy 12— 72 7 7 br}
—2+ ! 2 2 +3Ha_2+2Hb_2 = 87TG{—218bp6D+27’187-1p6D—27'2
T2 D) T2 T2 79

1+ (%) 2] Or,pep},
(2.21)

where G is the 6 — D gravitational constant. We have defined the Hubble’s pa-

b
b

and pgp is the Casimir energy densi

rameter H, = % and H, = 7, with a dotted sign represents the time derivative

in six dimensional spacetime.

| —
In this section, w in -'a,_,gv associated with a scalar field
of mass M in our_s The T‘H onic degrees of freedom will
ression as the bosonic degree

of freedom exce dh oktih ini sign. { % L™ be the spatial volume
of non-compact spacctiuie, ai "V, =T be thewe \ compact space. If we

e evaluated by

j+ M2, (2.22)
where k,;a = 1,... -compact spatial direction,
n; € Z;i=1,..,pis the ompact direction.
Using
(2.23)

then v

/ " k5 ealy b himam, - MR =

7

=
k™1 /6, k, + hitnin, + M2,

change ﬁlﬁ ﬁm’c i o th
cas — —<—>ﬂ§-‘]m 1+ :ﬂ | ::]lil’g? (2.24)
' 22w 0
! b

PRIRIATRIMTINYTEY

B(l-l-r,—s—r—l):/ tr(l‘l‘t)sdt: P(’f’—i-].)]:((:z)_r_l).

(2.25)

Therefore

[ e NN
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—‘,—1

and impose = = —s, we obtain

7 121 10, D(s)

Ergs = = § hnn; + M*) 5. 2.26
Q(L) 7T1+225F(_% nmj( nn3+ ) ( )
Note that
2 :(hijnm~—|—M2)_s 1 . 2)
J ’ b27'2,

nin;

1 2 2\—s

Sile l-/:-/v la-§ ‘o fuinie [30]. After a few steps

0l s . fion f rmula and property of

which is known as
of analytic manipulat
the modified Bessel tiof

(5t~

By 1 b*M?
A Crn(s — 5 7_—2)
cos(2mmymk)

(m? + —bzgﬂ)%_%

b2 M2
+
T2

)} (2.28)

LRI 7
where the Epstein-Hurwitz zei w ’f. )i! is.defined by

Cem (8;9) b = : I‘-H‘

s _ sl
e | —q §+ ﬂ—q :IJ

n' K, (2mn/g)

L (s)
Note t nsert Eq.(2.36)
into Eq. 1 (s = —2) and
(s — 1 . To eliminate the dlvergent terms correspondmg to the constant

mﬁqa »m‘tseiu ﬁmﬁ% Tty 1

‘Casimir effects by renormalization. The final regulated Casimir energy density of
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massive real scalar field pyp(h*) in 4-dimensional spacetime is

Ecas
p4D(b27 T1, 7'2) = v,

= —(Ar?) {25 (b M?)TEHE Y RTEK, L (2rkbM \/T)
k=1

In the case of ma

s zero in the Casimir

$)(2mhk\/T2bM )*~

95+3

27‘(’]’0%)8_1

K

5=3

where ((s) is the faEuhar Riemann zeta functlon defined by

ﬂUEJ’JﬂEJ%WEJ’]ﬂ’i

The Casmnr energy density in ]‘34—2 dlmensmgls given by pgp = b)2

BRI IHSNIINHI

of the torus. Therefore it is sufficient to consider only the fundamental region
where 7 > 1, and —% <7 < % of the shape moduli space. In the fundamental
region, there are two minima and one saddle point of the Casimir energy density.

The saddle point locate at 7y = 0, 7, = 1 and the two minima locate at 7 = :I:—

Ty = % This is shown in figured 2.1.
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2.4 Particle Spectrum and Effective Potential for
Moduli Fields

It is demonstrated in [3] that a careful mixing of massless and massive, bosonic
and fermionic degree of freedom of the bulk fields can lead to a Casimir energy

density with local minimum with respé¢ 0 the scale factor b of the compact extra

7 uli 7y, 75 it can be shown that
the true minimum of the mixed Casimir ¢ ity (and thus the potential)
. V3,2, i!conhﬁ“jcase of undistorted torus

Kawvheré the e iareset tom =0, 7 = 1.

locates at 7, = %1

considered in the.

The simples background consists
ssive fermion of mass

d that for the range

of: (i) a massless bos
my and (iv) a

0.4 < X\ <0.42 ang ity has local minimum.

o D = .. "y .
As a result, the alu'g.gﬁﬁlb’tot - Casi rgy density at = £1/2,

Ty = v/3/2 is lower than thg@f he saddle point 7 = 0, 75 = 1, for all range
et = A S
of A\. Howeves,, for A < O.If)?f"ﬂlé é{;éi’*'g d omegnegative around the

minimum ane td i tive enerev-condiwon. A negative value

of the energy=dénsity will not

Therefore we chﬁe the valu Y

dynamics.

2o AUEINENINE DT e
ariaehsa i ngnay

By numerically solving the differential equations in section 2.2 , the accelerated

1mulaﬂn of the cosmological

expansion of the large three spatial directions and the stabilization of the extra
dimensions can be demonstrated to occur at the minimum of the Casimir en-
ergy density. The saddle point 71 = 0, 7 = 1 is an unstable equilibrium of the

dynamics.
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When the initial conditions of the cosmological equations of motion take van-
ishes within a small vicinity of the saddle point, 7 = 0, 7, = 1, it will roll down
to the true minimum at 7, = 4+1/2, 7 = 1/3/2 even with small amount of per-
turbations. The rolling of the cosmological dynamics, a(t), b(t), 71(t), 2(t), Hy(t),
and Hy(t) to the true minimum of the total Casimir energy density is shown in
the figure 2.2.

_ 9V
av

energy density and V is the volume. ssure in the three large spatial

e Casimir energy density

is independent of the.s AGHOL in large direetional dimensions so p, = —p

or w, = —1. The physi St in the direction e [ the two dimensional torus
are defined by / 1 N \
where K =5, 6 ofi 500 the at

O -\‘ ate parameter

(2.31)

therefore
wy = - Tos  (232)
We (2.33)
At the stabi g__,w—_—;——ﬁ—; = 75 = 0 it can be
shown that y_k ! .*1 1ation of motion in six

dimensions. m _m

The Casimir fnergy density in the off-diagonal components of the stress
tensor a ical equations
Wlth V1E¥Jﬁ gauﬁ ‘ﬂm mﬂo Elﬂ;i cous fluid. Let

1% 0,0,0,0) be the six-velocity of fhe fluid in the comoving coordinates.

f the pr c ion tens e energy-momnu ensor
S}‘W’im NN TRETRY

i Tap = pUaUp + (p — (0)hap — 210 4B. (2.34)

Here § = V 4U* is the scalar expansion and o5 = hghgv(gUD) —1/5hap0 is the
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shear tensor. The non-zero components of the energy-momentum tensor are

T(? = =P
T = T; =T; = p,,

3 7:2 T1T1
5 = — &) — 2mp|=(Hy — Hy) — =— —

We assume there is r15@0SLY i e 1101 o npact directions because of the Cos-

M

mological principle. Jihe foreMiusteinds f ld equatio this case can be written

as
H, +3H2 + 28, B E 0o 5o i 20on— GO —ip(Hy — Ha)],  (2.35)
Hy+2H2 + 3H Hy & ~ 5 [pp 3pa 20 ) =n(Hy — H)],  (2.36)
167Gy 7, (2.37)
— 487Gy 2. (2.38)
T2

The shear v'l' l ity in_compact dimensions at the s ' point 1'% can be

identified by | ‘ﬂ"

a,s | ‘,l‘ 2

167G ' (2.39)

= o ﬁrﬁfﬁﬁ g
9 AINIUURIINENAE
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to the saddle point.



Chapter 111

In the 1920’s K 7 an add o d e ision in his attempt to unify
gravity and electr 19 14]. He i d world is a direct product
of the four-dimensional Min wiski pac > W, ; C _. 1 with the radius R. In
1926, Klein showe oo A
Plank scale 10~ ¢

nension determined by the

In this section v 1 IS¢ \: the effective 4D theory
looks like, let us comsider a toy-madel whe the fifth direction has been
compactified on a circle of ra BN {Fe=hE The five dimensional Klein-Gordon

equation for bulk massless & .:'f{ra_a dii A
=0 (3.1)

where a = -v—— ——————————— otes 7 {";[ npose the periodic

boundary conditia .
' B(z,y) = <I>xy+27rR ﬂ (3.2)
e Fw fl"'ﬂ Wﬁ’p WEIN .
TR N INBARY -

the excited mode or Kaluza-Klein (KK) modes, this gives rise to a tower of states
dubbed KK tower. By substituting the last expansion into the Eq.(3.1) we see

that each mode ¢, satisfies the four dimensional Klein-Gordon equation

(0"6, +—)¢k( ) = (3.4)



30

with the mass term replace by
> _ K
M = P
The zero-mode ¢y remain massless while all other modes become massive four

(3.5)

dimensional scalar field with mass term my = £.

R

In the K K scenario we assume that /2 is small and then }lz is large compared
to currently available energy scale. theappreciation of the KK tower depend
on the relevant energy of Lf Xperime compactification scale: (7)

Given the energy F can not be produced and

physics would beW i w@cessible energy become
higher than + or a 7 as'we do m : ts at shorter distances. We can
discover the KK oo adQ/ Hencs i 5 sie the extra dimensions.
However, the shapg Kaluza-Klein theory.
The phenomenologica uli were pointed out

in [32, 33, 34].
3.1.1 Large viation From New-
ton Gra

The Standard Model of pariiele physic Sid A successful theory because it is consis-
tent with several expenmeu.w .@}.1 the otlier hand, we believe that the Stan-

dard Model isi complete because it lfals a -_ ‘ . ©onsider the two fun-

scale mpgy ~ 103

~ 10717 is very

Pl

small. The large erarc y bet and tﬂ Plank scales is highly

unnatural and it is called the hierarchy problem

vl Anandneng

Arkam— ed, Dimopoulos and vali, its inventors. The model is to suppose

TSR

Tocalized on a 3-brane (a 4-dimensional spacetime object). In the other hand,
gravity can escapes in the bulk (all 4+n dimensions), it becomes 4-dimensional
only at the distance far away from the size of the extra dimensions, r > R. The
Plank scale Mpj(44n) of this (44n) dimensional theory is taken to be ~ mpgy

according to ADD scenario. In a distance r < R the gravitational potential take
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the form
mimg 1
V(r) ~ - —- (3.6)
MP?Ei—I—n) il

However, if the two test mass mq, mo placed at distance r > R, at such distance

the gravitational potential take the standard Newton form

1
- (3.7)
so the effective 4 dime
(3.8)
We impose Mp(4+ CO ,- spatial dimensions of radius
R be chosen to reprod \
(3.9)
For n = 1 the JOF g0 & \ l 1 ent with the Newton
gravitational forceda ' s led \ ADD scenario. For all
n > 2 the modificatic of gravity: beca »\ at distances smaller than
currently probed ex ' 3 38|. From the above formula if n = 2

then R ~ 0.1mm this case is very exciti 2 se experiments can be performed
in the future to look for d -'---m‘-- lewton gravitational force law in

precisely this range scale. . j..-’: e -"’

In conclusion. ADD scenario tak s the cle K scale as the only funda-
mental scale i s'i l ~-dimensional Plank

scale is not a furﬁme calm so big with respect to
electroweak scalébecause of the large size of the extra dimensions. In this frame-
work gravity is so feﬁ the Plank scale @/p; is so big) because the graviton is

R A
bl e ASMNNAINENAY

In this section we investigate in some details the aether compactification model
[18]. This model based on Lorentz violating vector fields with vacuum expectation
value (vev) along the extra directions to hide large extra dimensions which does

not invoke brane as in the ADD scenario.
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3.2.1 Model Building

Let us consider the aether field in a 5-dimensional flat spacetime with coordinates
z% = {z",2°} and metric signature (—, +, +, +, +). The fifth direction is compact-

ified on a circle of radius R. Now we consider the aether u® is a spacelike-vector

type, and we can define a field streng
(3.10)

Even though the aether f 7 tromagnetic potential A%, its
t the norm of the aether

int

field strength tenso is

vector field is fix

(3.11)

as
Ei] , (3.12)
where £; represent vaiot \ - he field and other fields.
Note that compo nr s 1sion of mass then v? has
a dimension of mass s aidag A ult \1\ enforcing the fixed-norm.
With this action, t 7 ; ] ame varying action with respect

to u® is
(3.13)
The value of A\ is dete

component along u’. To do that in mathematical context, we multiply both sides

of Eq.(3.13) by e - Y}

or equation Eq.(3.13) into

y , @ (3.14)
then contract in ces b and ¢, we obtain a Lagrange multiplier by used the con-

CHlEINERINEINg, -

Substltuﬂ it into Eq.(3.13) we obtam the equatlon of motion for u® is

QW']Mﬂ‘TﬂJW"i’W]EI’]ﬂ I

We impose the aether field points along the extra dimensional direction,

there is a background solution in the form
u® = (0,0,0,0,v). (3.17)

This background solution implies the field strength tensor V,;, = 0 so it is a solution

for the equation of motion Eq.(3.16).
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3.2.2 Energy-Momentum Tensor and Compactification

By varying the action in Eq.(3.12) with respect to the inverse metric tensor g,

we obtain the energy-momentum tensor for the aether field in the following form,

1 1
Tab = ‘/ac‘/bc - Z chCdgab + uaubucvdvdc (318)

For our background solution in E zero while the expectation value of
the acther field does not vamish. When nd spacetime is not Minkowski
then a fixed acther field can give a momentum tensor [39, 40].

(3.19)

he -
& adion field that param

S space background, there is a

(3.20)

where z is the 4-di aleooidinates and ¢ a
eterize the siz ] ' - iof7 o

background solution

This conﬁguratio sapis 3 6), as well as the con-

straint Eq.(3.11) a is
(3.21)
And the non-zero energy-m "W tun

(3.22)

The important feature is the energy-momentum tensor W@V&nish when the extra

L1 (ed i a e N
R byley EaiRR

e now consider the effect of the interaction term L; in Eq.( 3 12) Wthh in
general can include the terms aether field coupled to scalars, fermion and gravity.
Now we will investigate the effect of the aether coupled to real massive scalar field.
The simplest Lagrangian is

1

Ly (3(}3) —m*¢® — —uu

b
2 2M¢ 8a¢8b¢7 (323)
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this imposes a Z, symmetry, u® — —u® because if we have not imposed it the
lowest order coupling is —,u;luaaagzﬁ = —,u;l(aau“)qﬁ by integration by parts which

vanishes in our background solution for u®. The equation of motion for this La-

grangian is

0,0% — mP¢ = —u;zaa(u“ubab@. (3.24)

(3.25)

(3.26)

of the aether vev to the

; : / he fifth dimension on a circle of
radius R lead to the tion of ¢ omentu at direction, ks = n/R.

In Kaluza-Klein his extite s rise t0 a KK tower of masses

(3.27)

(3.28)
We will examin® the W itposed the vev is v ~
Mp; and the P 10 “ TeV then asse e excited I:I des are reinforced by

a factor of 10% 18 By comparison with Kaluza-Klein theory the first excited

AuAmEnE e

can not scover the KK exc1tat10n although our world have one extra compact

state n

as larg

dlrectlon

QW']MT]‘EEU UANINYAY

3 Ather Field in M x T? Spacetime

In this thesis we consider the aether field in a product space between a 4-dimensional
spacetime and 2-toroidally-compactified space. Let define the coordinates x® =

{z#, 2%, 25} where z#, with = 0, ..., 3 are non-compact coordinates, while z°, 2% €
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[0,27] are compact coordinates. Similarly as in the previous section we consider
the aether u® is a spacelike-vector type, and we can define a field strength tensor
as

Var = Vaup — Viu,. (3.29)

Here we investigate the action in 6-dimensions with Maxwell-type kinetic term

(3.31)

(3.32)

From previous ¢

ds® = —dt* + O+ |7 (t) [Pdz’dz®] .

»F (3.33)

To find the backgroun ether field points along the extra
dimensions, so that '

(3.34)

this solution gn _; C v the constraint eq -

\Z ” AN

v (et (3.35)
Usmg the complete square method we parameterlzed the solution in our back-

“AULANENTHENAT o

where 9&‘ an angle parameter. énd components of a covariant Vector define as

RIS IUUNINEIAY,,

» 7

By varying the action with respect to the metric, we obtain the energy-momentum

tensor from the aether field in the following form,

1 1
Tab = V:zc‘/;;c - Z chCdgab + uaubucvd‘/dc (338)
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Raising an index we obtain

ol
T

T3l

T3

5

Tol =

where H, =

2
(4Hb 74 + 4 cos® 077 + 2sin 07y 7 + 75 + 4HyTy (sin 207, — cos 2«97'2))

87’2
02
8 (4Hb 75 4 4 cos® 07 + 2sin 07175 + 75 + 4HyTy (5in 207 — cos 2972)) 5;,
02
BT 3(4Hb72 (cos 207, —sin 20, ) — 473(2 cos O(Ty(sin O71 — cos 1)
(3HaHb+Hb —|— -'-.,5‘_“::\% p | COS 7 2 7L1)+HbT2’f'2)+T2(—400829
(2 4 cos 20)i7.— 3sit i 5l 08 20 + cos 40) 73
+4 cos? O75(sin 26 L7 T2+ T2))) + 271 (2cos 0
(2 cos? 0 sin O (08 30, + 2 cos 0) 75 +2sin’ 672) + sin 207 (— sin 20

(3H, %7,

V2 r A5 ' '

4_723( 0T S ) 054'?‘4‘ ‘\ 2) 71, ST — cos 012) 71 (2Hy 1o
(sin Oy . sinfr; + cos 072)72)

+(cos 7y s #\ n ] 071 + cos O7y) 7,
+(sin 6 s 079) + (cos O — sin 1)1y
+(sin 07y 4:€os _ 1 "\\ + (sin 01y + cosO1y) 7
+(sin 67 — co 07, ) idha{sinfz 39 0s 071 + sin 073 (4 cos? 07}
+4sin 297"17"2 —|— h‘{= 17 2(2 T2 + sin 207 — cos 2073)

—27’2 2’7’2 Hb % ﬁ

v2 08P

—(—4H; sin 07y — 2sin 075 Hy, — 2 cos 0 Hyr 27 2 cos® 0 sin 077
+2 v O(2H, 15 + sin 207,

—cos 207,) — 2 cosb BT = €020 sin 057
02

cos 2071y — sin 207y) — 2(cos Oy + sin 073 (sin 079 (3H, H,y,

S 4H
A ?Jﬁ IBNG ?i N
(sin 20 — sin 460) 7,75 2 cos 20 + cos 40) 73 + 4sin’ Oy
—sm20 3H, 7 + 71) +%cos 20(3H, 7, +45))) + 271(2 cos 0(2 @of? ¢ sin 072
RN SN ERR

+ 08 20(3H Ty + T2)) 9)

% and H, = %. The important result from the energy-momentum

tensor is that 7)%|, vanish when the moduli fields is stabilized, b= 1 = T9 = 0.

Therefore the aether field will be no contribution to the accelerated expansion of

the late-time universe.
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3.4 Interaction of the Aether on Scalar and

Fermionic Fields

We now consider the effect of the aether coupled to real massive scalar field. The

simplest Lagrangian is

Ly=—= , : "V Vo, (3.40)
e have not imposed it the

lowest order coupling is — i u*V —%graﬁon by parts, which
vanishes in our background seltition for aether field e equation of motion for

|

(3.41)
Expanding the sealar field in Fourier me as the previ section, we obtain the
modified dispersion 7 -
)ni
(3.42)
where the ww_y he aether vacuum

expectation '1‘.*} 10 aﬂ of the scalar field

P

along the compaetified m: ks = ny and kg = no
in our spacetime-geometry. Eqs.(3.42) suggests that the«mass gap between the
different states in the ﬁ tower is enhancew the interaction with the aecther field

e ;ﬂ WEL I e WL AT g™ ™

Next we consider the fermibnic terms. ThezLagrangian for fermionic field

ARIRIATUNNINEIAE

Ed) - “p’)/ va¢ m¢w - H_ua¢va¢: 3 43
()

where i is the fermionic coupling constant with the aether. From the supersym-
metry the corresponding modification of the dispersion relation for the fermion

case can be written as the Eq.(3.42).



Chapter IV

In this cha z violating vector field

called an aether fig _ille 4 Luli ' hanism. We consider the
space-like aether fielg v I Miaxwe pey '_ 0 rm on the compact extra di-
' ‘ % gy of certain combi-
nations of fields with differe: S an l. . an @ ] -,,{ inimum that stabilizes
the size of extra di nsighs whi e large spatia ensions feel the Casimir
energy as a sort v e 12 y 10 ac e ler AR I bansion. It is shown here
that the aether field

1e moduli fields 77, 75 and
radion field b. In cergair i

of the extra dimensional

torus of the universe eyen in the matter ¢

We consider cosmologicat-dynariics: actorizable geometry with 4-

dimensional ERW me s-»—-;_'-— 7 7

where the four” din = 0 ..', - is the Friedmann-
Robertson-Walker metric in flat unives - while
the p-dimensional co, ‘mpact space with compact coordlnate y' € [0,27]. Note that

 ULINUNINYND T e

time wnﬂj two extra dimensions ‘(n = 3,p = 2). T he metric h;; on the torus

JRIAINITULWIINGA Y.,

where 7 = 7 + imy and b is the volume moduli or the scale factor for the extra

metric h;; represent

dimensions. For our metric Eq.(4.1) the background solution of an aether field
Eq.(3.36) can be written as

_(0.0.0,0, Y™ cose—T—s g vsinf (4.3)
b by
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The energy-momentum tensor for this background solution are given in Eq.(3.39).
Use the combinations of the Einstein tensors in chapter II, we define

2
Tl = (4Hb 75 + 4 cos® O7f + 2sin 0717y + 75 + 4HyTo (5in 207 — cos 29T2))

73
+ cos 20(72(—(3H,

- 47TG’U
T, = ——{2n ( ((3H, + 2Hy)T9 — T9) + ToT1)
+ cos 20(
~ 4 Gv? )
T|3 = 3 9 bT2T1
\ in 97'27'

2 \, \ — sin 46

0 7 1 aTQ’i’Q — 7'22 + ’7'27';2)}. (44)
Add the aether energy- entum tensor e Fitltein’s field equation Eq.(2.29),
we obtain the followiﬂg eq-' 6IORS-gOovern e cosmological dynamics between

) g 87rG I 2 277
H,+3H? +2H = —— 1 2psp + 1 - bOypsp — 27107, pep + 372/)6D

AUL INENTNEINS
RN i Sy

+-— T|2;

T2

1+ (3Ha +2H, — 2?) ™ = —]_67TGT22 { ab,OGD + 287'1,06D n 87-2p6D}
2

+27 5,
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o2 7 . br
2,0 _ 2 4 3Ha_2 + 2Hb_2 = 87TG{—2181;,06D + 2707, psp
Ty T3 72 2 2

2

—2’7’2

4.1 ther Field an mir Energy in M3 x T?

In this section, we w associated with a scalar field

of mass M in ou 1mae™] ITOL ¢ degree of freedom will
contribute to the Ce L€ /i ‘ as the bosonic degrees
of freedom except X i winus " e consider the effect of
aether field coupli o'the U niv encrgy

\: compact space. For

simplicity we define ' \

e the spatial volume

If we assume L > [, the zero-point crnerg alar field can be evaluated to be
. . o 4
Flos = (27r é E:;;."—:ﬁ:?&ﬁ:'::.u;‘ n? + BCniny + C?n}

Using regulariza method sobtain L:j asimir energy density

in the 4-dimensional spacetlme

ﬂu RSN

27.3/2+1/2 b2]\§2 —s/2+1/2

<n+a2A)§st A 2O

NYAAE)..

2 124 4242 - (mta2A)? 2(72)s/2+1/4
9 T+ T+ oA 1+a2C? (1+a2C?)
o0 27 (T1+a2 AC)km
Z po1/2 cos(“iarcz ) Ko 1 21k
2 b2 M2 s/2—1/4" %7 / 2012
kym=1 (m + 2020 12 A2 (T+a2A)2)/ / 1+a2C
’ ATyt AR e

2 4)2
\/712 + 73+ a2A? — —(Tlljo‘j; 02) )}, (4.6)
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In the case of massless scalar fields (M = 0), the Casimir energy density becomes
120 — 5)¢(1 - 2s)

(1+ a?2C?)s
T I0(1 — 5)¢(2 — 2s)

PaD = —(4772172)57'2{

_|_
V1 + a2C? [72 + 72 + a2 A2 — (711:522642)2]3—1/2

p \t"t inated universe

1
%

b ' 1S 110 h 0 Te ativistic matter field and
K L’

contribution. The simplest model

the Casimir energy coup d to.".ﬁ,' s
) | I
of the bulk fields in our spacetime

[l -J-_l" - .
onsists: ) a massless boson, (ii) a massless

v) a massive boson with mass m; =

te t

fermion, (iii) a massive ferm
-t

Amy and (v) amaeth e vacuum expectation

value v = Lﬁmi&; ameter to be \ =
0.408 and p14 = 50 res Hositive minimum so that

the moduli ﬁeldf an be stabiliz numerical results are shown in Table

IV.1 where subscripts in and stab mean it is an initial state and final state of the

cosmological d nanﬁc&s ectively. The (Mnological dynamics when v = 2, u =
S AR R

R TS
IR TN T A 8

9

In this section we investigate the effect of the aether field in the stabilizing mech-

anism of the extra dimensions in the universe with dominating non-relativistic

matter. We allow the matter to live in the bulk,

S = Sep + /d655\/ — gL atter- (4-8)
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This is equivalent to adding the matter energy density p,, o 1/a®h? into the
cosmological equation of motion. By comparing with the observational data, the
matter density today p,o is 26% of the total energy density of the universe. The
Casimir energy density today in the form of dark energy, ppo, will be 74% of the

total energy density of the universe. The energy density of dark energy can be

(4.9)

ponent is

“"-.L

T matter = ological equation of motion
becomes \ \
3H2 + H2 dbH M, £ £, (77 T8 ) S\80C e +87erm,
: 2 AN K AV AR 21¢
H,+3H,;+2H,H, = ka6 i) ) | bOhpsp — 2710;, pep + 7_—372P6D

2

. 272
Hy +2H? 43 H, bOypisp —27‘137106D+%372P6D}

by | i
71+ | 3H, +2Hb ) = —167Gz2 —81,,06D+2871p6p TQpGD}

‘LlEJ’J‘VIEJ%‘i g

87TG b 6 +27'18

awﬁ ik IR,

We use some of the initial conditions such as v = 1 —10,b = 0.12 — 0.15, 4 =
0.12 — 0.8, and 5 = 0.5 — 0.9 to solve the Einstein’s field equations numerically.
The numerical results show that the moduli fields b, 71, and 75 for these range of

the initial conditions do not stabilize.
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Let us consider the Casimir dark energy model when 7 = 0 and 75 = 1.
We choose the background solution of the space-like aether point along the extra
dimensions, 0§ = 7/4

=(0,0,0,0, —). (4.11)

\/_b\/_b

Using this background solution, the energy-momentum tensor of the aether field

can be written as

(4.12)
(4.13)
(4.14)
We assume the to posed as

(4.15)

In this case, the 6- otion become
3(%)2{6; s G e (4.16)
4%+8(%)2 ‘ TG (2 O, + Pt +074),  (417)
-4% 4y 12 ﬁ;_}we (BBt — praer +0*A), (419
where A = 3% ,,:;=—_"“=';':"%‘“-“‘ fential is sha _,.v s a function of b in

Figure 4.4. i Ction between SM

fields with aethemy setting [’[j
There is an mEerestmg result obtained by carefully tuning the aether’s norm,

v =0. ensions b can
be sta E ‘m rela rin ﬂrs The numerical

results the cosmological dynamlcs are shown in Flgure 4.5.

3 ;;m IR TINS AL

and the potential depend on the mass by pCas ~ mf, we obtain the

4- dlmensmnal effective Casimir energy:

@ (ba)2®

pmzn pmmw

— 2 x 0.142(—)]2 x 0.00566( 75, (4.19)
my 5
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where the numbers 0.142 is the size of the extra dimensions and 0.00566 is the
energy density at the minimum of the numerical results respectively. Compare the
4-dimensional effective Casimir energy to the observed value of the dark energy,

P (2.3 x 1073eV)4, we obtain

(2.3 x 10~%€V)* 2 x 0. ()2 0.00566(%)6
15k (4.20)
It is follows that b,,;, _,_ ‘ ' ‘ e ' 2228 = 3.18um. The
ADD scenario sho 7 | i
(4.21)
For n = 2 and 7 , 842 the F anck ‘ma; ) the bulk from the Casimir

dark energy mo

AW
dey eV~ mpw. (4.22)
ﬂl}“.l} \ 1 \

Therefore the siz e extra dingensions fec f'\ 0
is7e0] stent w

(

1.1.\, the Casimir energy to the
dark energy at the ¢ ; lue \ e ADD scenario to solve

We should mention here (he cale, x1, of the simulated figures
ve define t = 1tgm, GO =
xQGS,)n, p® Sl nean it is a simulated

value. From 16 ] i‘"

can be calculated from t

: "A

we obtain "'

AUEINUNINYINT o

It is interesting that in the Casimiir dark energyﬂqdel, the constarwof the 4-

PRIRINTO HAIINYTRY~

1 G©)
GW = = : 4.24
MI%M) Am2h? (424)
For GS}n = 10 we obtain
42D 2
Ty = ——simTd (4.25)
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By comparing a 4-dimensional effective Casimir energy density pgg = (27byin)? pfszn
with the observed value of the dark energy we get
4)
____Ppe (4.26)
4772b2zmp$7)nx4
substitute xo and x3 into the Eq 4 then
(4.27)

— H,! = \/3MZ,[87p, ~

ime scale in the simulation,

a2 dimension with the

»,. can be calculated from

0, (4.28)

we know that in the o-t] nSiof he I.q\ erse Qp = Qcqus = 0.76 and

Q,, = 0.24. From the i o tme tsqp ~ 15ty Then g4, ~

i : i ' ot T2stab
2 - Vﬁm-—mm.m—.--'-——.-i.

e 195 0.866
"0:499 | 0.867

i
0.498 | 0.868
0.498 | 0.864
0.5 67
81| 0.868

f

Table I\m Parameters for the s&ablllze solution in Vacuum—domlnatbumverse

ARIANNTUNATINEIRE
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Figure 4“ Cosmological dynaml(as in the vacuum dominated universe When v =2,
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312
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Figure 4 : Cosmological dynamlag in the vacuum ommated unlverse env = 2,

QW’Tﬁﬁﬂ‘imﬂJiﬂT}ﬂmaﬂ



48

3.5x 10°F
3.0x 10%;
2.5x 108}
=2.0x 108;
) 5% 108
1.0x 10%}
500000}

0.501
0.500¢
—0.499¢
~0.498}
0.497¢
0.496 0

0.324
0.322¢

0 320 £
; ' nmlllllﬁ

0318’ ‘ ‘ JUU w“uu
0.316; -0.002

31FI'£J€T?WEWI§W8’TTTT° -

Figure 4 : Cosmological dynam1? in the vacuum &mmated unlverse env = 2,
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0.020,

0.015

’::a |
,a“‘k H‘{\ )22 024

'i"'., 5 Y

Figure 4.4: The total Cagimif energ$ defidity in 6=dime sforM—5 A = 0.408,

DR

71 =0and 7 =

Figure 4.5: Cosmological dynamics of the matter-dominated universe when v =
0.5, m=0and =1



Chapter V

We have kno 1ir energies canact-tostabilize the size of the extra
dimensions while alse g SO ,.‘\-\- : accelerated expansion
of the late-time uniye _ 6 ation o *-.;;.; dimensional universe occurs

\ \ \\- asimir energy density
c ,I‘ﬁ, -\ ‘ ,\ , the apparent cosmolog-
VAT ) i

e 2l net4-

eI "";'{ universe is effectively

induced. i -
Fau A\ N\
Shape moduli storted. tor ‘added to the model [13]. The
minimum of the Casiy oy der & he wvith shape moduli is located

nological dynamics is initiate within
)

Y

a5 o

at T = :|:1/2, T2 .
a small perturbation o f';_r;_f’—_f ‘p_gg = = 1, of the Casimir energy

density. it will roll down to t '.'..-e;.--;_-------! of the total Casimir energy density

L TR .
at 1 = +1/2, 7 = -evein -_,.a nimal’ nt, of perturbations.

In our

] W=!=‘=.“"'"‘"!;‘==mfmfr-‘"‘ ector aether field,
we have sho “

la on frequency of the

compact extra d se, the Casimir energy

ﬁznsio i ed niﬁ
of the torus with shape moduli serves as a stabilizing potential for the moduli fields
while also giving a"oﬁ)f vacuum energytid the accelerated expansion of the 3-

o T B

fields. ﬂ

Xy Gl rif it T

qtabilized for any sets of cosmological parameters. However, the extra dimensions

can be stabilized in the universe which non-relativistic matter present, if we have

not considered the shape moduli, 7; = 0 and 75 = 1.

In the Casimir dark energy model, there is a relationship between size of

the compact extra dimensions and the observed 4-dimensional dark energy. This
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connection emerge because the Casimir energy depend only on the size of the
compact extra dimension and we fix its minimum to the observed value of the
cosmological constant. This leads to the size of the extra dimensions b = 3.18um
and 6-dimensional Planck mass Mpy) = 4.34TeV ~ mpgw. Therefore the size of

the compact extra dimension from our numerical result is consistent with the ADD

The interesting theoretical . Ve ‘that the early universe have

all spatial dimensions a Oilipactifie ) ' it dark energy model show
that the total Casimisenergy of b " olds in the bulk generate
stabilized potential o o 7 , , ns, However, at the early
time such as radiatio \ ad 1a ion and matter energy

tlal dimensions and all

density will be deminated congrib n § to 1 1 s al ens1ty. Therefore the
)ccur the spontaneous
‘-.' down the moduli fields

Casimir energy cangot e \\\
i i ill be'ex 1. Jn eo 1-1 ha _\
L

associated with the broken - tions will be stabilized by

the Casimir energy wi -. ' ‘expand.

ﬂ‘lJEJ’JTﬂEJVI‘ﬁWEJ’]ﬂ‘i
AR AINIUNAIINYINY
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Appendix A

Regularization o

he Two-Dimensional

(A1)
Starting with rewrit quadratic form plus the
square of m \
) m?, (A.2)
then .
, (A.3)
where A =
F(s;a,biceq)="—— - - 7‘ gl (A4)
\ e e \.

and change avaEple z=1t] rq| SO (Il
“Big ‘ﬁ@ "ﬁl 1 g

dtts 1Zexp —ct n—i——

Q‘W'] ﬁ@ﬂﬁﬂﬂ?‘ﬁﬂ?ﬂﬁﬂa d
ons1der the Fourier transform of the function f (z) = exp [ ct (z— %) ]
Fi o= f Z dreeap (3: _ 1’2_”;)2 = 2k

T K ikbm
= ngxp (—E—I— e > (A.6)
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From the Poisson resummation formula,

: b S 1-1 ;_=%k? iwbkm_t(A 2, )}
F(s;a,b,¢0) = —==—ut D8 1L & 4 gdtt’ —3 -+ m24q

(A.8)

Change the variab A\~ ik 1se the tegral representation of the

where the pri :f-l- g : -| =0 s excluded, the

above equation becomes

m=—00

o (g ) 5 S ()
fwm mm@;umqw&@agﬂ
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rewrite again into the following form

™ 1, i1 RN
F(s;a,b,c;q) = \/E\{“_(s){F(s_i)q T pdrtTe Yy

AUEINENINEYINS
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Appendix B

This effect is manifc AN _abtract - force 1K\ﬂ~ parallel uncharged con-
( uantlzatlon of the elec-
S ‘ . section describes the

calculation of thedCasiniir eneroy 1pl e calculations, we consider

tromagnetic field

the simple case of agScalar field ® wit h-Tass ,\ limensional space between

mdary conditions

(B.1)
The scalar field sati
(B.2)
Under the above boundary /200 o1
o) r’) (B.3)
e D
E' - 7 +m?, (B.4)

and n 1s ositive mfeﬁ The zero- mt nergy of the field between the plates is

g1

/dd lkTZ—wk
wzmmzu uw‘nﬂma H

[ ks =3 [ i) B

substitute into Egs.(B.5) we obtain

L 27Td_1/2 0 0o
E = (—)%1 / dkrk$™? \/ k2 2 B.7
G Ry X ), Wk g (P (B7)
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Define u = k2 so
1

dhpky? = S22, (B.)

then

L, 2r 12 (™1 nm
B T S [0 g (TR e (B
2 1

n—=

Using the Beta function relations

E = (L1 2 +0YV2d (B.1)
2m '
since r = 42
]4/2 (B.12)
For the massless
(B.13)
where ((s) is the usua alann-zeta fur sing the reflection formula
= :
INESE ﬁu: = ne: 2C(1 - s), (B.14)
and change s'=»—d s0
= (B.15)

.'I
|
Wi

The total energy 1s

ﬂusﬂa HHATNYANT  ov

The for er unit area on the two plates is defined as

RS Inea e
our 3-dimensional space d = 3, we obtain

P= ——r 2)(47)72¢(4), (B.18)

since ((4) = % therefore
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