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Chapter I

Introduction

The discovery of the expansion of the universe by Edwin Hubble in 1929

suggested that the universe is not static. Recently the observations of Type Ia

Supernovae by the High-z supernovae Search Team in 1998 [1], followed by the

Supernovae Cosmology Project in 1999 [2] show that the universe is not only

expanding, it is accelerating. The unknown component giving rise to the late-time

cosmic acceleration is called the dark energy. The Supernovae Type Ia observations

show that about 70% of the energy density today is in the form of the dark energy.

The dark matter is about 25%, while the baryons is about 4% of the total energy

density.

In fact, spacetime can have the extra dimensions in addition to left-right,

forward-backward, up-down directions and time. If spacetime has the extra di-

mensions, they need to be somehow hidden from us. A way to compactify the

extra dimension is the Kaluza-Klein scenario, to compactify the dimensions in the

shape look like a doughnut. However, this proposal together with cosmological

measurements have some problems such as we need a mechanism to stabilize the

size of the extra dimensions remain unobservable while the three spatial dimen-

sions grow large.

Recently, Brian Greene and Janna Levin suggest that Casimir energy of some

combinations of massless and massive scalar and fermionic fields can be solved this

problem [3]. By regularization of combining Casimir energy of the bulk scalar and

fermionic field with different mass, the total Casimir energy is a function of the

size of the extra dimension. The result shown that Casimir energy can stabilize

the size of the extra dimension while it act as a cosmological constant to drive

the accelerated expansion of the universe. This proposal is called Casimir dark

energy.

However, the Casimir dark energy model fails to stabilize the extra dimen-

sion if we include the matter content. During the matter dominant epoch of the

universe, the matter energy density was modify the Casimir energy potential in
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which there is no minimum. In this thesis we introduce a Lorentz violating vector

aether field to solve this problem [4].

This thesis is organized as the following way. In chapter I, we review the

action principle in the general relativity, the standard hot big bang model and the

dark energy problem [5, 6, 7, 8, 9, 11, 12]. In chapter II, we consider the Casimir

energy of certain combinations of massless and massive fields in the M1+3 × T 2

spacetime that plays a crucial role in the accelerated expansion of the late time

universe [13]. We start by discussing the cosmological dynamics on M1+3 × T 2

spacetime and then calculate the Casimir energy in the spacetime with toroidally

compactified extra dimensions. Then, we construct effective potential contributed

by the Casimir energy. This effective potential gives a non-trivial minimum that

can stabilize the size of the extra dimensions.

In chapter III, we review the extra dimensional model, the Kaluza-Klein

theory and the ADD scenario in details [14, 15, 16, 17]. Then we review the

Einstein-Æther theory, a theory of gravity with vector field that breaks Lorentz

symmetry. Then, we investigate the aether compactification in 5-dimensions [18],

and apply this model to the spacetime with toroidally compactified extra dimen-

sions.

We study the effect of aether field in the stabilization mechanism in Chapter

IV. In the first part of this chapter, we derive cosmological equation of motion in

our M1+3 × T 2 spacetime background with aether field. Then we calculate the

Casimir energy in the case that a scalar field couple to an aether field with a

coupling constant αϕ. Next, we consider the role of aether field in the stabilization

mechanism of the extra dimensions both in the vacuum and the matter dominated

universe. Finally we summarize our results in chapter V.

1.1 The Action Principle in General Relativity

In the framework of general relativity, gravity is not the force from some additional

field propagating through spacetime. The dynamical field variable giving rise to

the gravitation is the metric tensor describing the geometry of the spacetime itself.

In other words, gravity is a manifestation of the curvature of our spacetime.

To obtain field equation governing the spacetime curvature in the presence

of matter and energy, let us consider the Einstein-Hilbert action [5, 6]

SEH =

∫
d4x

√
−gR, (1.1)
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where R = gµνRµν is the Ricci scalar and g is the determinant of the metric

tensor. The Greek indices µ, ν, ... run from 0 to 3 while the Latin indices i, j, ...

run from 1 to 3, the same convention applies to the whole thesis except when

indicated otherwise. We use the Einstein’s summation convention that when the

term has the same upper and lower indices, we sum over all the indices aµb
µ =

a0b
0 + a1b

1 + a2b
2 + a3b

3. Because aµb
µ = aνb

ν , the repeated indices are called the

dummy indices. We consider a variation of the metric

gµν → gµν + δgµν . (1.2)

Note that gµν satisfies the relation gµαgαν = δµν where δµν is the Kronecker’s delta,

δµν = 1 for µ = ν and otherwise δµν = 0, therefore gµν is the inverse metric tensor.

From a variation of the metric in Eq.(1.2) we have variation of the Christoffel

connection

Γλµν → Γλµν + δΓλµν , (1.3)

where

Γλµν =
1

2
gλσ(∂νgµσ + ∂µgνσ − ∂σgµν). (1.4)

Hence

Γλµν + δΓλµν =
1

2
(gλσ + δgλσ) [∂ν(gµσ + δgµσ) + ∂µ(gνσ + δgνσ)− ∂σ(gµν + δgµν)]

= Γλµν +
1

2
δgλσ(∂νgµσ + ∂µgνσ − ∂σgµν)

+
1

2
gλσ(∂νgµσ + ∂µgνσ − ∂σgµν), (1.5)

keeping the first order terms of the metric. Since gλσgσρ = δλρ it is straightforward

to express relation between variations of the metric and the inverse metric

δgλσ = −gσρgλκδgκρ. (1.6)

Substitute into Eq.(1.5), we obtain

δΓλµν = −gλκδgκρΓρµν +
1

2
gλσ(∂νδgµσ + ∂µδgνσ − ∂σδgµν). (1.7)

From the covariant derivative of the variation of the metric tensor

∇νδgµσ = ∂νδgµσ − Γρµνδgρσ − Γρσνδgµρ, (1.8)

hence

∂νδgµσ + ∂µδgνσ − ∂σδgµν = ∇νδgµσ +∇µδgνσ −∇σδgµν − Γρσνδgµρ. (1.9)
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Then a variation of the Christoffel connection in Eq.(1.7) can be written in the

form

δΓλµν =
1

2
gλσ(∇νδgµσ +∇µδgνσ −∇σδgµν). (1.10)

The variation δΓλµν is the difference of two connections and it is a tensor. However,

the connection Γλµν itself is not a tensor because it is defined by partial derivatives.

Therefore we can take the covariant derivative of δΓλµν

∇κδΓ
λ
µν = ∂κδΓ

λ
µν − ΓρµκδΓ

λ
ρν − ΓρνκδΓ

λ
µρ + ΓλρκδΓ

ρ
µν , (1.11)

then contracting the indices ν and λ

∇κδΓ
λ
µλ = ∂κδΓ

λ
µλ − ΓρµκδΓ

λ
ρλ − ΓρλκδΓ

λ
µρ + ΓλρκδΓ

ρ
µλ, (1.12)

with a little algebra we can show that

∇λδΓ
λ
µκ −∇κδΓ

λ
µλ = ∂λδΓ

λ
µκ − ∂κδΓ

λ
µλ + ΓλρλδΓ

ρ
µκ + ΓρµκδΓ

λ
ρλ − ΓρµλδΓ

λ
ρκ − ΓλρκδΓ

ρ
µλ.

(1.13)

Ricci tensor is defined by

Rµκ = ∂λΓ
λ
µκ − ∂κΓ

λ
µλ + ΓρµκΓ

λ
λρ − ΓρµλΓ

λ
κρ, (1.14)

then the first order in variation of the Ricci tensor is

δRµκ = ∂λδΓ
λ
µκ − ∂κδΓ

λ
µλ + ΓλρλδΓ

ρ
µκ + ΓρµκδΓ

λ
ρλ − ΓρµλδΓ

λ
ρκ − ΓλρκδΓ

ρ
µλ, (1.15)

or

δRµκ = ∇λδΓ
λ
µκ −∇κδΓ

λ
µλ, (1.16)

this relation is known as the Palatini identity.

We have

δSEH = (δS)1 + (δS)2 + (δS)3, (1.17)

where

(δS)1 =

∫
d4x

√
−gRµνδg

µν , (1.18)

(δS)2 =

∫
d4xRδ

√
−g, (1.19)

(δS)3 =

∫
d4x

√
−ggµνδRµν . (1.20)

From the Palatini identity we can show that the last equation is a total divergence,

√
−ggµκδRµκ =

√
−g(∇λδΓ

λ
µκ −∇κδΓ

λ
µλ) (1.21)

=
√
−g
[
∇λ(g

µκδΓλµκ)−∇κ(g
µκδΓλµλ)

]
. (1.22)
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The formula for the divergence of a vector can be written in the form

∇µV
µ =

1√
−g

∂µ(
√
−g V µ), (1.23)

and gµκδΓλµκ is a vector, hence

√
−ggµκδRµκ = ∂λ(

√
−g gµκδΓλµκ)− ∂κ(

√
−g gµκδΓλµλ)

= ∂λ
[√

−g
(
gµκδΓλµκ − gµλδΓκµκ

)]
= ∂λW

λ. (1.24)

By the Stokes’ theorem, an integral over volume element can be converted to

an integral with respect to surface at the boundary. Because variation of the

metric is zero on the boundary, then the surface integral does not contribute to

the variation.

We can calculate (δS)2 by using the following identity

1

detM
δ(detM) = Tr(M−1δM). (1.25)

Take the square matrix M to be the metric tensor gµν then M−1 is gµν and

detM = g, so
1

g
δg = Tr(gµνδgµν) = gµνδgµν . (1.26)

Multiply Eq.(1.6) with gµν , then contract an index λ and σ with µ and ν respec-

tively,

gµνδg
µν = −gµνδgσρgλκδgκρ

= −δρµgµκδgκρ

= −gµνδgµν , (1.27)

because κ is dummy index and substitute it into Eq.(1.26), this gives a variation

of g

δg = −ggµνδgµν . (1.28)

For the linear approximation, δ
√
−g = ∂

√
−g
∂g

δg then

δ
√
−g
δg

= − 1

2
√
−g

, (1.29)

from Eq.(1.26) and Eq.(1.29) and therefore

δ
√
−g = − 1

2
√
−g

δg = −1

2

√
−ggµνδgµν . (1.30)
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Remember that (δS)3 does not contribute to the action, therefore

δSEH =

∫
d4x

√
−g
(
Rµν −

1

2
Rgµν

)
δgµν . (1.31)

From the functional derivative of the action

δS =

∫ ∑
i

(
δS

δΦi
δΦi

)
dnx, (1.32)

where Φi is a complete set of field variable. The principle of least action leads to
δS
δΦi = 0 , so

1√
−g

δSEH
δgµν

= Rµν −
1

2
Rgµν = 0, (1.33)

this equation is called the Einstein’s field equation in vacuum.

For the Einstein’s field equation in the presence of matter and energy, the

action with minimal coupling becomes

S =
1

16πG
SEH + SM , (1.34)

where SM is the action for the matter. Varying this action using the same proce-

dure as above, we obtain

1√
−g

δS

δgµν
=

1

16πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

= 0. (1.35)

We define

Tµν =
−2√
−g

δSM
δgµν

, (1.36)

to be the energy-momentum tensor, therefore

Gµν = Rµν −
1

2
Rgµν = 8πGTµν , (1.37)

is a complete Einstein’s field equation where Gµν is the Einstein tensor. The left-

handed-side of the Einstein’s field equation characterizes the geometry of space-

time while the right-handed-side describes energy and momentum of matter. It is

useful to rewrite this equation in a different form. By contracting Eq.(1.37)

Rµ
ν −

1

2
Rδµν = 8πGT µν , (1.38)

since δµµ = 4, contraction gives R = −8πGT where Rµ
µ = R and T µµ = T . Plugging

this into Eq.(1.37), we obtain

Rµ
ν = 8πG

(
Tµν −

1

2
Tgµν

)
. (1.39)
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1.2 The Standard Cosmological Model

At small scales the universe consists of very rich structure of stars, galaxies, lo-

cal group of galaxies and cluster of galaxies. However, the large scale structure

of the universe in order around 3,000 Mpc (1Mpc ≈ 3.26 × 106 light years) ap-

pears to be the same in every direction, the property called isotropy. In fact, it

is not reasonable to assume that we are in special position in the universe, so

the isotropic condition (or any physical conditions) is identical throughout the

universe. We call this property a homogeneity. The isotropy and homogeneity of

the universe on large scale structure are known as the“Cosmological Principle”.

The Einstein’s field equations of general relativity explain how the energy den-

sity change with time. But without the Cosmological principle these equations

are difficult to solve. There are many equations and each equations depend on

the other. The Cosmological principle reduce the many equations that describe

the entire universe to a single Friedman equation. Remarkably the cosmological

principle allows us to understand the evolution of our spacetime background. The

small scales structure is not satisfying the cosmological principle. However, it can

be described through perturbations around the smooth background. The recent

data from the observation such as the Cosmic Microwave Background Radiation

(CMBR) reveal that the CMB photons coming from different places of the sky

have almost the same temperature. This is the crucial evidence for the validity of

the Cosmological Principle [7, 8, 9].

1.2.1 The Big Bang Model and Hubble’s Law

In the hot big bang model it is believed that the universe began in a very hot and

dense state called the Big Bang. At early times, the universe was filled with a hot

plasma of elementary particles such as electrons, protons, and photons. At the

temperature higher than the binding energy between nucleons in the nucleus and

binding energy between proton and electron in the hydrogen atom, photons can

scatter with nuclei and atom to knock them out of bound state, hence nuclei and

atoms could not form. According to the modern cosmology it is strongly believed

that the universe must have undergone a period of rapid expansion during the first

moment after the big bang. Such a period of accelerating expansions in the very

early universe is called the inflation. The idea of inflation was proposed in the

1980’s to solve some cosmological problems such as the flatness problem, horizon

promblem and the monopole problem [7]. After the end of inflation the universe
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cooled down, if it cools below the temperature characterized by the binding energy

of hydrogen atom then an electron can combine with a proton to form a hydrogen

atom. This era is known as the recombination (electron and proton recombined

into a neutral hydrogen). In the recombination era the universe is sufficiently

cold so that photons do not scatter much with elementary particles leading to

the decoupling between radiation and matter. Consequently the universe became

effectively transparent to photons. The photons are not colliding with other par-

ticles in the universe and they remain to the present day. The discovery of the

Cosmic Microwave Background (CMB) in 1965 [10] confirmed the success of the

standard hot big bang model.

In the expansion of the homogeneous and isotropic universe, the relative

velocity and distance with respect to an observer obey the Hubble’s law

v⃗ (r⃗, t) = H (t) r⃗, (1.40)

where H(t) is a parameter depending only on time called the Hubble parameter.

Let us consider Figure 1

���������
HHHHHH�

�
�
�
�
�
��

O

P

O′ r⃗
′
p

r⃗o′

r⃗p

Figure1

where

O and O
′
are observers,

r⃗o′ is a position vector of O
′
with respect to observer O,

r⃗p is a position vector of point P with respect to observer O,

r⃗
′
p is a position vector of point P with respect to observer O

′
,

we have

r⃗
′

p = r⃗p − r⃗o′ , (1.41)

then

v⃗
′
(r⃗

′

p) = v⃗ (r⃗p)− v⃗ (r⃗o′ ) , (1.42)

denote that v⃗
′
(r⃗

′
p) is the velocity of point P with respect to observer O

′
, v⃗ (r⃗p)

and v⃗ (r⃗o′ ) is the velocity of point P and velocity of observer O
′
relative to ob-

server O respectively. The cosmological principle states that no special position
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in homogeneous and isotropic universe therefore Eq.(1.40) should have the same

functional form at any point which implies the Hubble’s law. It can be verified by

the following steps

v⃗
′
(r⃗

′

p) = H(t)r⃗p −H(t)r⃗o′

= H(t)(r⃗p − r⃗o′ )

= H(t)r⃗
′

p, (1.43)

you can see that the Hubble’s law is the same functional form under the translation

from one to another.

Let us rewrite the Hubble’s law in a differential form

v⃗ =
dr⃗

dt
= H(t)r⃗, (1.44)

and integrate it we obtain

r⃗ = χe
∫ t
0 H(t)dt, χ ≡ r⃗(t = 0), (1.45)

or

r⃗ = a(t)χ, (1.46)

where a(t) = e
∫ t
0 H(t)dt, a(0) ≡ 1 is called the scale factor with cosmic time t. The

coordinate χ is known as the comoving coordinate. A freely falling particle is

at rest in this coordinate. The Hubble’s law or Eq.(1.44) tells us how distance

between two points changes with time. So in the homogeneous and isotropic

universe all objects move away (or contract) from the observer at any points.

Differentiate Eq.(1.46)

dr⃗

dt
= v⃗ = ȧ (t)χ =

ȧ

a
r⃗ = H (t) r⃗, (1.47)

we turn to the Hubble’s law and hence the Hubble parameter is equal to

H (t) =
ȧ

a
. (1.48)

1.2.2 Relativistic Cosmology

The assumption of homogeneity and isotropy force the line element into the form

ds2 = gµνdx
µdxν = −dt2 + a2 (t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (1.49)

which is called the Friedmann-Robertson-Walker (FRW) metric. a(t) is the scale

factor and coordinate (x1, x2, x3) = (r, θ, ϕ) are the comoving coordinates. In
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Eqs.(1.49) the Greek indices µ and ν run from 0 to 3. However this metric has

isotropy in space but not in time direction. Constant k in the FRW metric de-

scribes the geometry of the spacetime where k = 0,+1,−1 corresponds to flat,

sphere, and hyperbolic geometry respectively [5, 6, 7, 8, 9].

From the FRW metric, the non zero Christoffel symbols are given by

Γ0
11 =

aȧ

1− kr2
; Γ1

11 =
kr

1− kr2
;

Γ0
22 = aȧr2 ; Γ0

33 = aȧr2 sin2 θ;

Γ1
01 = Γ2

02 = Γ3
03 =

ȧ

a
;

Γ1
22 = −r

(
1− kr2

)
; Γ1

33 = −r
(
1− kr2

)
sin2 θ;

Γ2
12 = Γ3

13 =
1

r
;

Γ2
33 = − sin θ cos θ; Γ3

23 = cot θ. (1.50)

The non zero component of the Ricci tensor are

R00 = −3
ä

a

R11 =
aä+ 2ȧ2 + 2k

1− kr2

R22 = r2
(
aä+ 2ȧ2 + 2k

)
R33 = r2

(
aä+ 2ȧ2 + 2k

)
sin2 θ, (1.51)

and the Ricci scalar is then

R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
(1.52)

where a dot denotes a derivative with respect to the cosmic time t. Eq.(1.49)

show that the scale factor a (t) is the only single dynamical variable therefore

the information about dynamics of the universe is contained in it. To derive the

differential equation for the time evolution of the scale factor from the Einstein’s

field equation, we will choose a perfect fluid as a matter and energy filling the

universe. The energy-momentum tensor then take the form

T µν = diag (−ρ, p, p, p) , (1.53)

where ρ is the energy density and p is the pressure. Note that the trace is given

by

T = T µµ = −ρ+ 3p. (1.54)

Plugging these objects into the Einstein’s field equation in the form

Rµν = 8πG

(
T µν − 1

2
gµνT

)
. (1.55)
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The µν = 00 equation is
ä

a
= −4πG

3
(ρ+ 3p) , (1.56)

known as the acceleration equation and the µν = ij equation is

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG (ρ+ 3p) , (1.57)

Use the acceleration equation to eliminate second derivative in Eq.(1.57), we obtain(
ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.58)

this is known as the Friedmann equation.

The Einstein tensor satisfies the Bianchi identity

∇µG
µ
ν = 0. (1.59)

From the Einstein’s field equation it follow that the energy-momentum tensor

vanishes

∇µT
µ
ν = 0, (1.60)

which gives the energy conservation in zero component and the Euler equation fa-

miliar in fluid mechanics in the spatial components. Consider the zero component

of Eq.(1.60)

0 = ∇µT
µ
0

= ∂µT
µ
0 + ΓµµνT

ν
0 − Γνµ0T

µ
ν

= −ρ̇− 3
ȧ

a
(ρ+ p) ,

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (1.61)

This is the continuity equation.

Now, we have three equations that explain how the universe expand. there

is the acceleration equation Eq.(1.56), the Friedmann equation Eq.(1.58), and the

continuity equation Eq.(1.61). However, these three equations are not independent

because the acceleration equation can be derived by differentiating the Friedmann

equation with respect to cosmic time, t and use the continuity equation to elim-

inate ρ̇ term. Thus, we have three unknowns, the scale factor a (t), the energy

density ρ (t), and the pressure p (t) with two independent equations. Therefore we

need another condition. The additional equation called the equation of state is
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a relation between the pressure and energy density of the component in the uni-

verse. Fortunately, in cosmology we usually deal with low density fluid for which

the equation of state can be written in a linear form

p = wρ, (1.62)

where w is a dimensionless number. We can rewrite the continuity equation in the

following form
ρ̇

ρ
= −3 (1 + w)

ȧ

a
. (1.63)

Now we have three unknowns and three independent equations so a system of

equations can be solved. If w does not depend on time we can integrate Eq.(1.63)

to obtain

ρ ∝ a−3(1+w). (1.64)

The recent observations have shown that the current universe is close to a spatially

flat geometry, k = 0. Therefore we need to solve the Friedmann equation in flat

geometry to obtain analytic solution for a (t) that describe the time evolution of

our flat universe

a ∝ (t− t0)
2

3(1+w) , (1.65)

where t0 is the initial time. The two well known cosmological fluids are matter

or non-relativistic particles and radiation or relativistic particles. The pressure of

non-relativistic particles is negligible so the equation of state is w ≈ 0. Then the

evolution of the universe during the matter dominated era is given by ρmatter ∝ a−3

and a ∝ (t− t0)
2
3 . For relativistic particles such as photons, the equation of state

is p = 1
3
ρrad or w = 1

3
. This relation can be derived from statistical mechanics

and classical electrodynamics treatment. The evolution of the universe during the

radiation dominated era is then given by ρrad ∝ a−4 and a ∝ (t− t0)
1
2 .

1.2.3 Dark Energy Problem

From the previous sections we know that ordinary matter such as baryons and

radiation has zero and positive pressure respectively. The pressure corresponds to

these components will cause the expansion of the universe to slow down. On the

other hand, the direct evidence of late-time cosmic acceleration was reported by

Perlmutter and Riess from the Supernovae Type Ia in 1998 [1, 2]. The source for

current acceleration of the universe was called dark energy. The word dark mean

its still mystery for us to answer the question What is the physical cause of the

dark energy?
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The first candidate for dark energy is the cosmological constant Λ [11, 12].

Historically, it was introduced by Einstein to obtain a static universe. Let us

consider in static universe, ȧ = ä = 0 then the equation of state give w = −1
3

hence the universe was filled by a fluid with negative pressure. However, what

physical matter has a negative pressure so the Einstein’s field equation has no

static solution. In order to solve this problem he introduced an extra term into

the left hand side of his field equation

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (1.66)

where the additional Λ term is the cosmological constant. In fact the Einstein’s

field equations allow addition of the Λgµν term because the covariant derivative of

the metric tensor, gµν , is always zero. The Einstein tensor, Gµν and the energy-

momentum tensor T µν still satisfy the Bianchi identity ∇µG
µν = 0 and energy

conservation ∇µT
µν = 0. In the FRW background with equation of state p = 0

(matter dominate), Eq.(1.66) gives the differential equation for the scale factor

ä

a
= −4πG

3
ρM +

Λ

3
. (1.67)

It is shown that a positive Λ term represent a repulsive force to balance the attrac-

tive gravitational force from ordinary matter. However, Einstein abandoned the Λ

term from his equation when Hubble’s discovery of the expansion of the universe

in 1929 is confirmed, meaning that the universe is not static. In addition, after

the discovery of the accelerated expansion of the universe in 1998 the cosmological

constant is back again as a candidate of dark energy.

What is the physical cause of the cosmological constant? In the quantum

field theory context, it suggests that the empty space is not really empty. It

permits particle-antiparticle pairs to spontaneously appear and then annihilated

in a vacuum. This fact inspires some cosmologists to interpret the cosmological

constant as a sort of vacuum energy density than the effect of spacetime geometry

or gravity. Therefore we should be put the Λ term into the energy-momentum

tensor part or into the right hand side of the Einstein’s field equation. Let us

consider the equation of state pvac = −ρvac, w = −1 so ρvac is a constant in time

from the Eq.(1.63). We can decompose the energy-momentum tensor into a matter

piece T
(M)
µν and a vacuum piece T

(vac)
µν = −ρgµν , the Einstein’s field equation is

Rµν −
1

2
Rgµν = 8πG(T (M)

µν − ρvacgµν). (1.68)

Comparison with Eq.(1.66) we see that the cosmological constant is equivalent to

the vacuum energy density

ρvac =
Λ

8πG
. (1.69)



14

As a result vacuum energy has a behavior like cosmological constant representing

a repulsive force to cancel the attractive gravitational force which is the hallmark

behavior of the dark energy.

Quantum field theory is an important theoretical background for the cos-

mological constant. Cosmological constant corresponds to the vacuum energy of

quantum field in the ground state. The vacuum energy or zero-point energy of a

free quantum field given by

ρvac =

∫ ∞

0

d3k

(2π)3
1

2

√
k2 +m2, (1.70)

is ultraviolet divergent. However, we trust our theory is correct up to a certain

momentum cut off kmax at the Plank scaleMPl = (8πG)−1/2 ∼ 1018 GeV. We then

obtain the vacuum energy density as [8, 9]

ρvac ∼ k4max ∼ 1072GeV 4. (1.71)

According to the cosmic acceleration to day, we require the energy density of the

cosmological constant ρΛ to be

ρΛ =
Λ

8πG
= ΛM2

Pl ∼ 10−48GeV 4, (1.72)

much smaller than the ρvac in Eq.(1.71) which implies that ρΛ
ρvac

∼ 10−120 [8, 9].

Thus ρΛ needs to be fine tuned at the level of one per 10120 around the Plank

epoch in order to satisfies the current cosmic acceleration expansion. An extreme

fine tuning is unacceptable and the question what is the physical cause of the

cosmological constant has no satisfactory answer.

If the source of dark energy is not the cosmological constant then we seek

some alternative models to describe the late-time accelerated expansion of the uni-

verse. Recently, there are two approaches to construct alternative models of dark

energy. The simplest way is to modify the energy-momentum tensor in the right

hand side of the Einstein’s field equation. This approach is called modified matter

such as quintessence [19, 20], k-essence [21, 22], Phantom [23], and Chameleon

scalar field [24]. Another approach is the modified gravity which modifies the left

hand side of the Einstein’s field equation. The models that an element to this

class such as f(R) gravity [25], scalar-tensor theory [26], Gauss-Bonet dark energy

[27] and DGP (Dvali Gabadadze Porrati) model [28].



Chapter II

Casimir Dark Energy Model

According to the previous chapter, physicists strongly believe that the uni-

verse consists of a sort of energy dubbed dark energy, which contributes to the

accelerated expansion in spatial directions. However, the physics and dynamics of

dark energy has not been discovered until now. Recently, it was found by Brian

Greene and Janna Levin that the Casimir energy arise from fields fluctuations in

space with extra dimensions could play a crucial role in the accelerated expansion

of the late-time universe which is the hallmark behavior of dark energy [3]. In fact

by certain combinations of fields with different masses and spins, the total Casimir

energy from those can give a stabilizing potential that stabilizes the size of extra

dimensions. If their size is constant or independent of time then the large direc-

tions feel the Casimir energy as a sort of vacuum energy to accelerate expansion

of the spatial directions.

However, the shape moduli, τ1, τ2, of the extra dimensions were not consid-

ered in the previous work of Greene and Levin. Therefore this chapter is a review

of some works of Burikham et.al [13], to include these moduli in the cosmological

dynamics by assuming the extra dimensions are T 2. This review is organized as

the following. In section 2.1, we review the moduli space of the torus. In section

2.2, we have constructed the cosmological dynamics on M1+3 × T 2 spacetime. In

section 2.3, we present the zeta function regularization to determine the Casimir

energy of massive and massless real scalar fields in the spacetime with toroidally

compactified extra dimensions. Then we go on to construct effective potential con-

tributed by Casimir energy of massive and massless field in M1+3 × T 2 in section

2.4.

2.1 The Moduli Space of the Torus

We can construct a two-dimensional torus by identifying a region in the complex

plane as shown in Figure 2.
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A two-dimensional torus can be described with a single complex parameter τ =

τ1 + iτ2 called the modulus. And the identifications is

z ≡ z + 1 and z ≡ z + τ. (2.1)

Note that τ is a parameter identifying how the torus is distorted. We can define

a complex coordinate

z = y1 + τy2, (2.2)

where y1, y2 ∈ [0, 2π]. Taking differential for z we obtain

dz = dy1 + τdy2, (2.3)

because the volume is 1 if the determinant of the metric is 1. Therefore the interval

on the torus can be written as

ds2 =
dzdz̄

τ2
= hijdy

idyj, (2.4)

this implies the flat metric on the torus

(hij) =
1

τ2

(
1 τ1

τ1 |τ |2

)
, (2.5)

For τ1 = 0 and τ2 = 1 this would be the metric δab [29]. However, there are some

values of parameter τ that corresponds to the same torus. These transformation

are S and T transformations where T : τ → τ + 1 and S : τ → − 1
τ
. Using S and

T transformations we can identify the region in the complex τ -plane containing

points that represent equivalent torus. It is called the fundamental domain for the

moduli space of the torus:

−1

2
≤ Re(τ) ≤ 1

2
, Im(τ) > 0, |τ | ≥ 1. (2.6)
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2.2 Cosmological Dynamics in M 1+3 × T 2 Space-

time

Begin with the Einstein Hillbert action on the product space M1+n× T p between

a (1+n)-large dimensional spacetime and a compactified p-dimensional toroidal

space

S =

∫
d1+nxdpy

√
−gh

[
1

16πG(1+n)

R(1+n) − ρ(1+n)

]
, (2.7)

where ρ(1+n), G(1+n) and R(1+n) are the Casimir energy density. It is a function of

the metric hij, gravitational constant and the Ricci scalar in (1+n)-dimensional

spacetime respectively. We assume the metric to be homogeneous but anisotropic

ds2 = gµνdx
µdxν + hijdy

idyj, (2.8)

where the four dimensional metric gµν with µ, ν = 0, ..., n is the Friedmann-

Robertson-Walker metric in flat universe (k = 0). The metric hij represents

the p-dimensional compact space with compact coordinate yi ∈ [0, 2π]. Note that

i, j = 1, ..., p.

In this thesis, we investigate on the cosmological dynamics of a 4-dimensional

flat spacetime with two extra dimensions (n = 3, p = 2). The metric hij on the

torus is

(hij) =
b2

τ2

(
1 τ1

τ1 |τ |2

)
, (2.9)

where τ = τ1 + iτ2 and b2 is the volume moduli or the scale factor for the extra

dimensions. To obtain the differential equation of the scale factors a(t) and b(t)

that describe dynamic of the universe. First, we calculate the Einstein tensor and

energy momentum tensor for our matter field and then plug it into the Einstein’s

field equation. Note that, we rewrite the interval in the form ds2 = gabdx
adxb

where a, b = 0, 1, 2, 3, 5, 6 therefore h11 = g55, h12 = g56, h21 = g65 and h22 = g66.

Note that from the above notation we rewrite a metric tensor for our spacetime

background as

(gab) =



−1 0 0 0 0 0

0 a2 0 0 0 0

0 0 a2 0 0 0

0 0 0 a2 0 0

0 0 0 0 b2

τ2

b2τ1
τ2

0 0 0 0 b2τ1
τ2

b2|τ |2
τ2


, (2.10)
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and its inverse is

(gab) =



−1 0 0 0 0 0

0 1
a2

0 0 0 0

0 0 1
a2

0 0 0

0 0 0 1
a2

0 0

0 0 0 0 |τ |2
b2τ2

− τ1
b2τ2

0 0 0 0 − τ1
b2τ2

1
b2τ2


. (2.11)

The Christoffel connection is defined by

Γcab =
1

2
gcd(∂agbd + ∂bgad − ∂dgab), (2.12)

the non-zero components are

Γ0
11 = Γ0

22 = Γ0
33 = aȧ,

Γ0
55 =

bḃ

τ2
− b2τ̇2

2τ 22
,

Γ0
66 =

b2τ̇1τ1
τ2

+
b2τ̇2
2

+
bḃτ 21
τ2

− b2τ̇2τ
2
1

2τ 22
+ bḃτ2,

Γ0
56 =

b2τ̇1
2τ2

+
bḃτ1
τ2

− b2τ̇2τ1
2τ 22

,

Γ1
01 = Γ2

02 = Γ3
03 =

ȧ

a
,

Γ5
05 =

ḃ

b
− τ̇2

2τ2
− τ1τ̇1

2τ 22
,

Γ5
06 =

τ̇1
2
− τ1τ̇2

τ2
− τ 21 τ̇1

2τ 22
,

Γ6
05 =

τ̇1
2τ 22

,

Γ6
06 =

ḃ

b
+

τ̇2
2τ2

+
τ1τ̇1
2τ 22

. (2.13)

The Ricci tensor is defined by

Rab = ∂cΓ
c
ab − ∂aΓ

c
bc + ΓcdcΓ

d
ab − ΓcdbΓ

d
ac. (2.14)
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For our metric tensor, the non-zero components of the Ricci tensor are

R00 = −1

2

τ̇ 22
τ 22

− 1

2

τ̇ 21
τ 22

− 3
ä

a
− 2

b̈

b
,

R11 = R22 = R33 = 2ȧ2 + 2
aȧḃ

b
+ aä,

R55 = 3
bȧḃ

aτ2
+
ḃ2

τ2
− 3

2

b2ȧτ̇2
aτ 22

− bḃτ̇2
τ 22

+
1

2

b2τ̇ 22
τ 32

− 1

2

b2τ̇ 21
τ 32

+
bb̈

τ2
− 1

2

b2τ̈2
τ 22

,

R56 = 3
bτ1ȧḃ

aτ2
+
τ1ḃ

2

τ2
− 3

2

b2τ1ȧτ̇2
aτ 22

− bτ1ḃτ̇2
τ 22

+
1

2

b2τ1τ̇
2
2

τ 32
+

3

2

b2ȧτ̇1
aτ2

+
bḃτ̇1
τ2

− b2τ̇1τ̇2
τ 22

− 1

2

b2τ1τ̇
2
1

τ 32
+
bτ1b̈

τ2
− 1

2

b2τ1τ̈2
τ 22

+
1

2

b2τ̈1
τ2

,

R65 = 3
bτ1ȧḃ

aτ2
+
τ1ḃ

2

τ2
− 3

2

b2τ1ȧτ̇2
aτ 22

− bτ1ḃτ̇2
τ 22

+
1

2

b2τ1τ̇
2
2

2τ 32
+

3

2

b2ȧτ̇1
aτ2

+
bḃτ̇1
τ2

− b2τ̇1τ̇2
τ 22

− 1

2

b2τ1τ̇
2
1

τ 32
+
bτ1b̈

τ2
− 1

2

b2τ1τ̈2
τ 22

+
1

2

b2τ̈1
τ2

,

R66 = 3
bτ2ȧḃ

a
+ 3

bτ 21 ȧḃ

aτ2
+ τ2ḃ

2 +
τ 21 ḃ

2

τ2
+

3

2

b2ȧτ̇2
a

− 3

2

b2τ 21 ȧτ̇2
aτ 22

+ bḃτ̇2

−bτ
2
1 ḃτ̇2
τ 22

− 1

2

b2τ̇ 22
τ2

+
1

2

b2τ 21 τ̇
2
2

τ 32
+ 3

b2τ1ȧτ̇1
aτ2

+ 2
bτ1ḃτ̇1
τ2

− 2
b2τ1τ̇1τ̇2
τ 22

+
1

2

b2τ̇ 21
τ2

− 1

2

b2τ 21 τ̇
2
1

τ 32
+ bτ2b̈+

bτ 21 b̈

τ2
+

1

2
b2τ̈2 −

1

2

b2τ 21 τ̈2
τ 22

+
b2τ1τ̈1
τ2

.

Next, the Ricci scalar can be calculated as the following

R = gabRab

= 6
ȧ2

a2
+ 12

ȧḃ

ab
+ 2

ḃ2

b2
+

τ̇ 22
2τ 22

+
τ̇ 21
2τ 22

+ 6
ä

a
+ 4

b̈

b
. (2.15)

At this point, the Einstein tensor is defined by

Gab = Rab −
1

2
Rgab. (2.16)

Note that we use the mixed form of Einstein’s field equation to construct the

equation of motion for the scale factors. In our spacetime background, using the
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above results we obtain the non-zero components of the Einstein tensor Ga
b as

G0
0 = −3

ȧ2

a2
− 6

ȧḃ

ab
− ḃ2

b2
+

1

4

τ̇ 22
τ 22

+
1

4

τ̇ 21
τ 22
,

G1
1 = G2

2 = G3
3 = − ȧ

2

a2
− 4

ȧḃ

ab
− ḃ2

b2
− 1

4

τ̇ 22
τ 22

− 1

4

τ̇ 21
τ 22

− 2
ä

a
− 2

b̈

b
,

G5
5 = −3

ȧ2

a2
− 3

ȧḃ

ab
− 3

2

ȧτ̇2
aτ2

− ḃτ̇2
bτ2

+
1

4

τ̇ 22
τ 22

− 3

2

τ1ȧτ̇1
aτ 22

− τ1ḃτ̇1
bτ 22

+
τ1τ̇1τ̇2
τ 32

−3

4

τ̇ 21
τ 22

− 3
ä

a
− b̈

b
− 1

2

τ̈2
τ2

− 1

2

τ1τ̈1
τ 22

G5
6 = −3

τ1ȧτ̇2
aτ2

− 2
τ1ḃτ̇2
bτ2

+
τ1τ̇

2
2

τ 22
+

3

2

ȧτ̇1
a

− 3

2

ȧτ̇1
aτ 22

+
ḃτ̇1
b

− τ 21 ḃτ̇1
bτ 22

− τ̇1τ̇2
τ2

+
τ 21 τ̇1τ̇2
τ 32

− τ1τ̇
2
1

τ 22
− τ1τ̈2

τ2
+
τ̈1
2
− 1

2

τ 21 τ̈1
τ 22

G6
5 =

3

2

ȧτ̇1
aτ 22

+
ḃτ̇1
bτ 22

− τ̇1τ̇2
τ 32

+
1

2

τ̈1
τ 22

G6
6 = −3

ȧ2

a2
− 3

ȧḃ

ab
+

3

2

ȧτ̇2
aτ2

+
ḃτ̇2
bτ2

− 3

4

τ̇ 22
τ 22

+
3

2

τ1ȧτ̇1
aτ 22

+
τ1ḃτ̇1
bτ 22

− τ1τ̇1τ̇2
τ 32

+
1

4

τ̇ 21
τ 22

− 3
ä

a
− b̈

b
+

1

2

τ̈2
τ2

+
1

2

τ1τ̈1
τ 22

.

The energy-momentum tensor can be calculated from the action for matter field

SM = −
∫
dnx

√
−gρ(1+n)(hij), (2.17)

therefore

δSM = −
∫
dnxρδ

√
−g −

∫
dnx

√
−gδρ

=

∫
dnx

√
−g
(
1

2
ρgab −

∂ρ

∂gab

)
δgab,

then
1√
−g

δSM
δgab

=
1

2
ρgab −

∂ρ

∂gab
. (2.18)

From the definition of the energy-momentum tensor in Eq.(1.36) we obtain

Tab = −ρgab + 2
∂ρ

∂gab
. (2.19)

With one index raised and use the chain rule in the second term this takes the

convenient form

T ab = gacTcb

= −ρδab + 2gac
(
∂b

∂gcb
∂bρ+

∂τ1
∂gcb

∂τ1ρ+
∂τ2
∂gcb

∂τ2ρ

)
, (2.20)
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where

b =
[
g55g66 −

(
g56
)2]− 1

4
,

τ1 = −g
56

g66
,

τ2 =

√
g55

g66
−
(
g56

g66

)2

.

We obtain the non-zero components of the energy-momentum tensor

T 0
0 = −ρ,

T 1
1 = T 2

2 = T 3
3 = −ρ,

T 5
5 = −ρ+ b

2

(
τ 21 − τ 22
τ 22

)
∂bρ+ 2τ1∂τ1ρ+

(
τ 22 − τ 21
τ2

)
∂τ2ρ

T 5
6 =

(
bτ 31
2τ 22

− bτ1
2

+ b

)
∂bρ− 2τ 22∂τ1ρ+

(
3τ1τ2 +

τ 31
τ2

)
∂τ2ρ

T 6
5 = − bτ1

2τ 22
∂bρ− 2∂τ1ρ+

τ1
τ2
∂τ2ρ

T 6
6 = −ρ+ b

2

(
τ 21 − τ 22
τ 22

)
∂bρ−

τ 2

τ2
∂τ2ρ.

Using the following combinations of the Einstein tensors

G0
0 = 8πGT 0

0 ,

G1
1 −G5

5 −G6
6 −G0

0 = 8πG
(
T 1
1 − T 5

5 − T 6
6 − T 0

0

)
,

3G1
1 −G5

5 −G6
6 +G0

0 = 8πG
(
3T 1

1 − T 5
5 − T 6

6 + T 0
0

)
,

G6
5 = 8πGT 6

5 ,

2G5
6 − τ1G

5
5 − τ1G

6
6 − 2τ 22G

6
5 = 8πG

(
2T 5

6 − τ1T
5
5 − τ1T

6
6 − 2τ 22T

6
5

)
,

we obtain the differential equations govern the cosmological dynamics

3H2
a +H2

b + 6HaHb −
1

4τ 22

(
τ̇ 21 + τ̇ 22

)
= 8πGρ6D,

Ḣa + 3H2
a + 2HaHb =

8πG

4

{
2ρ6D +

[
1−

(
τ1
τ2

)2
]
b∂bρ6D − 2τ1∂τ1ρ6D +

2τ 21
τ2
∂τ2ρ6D

}
,

Ḣb + 2H2
b + 3HaHb = −8πG

4

{
−2ρ6D +

[
1−

(
τ1
τ2

)2
]
b∂bρ6D − 2τ1∂τ1ρ6D +

2τ 21
τ2
∂τ2ρ6D

}
,

τ̈1 +

(
3Ha + 2Hb − 2

τ̇2
τ2

)
τ̇1 = −16πGτ 22

{
bτ1
2τ 22

∂bρ6D + 2∂τ1ρ6D − τ1
τ2
∂τ2ρ6D

}
,
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τ̈2
τ2
+
τ̇ 21 − τ̇ 22
τ 22

+3Ha
τ̇2
τ2
+2Hb

τ̇2
τ2

= 8πG{bτ
2
1

τ 22
∂bρ6D+2τ1∂τ1ρ6D−2τ2

[
1 +

(
τ1
τ2

)2
]
∂τ2ρ6D},

(2.21)

where G is the 6 − D gravitational constant. We have defined the Hubble’s pa-

rameter Ha = ȧ
a
and Hb = ḃ

b
, with a dotted sign represents the time derivative

and ρ6D is the Casimir energy density in six dimensional spacetime.

2.3 Casimir Energy Calculation

In this section, we will determine the Casimir energy associated with a scalar field

of mass M in our spacetime background. The fermionic degrees of freedom will

contribute to the Casimir energy with the same expression as the bosonic degree

of freedom except for an extra minus sign. Let Vn = Ln be the spatial volume

of non-compact spacetime, and Vp = ln be the volume of compact space. If we

assume L≫ l, the zero-point energy of scalar field can be evaluated by

Êcas =
1

2
(
L

2π
)n
∑
ni,nj

∫ ∞

−∞
dnk
√
δabkakb + hijninj +M2, (2.22)

where ka; a = 1, ..., n is the momentum in each non-compact spatial direction,

ni ∈ Z; i = 1, ..., p is the momentum number in each compact direction.

Using ∫
ddkf(k) =

2π
d
2

Γ(d
2
)

∫
dkkd−1f(k), (2.23)

then∫ ∞

−∞
dnk
√
δabkakb + hijninj +M2 =

2π
n
2

Γ(n
2
)

∫ ∞

0

dkkn−1
√
δabkakb + hijninj +M2,

change variable k =
√
v(hijninj +M2 it is easy to show that

Êcas =
1

2
(
L

2π
)n
∑
ninj

(hijninj +M2)
n+1
2

∫ ∞

0

dvv
n−2
2

√
1 + v. (2.24)

We can evaluate the integral into the Gamma function by using the Beta function

formula

B(1 + r,−s− r − 1) =

∫ ∞

0

tr(1 + t)sdt =
Γ(r + 1)Γ(−s− r − 1)

Γ(−s)
. (2.25)

Therefore ∫ ∞

0

dvv
n−2
2

√
1 + v =

Γ(n
2
)Γ(−n−1

2
)

Γ(−1
2
)

,
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and impose n+1
2

= −s, we obtain

Êcas =
1

2
(
2π

L
)1+2s Γ(s)

π
1+2s

2 Γ(−1
2
)

∑
ninj

(hijninj +M2)−s. (2.26)

Note that∑
ninj

(hijninj +M2)−s = F (s;
|τ |2

b2τ2
,− 2τ1

b2τ2
,

1

b2τ2
;M2)

=
∑
n1,n2

(
|τ |2

b2τ2
n2
1 −

2τ1
b2τ2

n1n2 +
1

b2τ2
n2
2 +M2)−s, (2.27)

which is known as extended Chowla-Selberg zeta function [30]. After a few steps

of analytic manipulation by using Poisson resummation formula and property of

the modified Bessel function see in appendix A, we obtain

F (s;
|τ |2

b2τ2
,− 2τ1

b2τ2
,

1

b2τ2
;M2) = b2s{2τ s2ζEH(s; τ2b2M2)

+2
√
π
Γ(s− 1

2
)

Γ(s)
τ 1−s2 ζEH(s−

1

2
;
b2M2

τ2
)

+
∞∑

m,k=1

8πs

Γ(s)

√
τ2k

s− 1
2

cos(2πτ1mk)

(m2 + b2M2

τ2
)
s
2
− 1

4

Ks− 1
2
(2πτ2k

√
m2 +

b2M2

τ2
)}, (2.28)

where the Epstein-Hurwitz zeta function ζEH(s; q) is defined by

ζEH (s; q) =
1

2

∑
n∈z

(
n2 + q

)−s
= −q

−s

2
+

√
π Γ

(
s− 1

2

)
2Γ (s)

q−s+
1
2 +

∞∑
n=1

2πsq−
s
2
+ 1

4

Γ (s)
ns−

1
2Ks− 1

2
(2πn

√
q) .

Note that the first sum indicates that the term n = 0 is excluded. Insert Eq.(2.36)

into Eq.(2.34) and eliminate the infinite terms due to the pole of Γ(s = −2) and

Γ(s − 1 = −3). To eliminate the divergent terms corresponding to the constant

energy density in the bulk. Both of them do not depend on any parameters of

the shape moduli and hence can be safely dropped from the physically relevant

Casimir effects by renormalization. The final regulated Casimir energy density of
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massive real scalar field ρ4D(h
ij) in 4-dimensional spacetime is

ρ4D(b
2, τ1, τ2) =

Êcas
Vm

= −(4π2b2)s{2τ s2 (τ2b2M2)−
s
2
+ 1

4

∞∑
k=1

ks−
1
2Ks− 1

2
(2πkbM

√
τ2)

+2τ 1−s2 (
b2M2

τ2
)−

s
2
+ 1

2

∞∑
k=1

ks−1Ks−1(
2πkbM
√
τ2

)

+4
√
τ2

∞∑
k,m=1

ks−
1
2

cos(2πτ1mk)

(m2 + b2M2

τ2
)
s
2
− 1

4

Ks− 1
2
(2πτ2k

√
m2 +

b2M2

τ2
)}.

In the case of massless scalar fields (M = 0), we use the formula

Kν(z) ∼
1

2
Γ(ν)(

z

2
)−ν ,

to approximate the modified Bessel function if z approaches zero in the Casimir

energy density. Such that

Ks− 1
2
(2πkbM

√
τ2) = K 1

2
−s(2πkbM

√
τ2) ∼

Γ(1
2
− s)(2πk

√
τ2bM)s−

1
2

2s+
1
2

,

Ks−1(
2πkbM
√
τ2

) = K1−s(
2πkbM
√
τ2

) ∼
Γ(1− s)(2πk bM√

τ2
)s−1

2s
,

Ks− 1
2
(2πτ2k

√
m2 +

b2M2

τ2
) = Ks− 1

2
(2πkτ2m),

the Casimir energy density becomes

ρ4D(b
2, τ1, τ2) = −(4π2b2)s{τ s2πs−

1
2Γ(

1

2
− s)ζ(1− 2s) + τ 1−s2 πs−1Γ(1− s)ζ(2− 2s)

+4
√
τ2

∞∑
m,k=1

(
k

m
)s−

1
2 cos(2πmkτ1)Ks− 1

2
(2πmkτ2)}, (2.29)

where ζ(s) is the familiar Riemann zeta function defined by

ζ(s) =
∞∑
n=1

1

ns
.

The Casimir energy density in (1+3+2) dimensions is given by ρ6D = ρ4D
(2πb)2

.

As it is pointed out in the work of Ponton and Poppitz [31]. Since the

Casimir energy density is preserved under the symmetry τ → − 1
τ
, and τ → τ + 1

of the torus. Therefore it is sufficient to consider only the fundamental region

where τ ≥ 1, and −1
2
≤ τ1 ≤ 1

2
of the shape moduli space. In the fundamental

region, there are two minima and one saddle point of the Casimir energy density.

The saddle point locate at τ1 = 0, τ2 = 1 and the two minima locate at τ1 = ±1
2
,

τ2 =
√
3
2
. This is shown in figured 2.1.



25

2.4 Particle Spectrum and Effective Potential for

Moduli Fields

It is demonstrated in [3] that a careful mixing of massless and massive, bosonic

and fermionic degree of freedom of the bulk fields can lead to a Casimir energy

density with local minimum with respect to the scale factor b of the compact extra

dimensions. In the torus case with the shape moduli τ1, τ2 it can be shown that

the true minimum of the mixed Casimir energy density (and thus the potential)

locates at τ1 = ±1/2, τ2 =
√
3/2, in contrast to the case of undistorted torus

considered in the previous work where the shape moduli are set to τ1 = 0, τ2 = 1.

The simplest model of the bulk fields in our spacetime background consists

of: (i) a massless boson, (ii) a massless fermion, (iii) a massive fermion of mass

mf and (iv) a massive boson with mass λmf . It was found that for the range

0.4 < λ < 0.42 and mf = 5, the mixed Casimir energy density has local minimum.

There is no particular reason for why the ratio of the masses of the massive boson

and fermion took the specific value in this range. An issue in mixing bosonic

and fermionic degree of freedom to obtain the Casimir energy density with a local

minimum is the energy density must be positive.

As a result, the value of the total Casimir energy density at τ1 = ±1/2,

τ2 =
√
3/2 is lower than the value of the saddle point τ1 = 0, τ2 = 1, for all range

of λ. However, for λ ≤ 0.407, the energy density become negative around the

minimum and therefore violates the positive energy condition. A negative value

of the energy density will not stabilize the dynamics and the size of the torus.

Therefore we choose the value λ = 0.408 for our simulation of the cosmological

dynamics.

2.5 Cosmological Dynamics and Evidence of Sta-

bility of The Moduli Space

By numerically solving the differential equations in section 2.2 , the accelerated

expansion of the large three spatial directions and the stabilization of the extra

dimensions can be demonstrated to occur at the minimum of the Casimir en-

ergy density. The saddle point τ1 = 0, τ2 = 1 is an unstable equilibrium of the

dynamics.
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When the initial conditions of the cosmological equations of motion take van-

ishes within a small vicinity of the saddle point, τ1 = 0, τ2 = 1, it will roll down

to the true minimum at τ1 = ±1/2, τ2 =
√
3/2 even with small amount of per-

turbations. The rolling of the cosmological dynamics, a(t), b(t), τ1(t), τ2(t), Ha(t),

and Hb(t) to the true minimum of the total Casimir energy density is shown in

the figure 2.2.

The pressure in each dimensions defined as p = −∂(ρV )
∂V

where ρ is the Casimir

energy density and V is the volume. Now the pressure in the three large spatial

directions is pa = −∂(ρVa)
∂Va

where Va ∝ a3. Because of the Casimir energy density

is independent of the scale factor, a(t) in large directional dimensions so pa = −ρ
or wa = −1. The physical pressures in the direction of the two dimensional torus

are defined by

p∗K ≡ TKK , (2.30)

where K = 5, 6. This definition leads to the equation of state parameter

wK =
p∗K
ρ
, (2.31)

therefore

w5 = −1 +
b

2ρ
(
τ 21 − τ 22
τ 22

)∂bρ+
2τ1
ρ
∂bρ+

1

ρ
(
τ 22 − τ 21
τ2

)∂τ2ρ (2.32)

w6 = −1 +
b

2ρ
(
τ 21 − τ 22
τ 22

)∂bρ−
1

ρ
(
τ 2

τ2
)∂τ2ρ (2.33)

At the stabilized point we know that Ḣa = Ḣb = Hb = τ̇1 = τ̇2 = 0 it can be

shown that w5 = w6 = −2 by solving the cosmological equation of motion in six

dimensions.

The Casimir energy density in the off-diagonal components of the stress

tensor induce the shear viscosity. We obtain cosmological dynamical equations

with viscosities by introducing the energy-momentum tensor of a viscous fluid. Let

UA = (1, 0, 0, 0, 0, 0) be the six-velocity of the fluid in the comoving coordinates.

In terms of the projection tensor hAB = gAB+UAUB, the energy-momentum tensor

of fluid with bulk viscosity ζ and shear viscosity η is given by:

TAB = ρUAUB + (p− ζθ)hAB − 2ησAB. (2.34)

Here θ ≡ ∇AU
A is the scalar expansion and σAB = hCAh

D
B∇(CUD)−1/5hABθ is the
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shear tensor. The non-zero components of the energy-momentum tensor are

T 0
0 = −ρ,

T 1
1 = T 2

2 = T 3
3 = pa,

T 5
5 = (pb − ζbθ)− 2ηb[

3

5
(Hb −Ha)−

τ̇2
2τ2

− τ1τ̇1
2τ 22

],

T 6
6 = (pb − ζbθ)− 2ηb[

3

5
(Hb −Ha) +

τ̇2
2τ2

−+
τ1τ̇1
2τ 22

],

T 5
6 = 2ηb[

τ1τ̇2
τ2

+ (τ 21 − τ 22 )
τ̇1
2τ 22

],

T 6
5 = −ηb

τ̇1
τ 22
.

We assume there is no viscosity in the noncompact directions because of the Cos-

mological principle. Therefore Einstein’s field equations in this case can be written

as

Ḣa + 3H2
a + 2HaHb =

8πG

4
[ρ6D + pa − 2(pb − ζbθ) +

12

5
ηb(Hb −Ha)], (2.35)

Ḣb + 2H2
b + 3HaHb =

8πG

4
[ρ6D − 3pa + 2(pb − ζbθ)−

12

5
ηb(Hb −Ha)], (2.36)

τ̈1 + (3Ha + 2Hb − 2
τ̇2
τ2
)τ̇1 = 16πGηbτ̇1, (2.37)

τ̈2
τ2

+
τ̇ 21 − τ̇ 22
τ 22

+ 3Ha
ḃ

τ2
+ 2Hb

τ̇2
τ2

= 48πGηb
τ̇2
τ2
. (2.38)

The shear viscosity in compact dimensions at the stabilized point ηstabb can be

identified by Eq.(2.38) to be

ηstabb =
3Ha,stab

16πG
, (2.39)

where Ha,stab is the Hubble parameter at the stabilized point of the compactified

space.
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Figure 2.1: The total Casimir energy density in 6-dimensions forM = 5, λ = 0.408

and τ2 =
√

1− τ 21 .
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Figure 2.2: Cosmological dynamics for the universe is initially tossed very close

to the saddle point.



Chapter III

Æther Field in Extra Dimensions

3.1 Kaluza-Klein Theory

In the 1920’s Kaluza first proposed an additional dimension in his attempt to unify

gravity and electromagnetism [14]. He assumed that our world is a direct product

of the four-dimensional Minkowski space M4 and a circle S1 with the radius R. In

1926, Klein showed that the size of this additional dimension determined by the

Plank scale 10−33 cm is completely unobservable [15].

In this section we will review in some details what the effective 4D theory

looks like, let us consider a 5D toy model where the fifth direction has been

compactified on a circle of radius R [16]. The five dimensional Klein-Gordon

equation for bulk massless scalar field is given by

∂a∂aΦ(x, y) = (∂µ∂µ −
∂2

∂y2
)Φ(x, y) = 0, (3.1)

where a = 0, 1, 2, 3, 5, and y denotes the fifth direction. Impose the periodic

boundary condition in the fifth direction as

Φ(x, y) = Φ(x, y + 2πR), (3.2)

which allow for a Fourier expansion as

Φ(x, y) =
∑

k=0,±1,...

ϕk(x)e
iky/R. (3.3)

The expansion coefficients ϕk are referred to as modes. The zero mode ϕ0 cor-

responding to k = 0 is a ground state. Other Fourier modes k ̸= 0 are called

the excited mode or Kaluza-Klein (KK) modes, this gives rise to a tower of states

dubbed KK tower. By substituting the last expansion into the Eq.(3.1) we see

that each mode ϕk satisfies the four dimensional Klein-Gordon equation

(∂µ∂µ +
k2

R2
)ϕk(x) = 0, (3.4)
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with the mass term replace by

m2
k =

k2

R2
. (3.5)

The zero-mode ϕ0 remain massless while all other modes become massive four

dimensional scalar field with mass term mk =
k
R
.

In the KK scenario we assume that R is small and then 1
R
is large compared

to currently available energy scale. Thus the appreciation of the KK tower depend

on the relevant energy of the experiment and on the compactification scale: (i)

Given the energy E ≪ 1
R

the non-zero mode quanta can not be produced and

physics would behave as four dimensional world. (ii) At accessible energy become

higher than 1
R
or equivalently as we do measurements at shorter distances. We can

discover the KK excitation and hence it is a signature of the extra dimensions.

However, the shape moduli τ1, τ2 can be included in the Kaluza-Klein theory.

The phenomenological implications of nontrivial shape moduli were pointed out

in [32, 33, 34].

3.1.1 Large Extra Dimensions and Deviation From New-

ton Gravitational Force Law

The Standard Model of particle physics is a successful theory because it is consis-

tent with several experimental facts. On the other hand, we believe that the Stan-

dard Model is incomplete because it has a serious problem. Consider the two fun-

damental energy scales in the Standard Model, the electroweak scale mEW ∼ 103

GeV and the Plank scale MPl ∼ 1018 GeV. Their ratio mEW

MPl
∼ 10−17 is very

small. The large hierarchy between the electroweak and the Plank scales is highly

unnatural and it is called the hierarchy problem.

A solution to solve the hierarchy problem which does not rely on either

supersymmetry or technicolor is the ADD scenarios [17] where ADD stands for

Arkani-Hamed, Dimopoulos and Dvali, its inventors. The model is to suppose

that our world has a (4+n)-dimensional spacetime with there are n extra compact

spatial dimensions of radius ∼ R. And all SM (Standard Model) particles are

localized on a 3-brane (a 4-dimensional spacetime object). In the other hand,

gravity can escapes in the bulk (all 4+n dimensions), it becomes 4-dimensional

only at the distance far away from the size of the extra dimensions, r ≫ R. The

Plank scale MPl(4+n) of this (4+n) dimensional theory is taken to be ∼ mEW

according to ADD scenario. In a distance r ≪ R the gravitational potential take
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the form

V (r) ∼ m1m2

Mn+2
Pl(4+n)

1

rn+1
. (3.6)

However, if the two test mass m1, m2 placed at distance r ≫ R, at such distance

the gravitational potential take the standard Newton form

V (r) ∼ m1m2

Mn+2
Pl(4+n)R

n

1

r
, (3.7)

so the effective 4 dimensional MPl is

M2
Pl ∼M2+n

P l(4+n)R
n. (3.8)

We impose MPl(4+n) ∼ mEW and then extra compact spatial dimensions of radius

R be chosen to reproduce the MPl yields

R ∼ 1030/n−17cm× (
1TeV

mEW

)1+2/n. (3.9)

For n = 1 then R ∼ 1013 cm which is definitely inconsistent with the Newton

gravitational force law so this case is ruled out in the ADD scenario. For all

n ≥ 2 the modification of gravity become noticeable at distances smaller than

currently probed experiments [35, 36, 37, 38]. From the above formula if n = 2

then R ∼ 0.1mm this case is very exciting because experiments can be performed

in the future to look for deviations from the Newton gravitational force law in

precisely this range scale.

In conclusion, ADD scenario takes the electroweak scale as the only funda-

mental scale in the Standard Model of particle physics. The 4-dimensional Plank

scale is not a fundamental scale. The effective Plank scale is so big with respect to

electroweak scale because of the large size of the extra dimensions. In this frame-

work gravity is so weak (the Plank scale MPl is so big) because the graviton is

the only field that can propagate in the bulk therefore gravity spreads its strength

over more than 4 dimensional spacetime.

3.2 Æther Field in 5-Dimensions

In this section we investigate in some details the aether compactification model

[18]. This model based on Lorentz violating vector fields with vacuum expectation

value (vev) along the extra directions to hide large extra dimensions which does

not invoke brane as in the ADD scenario.
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3.2.1 Model Building

Let us consider the aether field in a 5-dimensional flat spacetime with coordinates

xa = {xµ, x5} and metric signature (−,+,+,+,+). The fifth direction is compact-

ified on a circle of radius R. Now we consider the aether ua is a spacelike-vector

type, and we can define a field strength tensor as

Vab = ∇aub −∇bua. (3.10)

Even though the aether field is not related to the electromagnetic potential Aα, its

field strength tensor is in the Maxwell type. Demand that the norm of the aether

vector field is fixed then we write the action with constraint

uau
a = v2, (3.11)

as

S =

∫
d5x

√
g

[
−1

4
VabV

ab − λ
(
uau

a − v2
)
+
∑
i

Li

]
, (3.12)

where Li represent various interaction terms between aether field and other fields.

Note that components of this vector field has a dimension of mass then v2 has

a dimension of mass2 and λ is a Lagrange multiplier enforcing the fixed-norm.

With this action, the equation of motion obtained by varying action with respect

to ua is

∇aV
ab = 2λub. (3.13)

The value of λ is determined by decomposing the vector equation Eq.(3.13) into

component along ub. To do that in mathematical context, we multiply both sides

of Eq.(3.13) by uc

uc∇aV
ab = 2λucu

b, (3.14)

then contract indices b and c, we obtain a Lagrange multiplier by used the con-

straint Eq.(3.10)

λ =
1

2v2
uc∇dV

dc. (3.15)

Substitute it into Eq.(3.13) we obtain the equation of motion for ua is

∇aV
ab +

1

v2
ubuc∇dV

cd = 0. (3.16)

We impose the aether field points along the extra dimensional direction,

there is a background solution in the form

ua = (0, 0, 0, 0, v). (3.17)

This background solution implies the field strength tensor Vab = 0 so it is a solution

for the equation of motion Eq.(3.16).
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3.2.2 Energy-Momentum Tensor and Compactification

By varying the action in Eq.(3.12) with respect to the inverse metric tensor gab,

we obtain the energy-momentum tensor for the aether field in the following form,

Tab = VacV
c
b − 1

4
VcdV

cdgab +
1

v2
uaubuc∇dV

dc. (3.18)

For our background solution in Eq.(3.17) Tab is zero while the expectation value of

the aether field does not vanish. When the background spacetime is not Minkowski

then a fixed aether field can give a non-vanishing energy-momentum tensor [39, 40].

Consider the metic

ds2 = gµν(x)dx
µdxν + b(x)2dx25, (3.19)

where x is the 4-dimensional coordinates and b(x) is the radion field that param-

eterize the size of the fifth direction. In this spacetime background, there is a

background solution for aether field

ua = (0, 0, 0, 0,
v

b(x)
). (3.20)

This configuration satisfies the equation of motion Eq.(3.16), as well as the con-

straint Eq.(3.11) and non-vanishing field strength tensor is

Vµ5 = −V5µ = v∇µb. (3.21)

And the non-zero energy-momentum tensor is

Tµν |u =
v2

b2

(
∇µb∇νb−

1

2
gµν∇σb∇σb

)
,

T55|u = v2
(
∇σb∇σb− 1

2
∇σb∇σb

)
. (3.22)

The important feature is the energy-momentum tensor will vanish when the extra

dimension is stabilized. There will be no contribution to the effective 4-dimensional

spacetime.

3.2.3 Interaction of the Æther on Scalar Fields

We now consider the effect of the interaction term
∑

i Li in Eq.(3.12) which in

general can include the terms aether field coupled to scalars, fermion and gravity.

Now we will investigate the effect of the aether coupled to real massive scalar field.

The simplest Lagrangian is

Lϕ = −1

2
(∂ϕ)2 − 1

2
m2ϕ2 − 1

2µ2
ϕ

uaub∂aϕ∂bϕ, (3.23)
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this imposes a Z2 symmetry, ua → −ua because if we have not imposed it the

lowest order coupling is −µ−1
ϕ ua∂aϕ = −µ−1

ϕ (∂au
a)ϕ by integration by parts which

vanishes in our background solution for ua. The equation of motion for this La-

grangian is

∂a∂
aϕ−m2ϕ = −µ−2

ϕ ∂a(u
aub∂bϕ). (3.24)

Expanding the scalar field in Fourier modes

ϕ ∼ eikax
a

= eikµx
µ+ik5x5 , (3.25)

we obtain the modified dispersion relation

−kµkµ = m2 + (1 + α2
ϕ)k

2
5, (3.26)

where the dimensionless parameter αϕ = v/µϕ is the ratio of the aether vev to the

coupling µϕ.

Consequently, we know that compactifying the fifth dimension on a circle of

radius R lead to the quantization of the momentum in that direction, k5 = n/R.

In Kaluza-Klein theory all this excited modes gives rise to a KK tower of masses

m2
KK = m2 + (

n

R
)2. (3.27)

While the coupling with aether field gives the mass spacing between different states

in the KK tower is reinforced

m2
AC = m2 + (1 + α2

ϕ)(
n

R
)2. (3.28)

We will examine the effect of aether compactification by imposed the vev is v ∼
MPl and the µϕ ∼ TeV then the masses of the excited modes are reinforced by

a factor of 1015 [18]. By comparison with Kaluza-Klein theory the first excited

state n = 1 would have a mass of order TeV while the extra dimensions could be

as large as R ∼ 1 mm. This means that at an accessible energy higher than 1
R
it

can not discover the KK excitation although our world have one extra compact

direction.

3.3 Æther Field in M 1+3 × T 2 Spacetime

In this thesis we consider the aether field in a product space between a 4-dimensional

spacetime and 2-toroidally-compactified space. Let define the coordinates xa =

{xµ, x5, x6} where xµ, with µ = 0, ..., 3 are non-compact coordinates, while x5, x6 ∈
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[0, 2π] are compact coordinates. Similarly as in the previous section we consider

the aether ua is a spacelike-vector type, and we can define a field strength tensor

as

Vab = ∇aub −∇bua. (3.29)

Here we investigate the action in 6-dimensions with Maxwell-type kinetic term

S =

∫
d6x

√
g

[
−1

4
VabV

ab − λ
(
uau

a − v2
)
+
∑
i

Li

]
, (3.30)

where λ is a Lagrange multiplier enforcing the constraint

uau
a = v2. (3.31)

The equation of motion for ua is

∇aV
ab +

1

v2
ubuc∇dV

cd = 0. (3.32)

From previous chapter we assume the cosmological ansatz

ds2 = −dt2 + a (t)2 dxidxjδij +
b (t)2

τ2 (t)

[
dx5dx5 + 2τ1dx

5dx6 + |τ (t) |2dx6dx6
]
.

(3.33)

To find the background solution we impose the aether field points along the extra

dimensions, so that

ua =
(
0, 0, 0, 0, u5, u6

)
, (3.34)

this solution must satisfy the constraint equation, that is

v2 =
b2

τ2

(
u5
)2

+
2b2τ1
τ2

u5u6 +
b2|τ |2

τ2

(
u6
)2
. (3.35)

Using the complete square method we parameterized the solution in our back-

ground as

ua =

(
0, 0, 0, 0,

v
√
τ2
b

(
cos θ − τ1

τ2
sin θ

)
,
v sin θ

b
√
τ2

)
, (3.36)

where θ is an angle parameter. And components of a covariant vector define as

ua = gabu
b then

ua =

(
0, 0, 0, 0,

vb cos θ
√
τ2

, vb
√
τ2

(
sin θ +

τ1
τ2

cos θ

))
. (3.37)

By varying the action with respect to the metric, we obtain the energy-momentum

tensor from the aether field in the following form,

Tab = VacV
c
b − 1

4
VcdV

cdgab +
1

v2
uaubuc∇dV

dc. (3.38)
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Raising an index we obtain

T 0
0 |u = − v2

8τ 22

(
4H2

b τ
2
2 + 4 cos2 θτ̇ 21 + 2 sin θτ̇1τ̇2 + τ̇ 22 + 4Hbτ2 (sin 2θτ̇1 − cos 2θτ̇2)

)
,

T ij |u =
v2

8τ 22

(
4H2

b τ
2
2 + 4 cos2 θτ̇ 21 + 2 sin θτ̇1τ̇2 + τ̇ 22 + 4Hbτ2 (sin 2θτ̇1 − cos 2θτ̇2)

)
δij,

T 5
5 |u = − v2

8τ 32
(4H2

b τ
2
2 (cos 2θτ2 − sin 2θτ1)− 4τ2(2 cos θ(τ2(sin θτ1 − cos θτ2)

(3HaHb +H2
b + Ḣb) +Hb(cos θτ1 + sin θτ2)τ̇1) +Hbτ2τ̇2) + τ2(−4 cos2 θ

(2 + cos 2θ)τ̇ 21 − 2(3 sin 2θ + sin 4θ)τ̇1τ̇2 + (2 cos 2θ + cos 4θ)τ̇ 22

+4 cos2 θτ2(sin 2θ(3Haτ̇1 + τ̈1)− cos 2θ(3Haτ̇2 + τ̈2))) + 2τ1(2 cos θ

(2 cos2 θ sin θτ̇ 21 − (cos 3θ − 2 cos θ)τ̇1τ̇2 + 2 sin3 θτ̇ 22 ) + sin 2θτ2(− sin 2θ

(3Haτ̇1 + τ̈1) + cos 2θ(3Haτ̇2 + τ̈2)))),

T 5
6 |u =

v2

4τ 32
((cos θτ2 − sin θτ1)(cos θτ1 + sin θτ2)τ̇

2
1 − (sin θτ1 − cos θτ2)τ̇1(2Hbτ2

(sin θτ1 − cos θτ2) + (cos θτ1 − sin θτ2)τ̇1 + (sin θτ1 + cos θτ2)τ̇2)

+(cos θτ1 + sin θτ2)τ̇1(2Hbτ2(cos θτ1 + sin θτ2) + (sin θτ1 + cos θτ2)τ̇1

+(sin θτ2 − cos θτ1)τ̇2) + (2Hbτ2(sin θτ1 − cos θτ2) + (cos θτ1 − sin θτ2)τ̇1

+(sin θτ1 + cos θτ2)τ̇2)(2Hbτ2(cos θτ1 + sin θτ2) + (sin θτ1 + cos θτ2)τ̇1

+(sin θτ2 − cos θτ1)τ̇2)− (sin θτ1 − cos θτ2)(cos θτ1 + sin θτ2)(4 cos
2 θτ̇ 21

+4 sin 2θτ̇1τ̇2 + (1− 2 cos 2θ)τ̇ 22 − 6Haτ2(2Hbτ2 + sin 2θτ̇1 − cos 2θτ̇2)

−2τ2(2τ2(H
2
b + Ḣb) + sin 2θτ̈1 − cos 2θτ̈2))),

T 6
5 |u =

v2 cos θ

2τ 32
(−4H2

b sin θτ
2
2 − 2 sin θτ 22 Ḣb − 2 cos θHbτ2τ̇1 + 2 cos2 θ sin θτ̇ 21

+2 cos θτ̇1τ̇2 − cos 3θτ̇1τ̇2 + 2 sin3 θτ̇ 22 − 3Ha sin θτ2(2Hbτ2 + sin 2θτ̇1

− cos 2θτ̇2)− 2 cos θ sin2 θτ2τ̈1 + cos 2θ sin θτ2τ̈2),

T 6
6 |u =

v2

8τ 32
(4H2

b τ
2
2 (cos 2θτ2 − sin 2θτ2)− 4τ2(2(cos θτ1 + sin θτ2)(sin θτ2(3HaHb

+H2
b + Ḣb) + cos θHbτ̇1) +Hbτ2τ̇2) + τ2(−4 cos2 θ cos 2θτ̇ 21

+2(sin 2θ − sin 4θ)τ̇1τ̇2 + (2− 2 cos 2θ + cos 4θ)τ̇ 22 + 4 sin2 θτ2

(− sin 2θ(3Haτ̇1 + τ̈1) + cos 2θ(3Haτ̇2 + τ̈2))) + 2τ1(2 cos θ(2 cos
2 θ sin θτ̇ 21

−(−2 cos θ + cos 3θ)τ̇1τ̇2 + 2 sin3 θτ̇ 22 ) + sin 2θτ2(− sin 2θ(3Haτ̇1 + τ̈1)

+ cos 2θ(3Haτ̇2 + τ̈2)))), (3.39)

where Ha = ȧ
a
and Hb = ḃ

b
. The important result from the energy-momentum

tensor is that T ab |u vanish when the moduli fields is stabilized, ḃ = τ̇1 = τ̇2 = 0.

Therefore the aether field will be no contribution to the accelerated expansion of

the late-time universe.
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3.4 Interaction of the Aether on Scalar and

Fermionic Fields

We now consider the effect of the aether coupled to real massive scalar field. The

simplest Lagrangian is

Lϕ = −1

2
(∇ϕ)2 − 1

2
m2ϕ2 − 1

2µ2
ϕ

uaub∇aϕ∇bϕ, (3.40)

this imposes a Z2 symmetry, ua → −ua because if we have not imposed it the

lowest order coupling is −µ−1
ϕ ua∇aϕ = −µ−1

ϕ ϕ∇au
a by integration by parts, which

vanishes in our background solution for aether field. The equation of motion for

this Lagrangian is

∇a∇aϕ−m2ϕ = −µ−2
ϕ ∇a

(
uaub∇bϕ

)
. (3.41)

Expanding the scalar field in Fourier modes as the previous section, we obtain the

modified dispersion relation,

kak
a = m2 +

|τ |2

b2τ2
n2
1 −

2τ1
b2τ2

n1n2 +
1

b2τ2
n2
2

+α2
ϕ((

τ 21
b2τ2

− τ1 sin 2θ

b2
+
τ2 cos

2 θ

b2
− τ 21 cos

2 θ

b2τ2
)n2

1

+(
sin 2θ

b2
− 2τ1 sin

2 θ

b2τ2
)n1n2 +

sin2 θ

b2τ2
n2
2), (3.42)

where the dimensionless parameter αϕ = v
µϕ

is the ratio of the aether vacuum

expectation value (vev) to the coupling µϕ. The momentum of the scalar field

along the compactified extra dimensions will be quantized as k5 = n1 and k6 = n2

in our spacetime geometry. Eqs.(3.42) suggests that the mass gap between the

different states in the KK tower is enhanced by the interaction with the aether field

and the distortion of the extra dimensions parameterized by b, τ1, τ2. Moreover,

the mass also depends crucially on the angle parameter θ.

Next we consider the fermionic terms. The Lagrangian for fermionic field

with the first non-trivial coupling is

Lψ = iψ̄γa∇aψ −mψ̄ψ − i

µψ
uaψ̄∇aψ, (3.43)

where µψ is the fermionic coupling constant with the aether. From the supersym-

metry the corresponding modification of the dispersion relation for the fermion

case can be written as the Eq.(3.42).



Chapter IV

Effect of Æther Field on Casimir Dark Energy

Model

In this chapter, we investigate the role of a Lorentz violating vector field

called an aether field on the moduli stabilization mechanism. We consider the

space-like aether field with Maxwell-type kinetic term on the compact extra di-

mensions [4]. From chapter II we know that the Casimir energy of certain combi-

nations of fields with different masses and spins can give a minimum that stabilizes

the size of extra dimensions while the large spatial dimensions feel the Casimir

energy as a sort of vacuum energy to accelerate its expansion. It is shown here

that the aether field can slow down the oscillation of the moduli fields τ1, τ2 and

radion field b. In certain cases, it leads to the stabilization of the extra dimensional

torus of the universe even in the matter dominated era.

We consider cosmological dynamics of a factorizable geometry with 4-

dimensional FRW metric and a two torus T 2

ds2 = gµνdx
µdxν + hijdy

idyj, (4.1)

where the four dimensional metric gµν with µ, ν = 0, ..., n is the Friedmann-

Robertson-Walker metric in flat universe (k = 0), while the metric hij represent

the p-dimensional compact space with compact coordinate yi ∈ [0, 2π]. Note that

i, j = 1, ..., p.

We will investigate the cosmological dynamics of a 4-dimensional flat space-

time with two extra dimensions (n = 3, p = 2). The metric hij on the torus

is

(hij) =
b2

τ2

(
1 τ1

τ1 |τ |2

)
, (4.2)

where τ = τ1 + iτ2 and b is the volume moduli or the scale factor for the extra

dimensions. For our metric Eq.(4.1) the background solution of an aether field

Eq.(3.36) can be written as

ua =

(
0, 0, 0, 0,

v
√
τ2
b

(
cos θ − τ1

τ2
sin θ

)
,
v sin θ

b
√
τ2

)
. (4.3)
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The energy-momentum tensor for this background solution are given in Eq.(3.39).

Use the combinations of the Einstein tensors in chapter II, we define

T̃ |0 = − v2

8τ 22

(
4H2

b τ
2
2 + 4 cos2 θτ̇ 21 + 2 sin θτ̇1τ̇2 + τ̇ 22 + 4Hbτ2 (sin 2θτ̇1 − cos 2θτ̇2)

)
,

T̃ |1 =
4πGv2

τ 22
{2τ 22 (3HaHb + 2H2

b + Ḣb) + sin 2θ(τ̇1((3Ha + 2Hb)τ2 − τ̇2) + τ2τ̈1)

+ cos 2θ(τ̇2(−(3Ha + 2H2
b )τ2 + τ̇2)− τ2τ̈2)},

T̃ |2 =
4πGv2

τ 22
{2τ 22 (3HaHb + 2H2

b + Ḣb) + sin 2θ(τ̇1((3Ha + 2Hb)τ2 − τ̇2) + τ2τ̈1)

+ cos 2θ(τ̇2(−(3Ha + 2H2
b )τ2 + τ̇2)− τ2τ̈2)},

T̃ |3 =
4πGv2

τ 32
cos θ{−4H2

b sin θτ
2
2 − 2 sin θτ 22 Ḣb − 2 cos θHbτ2τ̇1

+2 cos2 θ sin θτ̇ 21 + 2 cos θτ̇1τ̇2 − cos 3θτ̇1τ̇2 + 2 sin3 θτ̇ 22

−3Ha sin θτ2(2Hbτ2 + sin 2θτ̇1 − cos 2θτ̇2)− 2 cos θ sin2 θτ2τ̈1

+cos 2θ sin θτ2τ̈2},

T̃ |4 =
2πGv2τ1

τ 22
{3τ̇ 21 + 4 cos 2θ(−τ 22 (3HaHb + 2H2

b + Ḣb) + τ̇ 21 )

+3Haτ2τ̇2 + 4Hbτ2τ̇2 − τ̇ 22 + 2 sin 2θτ̇1(2Hbτ2 + τ̇2)− sin 4θ

(τ̇1(3Haτ2 − 2τ̇2) + τ2τ̈1) + τ2τ̈2 + cos 4θ(τ̇ 21 + 3Haτ2τ̇2 − τ̇ 22 + τ2τ̈2)}. (4.4)

Add the aether energy-momentum tensor into the Einstein’s field equation Eq.(2.29),

we obtain the following equations governing the cosmological dynamics between

Casimir energy and the aether field:

3H2
a +H2

b + 6HaHb −
1

4τ 22

(
τ̇ 21 + τ̇ 22

)
= 8πGρ6D + T̃ |0,

Ḣa + 3H2
a + 2HaHb =

8πG

4

{
2ρ6D +

[
1−

(
τ1
τ2

)2
]
b∂bρ6D − 2τ1∂τ1ρ6D +

2τ 21
τ2
∂τ2ρ6D

}
+
1

4
T̃ |1,

Ḣb + 2H2
b + 3HaHb = −8πG

4

{
−2ρ6D +

[
1−

(
τ1
τ2

)2
]
b∂bρ6D − 2τ1∂τ1ρ6D +

2τ 21
τ2
∂τ2ρ6D

}
+
1

4
T̃ |2,

τ̈1 +

(
3Ha + 2Hb − 2

τ̇2
τ2

)
τ̇1 = −16πGτ 22

{
bτ1
2τ 22

∂bρ6D + 2∂τ1ρ6D − τ1
τ2
∂τ2ρ6D

}
+2T̃ |3,
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τ̈2
τ2

+
τ̇ 21 − τ̇ 22
τ 22

+ 3Ha
τ̇2
τ2

+ 2Hb
τ̇2
τ2

= 8πG{bτ
2
1

τ 22
∂bρ6D + 2τ1∂τ1ρ6D

−2τ2

[
1 +

(
τ1
τ2

)2
]
∂τ2ρ6D}+ T̃ |4. (4.5)

4.1 Æther Field and Casimir Energy inM 1+3×T 2

Spacetime

In this section, we will determine the Casimir energy associated with a scalar field

of mass M in our spacetime background. The fermionic degree of freedom will

contribute to the Casimir energy with the same expression as the bosonic degrees

of freedom except for an extra minus sign. However, we consider the effect of

aether field coupling to the Casimir energy. Let Vn = Ln be the spatial volume

of non-compact spacetime, and Vp = ln be the volume of compact space. For

simplicity we define

A = τ1 sin θ − τ2 cos θ,

B = τ2 cos θ − τ1 sin θ,

C = sin θ.

If we assume L≫ l, the zero-point energy of scalar field can be evaluated to be

Êcas =
1

2
(
L

2π
)n
∑
ni,nj

∫ ∞

−∞
dnk

√
δabkakb + hijninj +M2 +

α2
ϕ

b2τ2
(A2n2

1 +BCn1n2 + C2n2
2).

Using regularization method in appendix A, we obtain the Casimir energy density

in the 4-dimensional spacetime

ρ4D = −(4π2b2)s{2τ
s
2 (τ2b

2M2)−s/2+1/4

(1 + α2C2)s/2+1/4

∞∑
k=1

ks−1Ks−1(2πkbM

√
τ2

1 + α2C2
)

+
2τ s/2+1/2(b2M2)−s/2+1/2

√
1 + α2C2[τ 21 + τ 22 + α2A2 − (τ1+α2A)2

1+α2C2 ]s/2

∞∑
k=1

ks−1/2Ks−1/2(2πkbM√
τ2

τ 21 + τ 22 + α2A2 − (τ1+α2A)2

1+α2C2

) +
4τ s2 [τ

2
1 + τ 22 + α2A2 − (τ1+α2A)2

1+α2C2 ]−s/2+1/4

(1 + α2C2)s/2+1/4

∞∑
k,m=1

ks−1/2
cos(2π(τ1+α

2AC)km
1+α2C2 )

(m2 + τ2b2M2

τ21+τ
2
2+α

2A2− (τ1+α2A)2

1+α2C2

)s/2−1/4
Ks−1/2(

2πk√
1 + α2C2√

τ 21 + τ 22 + α2A2 − (τ1 + α2A)2

1 + α2C2
)}. (4.6)
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In the case of massless scalar fields (M = 0), the Casimir energy density becomes

ρ4D = −(4π2b2)sτ2{
πs−1/2Γ(1

2
− s)ζ(1− 2s)

(1 + α2C2)s

+
πs−1Γ(1− s)ζ(2− 2s)

√
1 + α2C2[τ 21 + τ 22 + α2A2 − (τ1+α2A)2

1+α2C2 ]s−1/2

+
4[τ 21 + τ 22 + α2A2 − (τ1+α2A)2

1+α2C2 ]−s/2+1/4

(1 + α2C2)s/2+1/4

∞∑
k,m=1

(
k

n
)s−1/2 cos(

2π(τ1 + α2AC)kn

1 + α2C2
)

Ks−1/2(
2πk√

1 + α2C2

√
(τ 21 + τ 22 + α2A2 − (τ1 + α2A)2

1 + α2C2
)n)} (4.7)

The Casimir energy density in 6-dimensions is given by ρ6D = ρ4D/(2πb)
2.

4.2 Effects of the Æther Field on the Stabiliza-

tion of the Extra Dimensions

4.2.1 Moduli Stabilization in vacuum dominated universe

We first consider the universe when there is no non-relativistic matter field and

the Casimir energy coupled to aether is the only contribution. The simplest model

of the bulk fields in our spacetime consists of: (i) a massless boson, (ii) a massless

fermion, (iii) a massive fermion of mass mf (iv) a massive boson with mass mb =

λmf and (v) an aether field. In this thesis we investigate the vacuum expectation

value v = 2, 4 and setting the mass ratio and the coupling parameter to be λ =

0.408 and µϕ = 50 respectively, in order to obtain the positive minimum so that

the moduli fields can be stabilized. The numerical results are shown in Table

IV.1 where subscripts in and stab mean it is an initial state and final state of the

cosmological dynamics respectively. The cosmological dynamics when v = 2, µ =

50, and θ = 0, π/4, π/2 are shown in the figure 4.1, 4.2, and 4.3 respectively.

4.2.2 Moduli Stabilization in the Universe with

Non-Relativistic Matter

In this section we investigate the effect of the aether field in the stabilizing mech-

anism of the extra dimensions in the universe with dominating non-relativistic

matter. We allow the matter to live in the bulk,

S = S6D +

∫
d6x

√
−gLmatter. (4.8)
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This is equivalent to adding the matter energy density ρm ∝ 1/a3b2 into the

cosmological equation of motion. By comparing with the observational data, the

matter density today ρm0 is 26% of the total energy density of the universe. The

Casimir energy density today in the form of dark energy, ρΛ0, will be 74% of the

total energy density of the universe. The energy density of dark energy can be

written in term of the minimum of the Casimir energy density and the stabilized

size of the extra dimensions as ρΛ0 = ρmin(2πb)
2. By using (a0/a = 1 + z), where

a0 is the scale factor today and z is the red-shift, we obtain

ρm =
2.6

7.4
ρmin(

bmin
b

)2(1 + z)3. (4.9)

Therefore the energy-momentum tensor of matter component is

T ab |matter = diag(ρm, 0, 0, 0, 0, 0). In this case, the cosmological equation of motion

becomes

3H2
a +H2

b + 6HaHb −
1

4τ 22

(
τ̇ 21 + τ̇ 22

)
= 8πGρ6D + T̃ |0 + 8πGρm,

Ḣa + 3H2
a + 2HaHb =

8πG

4

{
2ρ6D +

[
1−

(
τ1
τ2

)2
]
b∂bρ6D − 2τ1∂τ1ρ6D +

2τ 21
τ2
∂τ2ρ6D

}
+
1

4
T̃ |1 +

8πG

4
ρm,

Ḣb + 2H2
b + 3HaHb = −8πG

4

{
−2ρ6D +

[
1−

(
τ1
τ2

)2
]
b∂bρ6D − 2τ1∂τ1ρ6D +

2τ 21
τ2
∂τ2ρ6D

}
+
1

4
T̃ |2 −

8πG

4
ρm,

τ̈1 +

(
3Ha + 2Hb − 2

τ̇2
τ2

)
τ̇1 = −16πGτ 22

{
bτ1
2τ 22

∂bρ6D + 2∂τ1ρ6D − τ1
τ2
∂τ2ρ6D

}
+2T̃ |3,

τ̈2
τ2

+
τ̇ 21 − τ̇ 22
τ 22

+ 3Ha
τ̇2
τ2

+ 2Hb
τ̇2
τ2

= 8πG{bτ
2
1

τ 22
∂bρ6D + 2τ1∂τ1ρ6D

−2τ2

[
1 +

(
τ1
τ2

)2
]
∂τ2ρ6D}+ T̃ |4.(4.10)

We use some of the initial conditions such as v = 1 − 10, b = 0.12 − 0.15, τ1 =

0.12 − 0.8, and τ2 = 0.5 − 0.9 to solve the Einstein’s field equations numerically.

The numerical results show that the moduli fields b, τ1, and τ2 for these range of

the initial conditions do not stabilize.
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Let us consider the Casimir dark energy model when τ1 = 0 and τ2 = 1.

We choose the background solution of the space-like aether point along the extra

dimensions, θ = π/4

ua = (0, 0, 0, 0,
v√
2b
,
v√
2b

). (4.11)

Using this background solution, the energy-momentum tensor of the aether field

can be written as

T 0
0 |u = −v

2

2
(
ḃ

b
)2, (4.12)

T ij |u =
v2

2
(
ḃ

b
)2δij, (4.13)

T 5
5 |u = T 6

6 |u = − b̈
b
+

1

2
(
ḃ

b
)2 − 3

ȧḃ

ab
. (4.14)

We assume the total energy-momentum tensor can be decomposed as

T ab |total = T ab |Cas + T ab |matter + T ab |u. (4.15)

In this case, the 6-dimensional cosmological equation of motion become

3(
ȧ

a
)2 + 6

ȧḃ

ab
+ (

ḃ

b
)2 = 8πG(ρ

(6)
Cas + ρmatter +

v2

2
(
ḃ

b
)2), (4.16)

4
ä

a
+ 8(

ȧ

a
)2 + 8

ȧḃ

ab
= 8πG(2ρ

(6)
Cas + b∂bρ

(6)
Cas + ρmatter + v2A), (4.17)

−4
b̈

b
− 4(

ḃ

b
)2 − 12

ȧḃ

ab
= 8πG(−2ρ

(6)
Cas + b∂bρ

(6)
Cas − ρmatter + v2A), (4.18)

where A = b̈
b
+ ( ḃ

b
)2 + 3 ȧḃ

ab
. The Casimir potential is shown as a function of b in

Figure 4.4. Here we choose λ = 0.408 and ignore the interaction between SM

fields with aether by setting α = 0.

There is an interesting result obtained by carefully tuning the aether’s norm,

v = 0.5 and bin = 0.139, we can show that the size of the extra dimensions b can

be stabilized even if there is non-relativistic matter in the universe. The numerical

results and the cosmological dynamics are shown in Figure 4.5.

For mb = 0.408mf the total Casimir energy density in 6-dimensional space-

time ρ
(6)
Cas with no shape moduli is given in Figure 4.4. At the minimum, bmin ∼

0.142( 5
mf

) and the potential depend on the mass by ρ
(6)
Cas ∼ m6

f , we obtain the

4-dimensional effective Casimir energy:

ρ
(4)
min = (2πbmin)

2ρ
(6)
min,

= [2π × 0.142(
5

mf

)]2 × 0.00566(
mf

5
)6, (4.19)
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where the numbers 0.142 is the size of the extra dimensions and 0.00566 is the

energy density at the minimum of the numerical results respectively. Compare the

4-dimensional effective Casimir energy to the observed value of the dark energy,

ρ
(4)obs
DE ∼ (2.3× 10−3eV )4, we obtain

(2.3× 10−3eV )4 = [2π × 0.142(
5

mf

)]2 × 0.00566(
mf

5
)6

mf = 4.4× 10−2eV. (4.20)

It is follows that bmin ∼ 0.142( 5
4.4×10−2eV

) = 16.14
eV

× 1.97×10−7m
eV −1 = 3.18µm. The

ADD scenario shows that the 4-dimensional Planck mass is

M2
Pl =M2+n

P l(4+n)(2πb)
n. (4.21)

For n = 2 and b = bmin ∼ 16.14
eV

, the Planck mass in the bulk from the Casimir

dark energy model can be calculated by

(1.2× 1028)2 = M4
Pl(6)(2π × 16.14)2,

MPl(6) = 4.34 TeV ∼ mEW . (4.22)

Therefore the size of the extra dimensions needed to fix the Casimir energy to the

dark energy at the observed value is consistent with the ADD scenario to solve

the hierarchy problem.

We should mention here that the time scale, x1, of the simulated figures

can be calculated from the following method. Let we define t = x1tsim, G
(6) =

x2G
(6)
sim, ρ

(6) = x3ρ
(6)
sim and b = x4bsim where subscripts sim mean it is a simulated

value. From the first Einstein’s field equation

3H2
a +H2

b + 6HaHb −
1

4τ 22

(
τ̇ 21 + τ̇ 22

)
= 8πGρ6D,

we obtain

1

x21
= x2x3. (4.23)

It is interesting that in the Casimir dark energy model, the constancy of the 4-

dimensional gravitational constant depend on the size of the compactified extra

dimension is given by

G(4) =
1

M2
Pl(4)

=
G(6)

4π2b2
. (4.24)

For G
(6)
sim = 10 we obtain

x2 =
4π2b2simx

2
4

10M2
Pl(4)

. (4.25)
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By comparing a 4-dimensional effective Casimir energy density ρ
(4)
DE = (2πbmin)

2ρ
(6)
min

with the observed value of the dark energy we get

x3 =
ρ
(4)
DE

4π2b2simρ
(6)
simx

2
4

, (4.26)

substitute x2 and x3 into the Eq.(4.23), then

x1 = MPl(4)

√√√√10ρ
(6)
sim

ρ
(4)
DE

∼ 1010 years. (4.27)

It is interesting that we can defined the Hubble time as tH = H−1
ao =

√
3M2

Pl/8πρc ∼
1010 years and it is coincident with the expansion time scale in the simulation,

x1 ∼ tH .

Let us compare the stabilization time tstab of the extra dimension with the

age of the universe. The age of the universe in cosmology can be calculated from

the formula

tage =
1

Ha0

∫ 1

0

dx

x
√
ΩCas + Ωmx3

=
1.5376

Ha0

∼ 1010, (4.28)

we know that in the late-time expansion of the universe ΩΛ = ΩCas = 0.76 and

Ωm = 0.24. From the Figure 4.5 the stabilization time tstab ∼ 15tH Then tstab ∼
9.75tage is greater than the age of the universe.

v αϕ θ bin τ1in τ2in bstab τ1stab τ2stab

2 0.04 0 0.133 0.5 0.867 0.133 0.498 0.866

π/4 0.133 0.5 0.867 0.133 0.499 0.867

π/2 0.133 0.5 0.867 0.133 0.498 0.868

4 0.08 0 0.133 0.5 0.866 0.133 0.498 0.864

π/4 0.133 0.5 0.866 0.133 0.501 0.867

π/2 0.133 0.5 0.866 0.133 0.498 0.868

Table IV.1: Parameters for the stabilize solution in vacuum-dominated universe.
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Figure 4.1: Cosmological dynamics in the vacuum dominated universe when v = 2,

µ = 50 and θ = 0
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Figure 4.2: Cosmological dynamics in the vacuum dominated universe when v = 2,

µ = 50 and θ = π
4
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Figure 4.3: Cosmological dynamics in the vacuum dominated universe when v = 2,

µ = 50 and θ = π
2
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Figure 4.4: The total Casimir energy density in 6-dimensions forM = 5, λ = 0.408,

τ1 = 0 and τ2 = 1.
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Figure 4.5: Cosmological dynamics of the matter-dominated universe when v =

0.5, τ1 = 0 and τ2 = 1



Chapter V

Conclusions

We have known that Casimir energies can act to stabilize the size of the extra

dimensions while also giving a sort of vacuum energy in the accelerated expansion

of the late-time universe [3]. The acceleration of the 4-dimensional universe occurs

if the size of the compact dimensions is stabilize and the Casimir energy density

becomes a constant at that stabilized value. As a result, the apparent cosmolog-

ical constant that we can be observed in the 4-dimensional universe is effectively

induced.

Shape moduli of the distorted torus can be added to the model [13]. The

minimum of the Casimir energy density of the torus with shape moduli is located

at τ1 = ±1/2, τ2 =
√
3/2. When the cosmological dynamics is initiate within

a small perturbation of the saddle point, τ1 = 0, τ2 = 1, of the Casimir energy

density. it will roll down to the true minimum of the total Casimir energy density

at τ1 = ±1/2, τ2 =
√
3/2 even with minimal amount of perturbations.

In our model with the presence of a Lorentz violating vector aether field,

we have shown that the aether field can reduce the oscillation frequency of the

compact extra dimensions [4]. For vacuum dominated universe, the Casimir energy

of the torus with shape moduli serves as a stabilizing potential for the moduli fields

while also giving a sort of vacuum energy in the accelerated expansion of the 3-

spatial directions. The aether field will also slow down the oscillation of the moduli

fields.

For the universe dominated by non-relativistic matter with vector aether

field pointing along the fifth direction (θ = 0), the extra dimensions can not be

stabilized for any sets of cosmological parameters. However, the extra dimensions

can be stabilized in the universe which non-relativistic matter present, if we have

not considered the shape moduli, τ1 = 0 and τ2 = 1.

In the Casimir dark energy model, there is a relationship between size of

the compact extra dimensions and the observed 4-dimensional dark energy. This
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connection emerge because the Casimir energy depend only on the size of the

compact extra dimension and we fix its minimum to the observed value of the

cosmological constant. This leads to the size of the extra dimensions b = 3.18µm

and 6-dimensional Planck mass MPl(6) = 4.34TeV ∼ mEW . Therefore the size of

the compact extra dimension from our numerical result is consistent with the ADD

scenario to solve the hierarchy problem [17]. The Casimir dark energy show that

the cosmological constant problem is naturally connect to the hierarchy problem.

The interesting theoretical idea have to guess that the early universe have

all spatial dimensions are compactified. In the Casimir dark energy model show

that the total Casimir energy of bosonic and fermionic fields in the bulk generate

stabilized potential for the size of all compact directions. However, at the early

time such as radiation or matter-dominated period the radiation and matter energy

density will be dominated contribution to the total energy density. Therefore the

Casimir energy can not be stabilized the size of the spatial dimensions and all

directions will be expand. In the other hand, if the universe occur the spontaneous

Lorentz symmetry breaking in some directions it will slow down the moduli fields

associated with the broken directions. This broken directions will be stabilized by

the Casimir energy while the other will be accelerated expand.
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Appendix A

Regularization of the Two-Dimensional

Inhomogeneous Zeta Function

The two-dimensional inhomogeneous zeta function series is defined by

F (s; a, b, c; q) =
∑
m,n

(
am2 + bmn+ cn2 + q

)−s
. (A.1)

Starting with rewritten the am2 + bmn + cn2 + q in the quadratic form plus the

square of m

am2 + bmn+ cn2 + q = c

(
n+

bm

2c

)2

+

(
a− b2

4c

)
m2, (A.2)

then

F (s; a, b, c; q) =
∑
m,n

[
c

(
n+

bm

2c

)2

+∆m2 + q

]−s
, (A.3)

where ∆ = a− b2

4c
. Use the Gamma function

F (s; a, b, c; q) =

∫∞
0
dxxs−1e−x

Γ (s)

∑
m,n

[
c

(
n+

bm

2c

)2

+∆m2 + q

]−s
, (A.4)

and change a variable x = t
[
c
(
n+ bm

2c

)2
+∆m2 + q

]
so

F (s; a, b, c; q) =
1

Γ (s)

∑
m,n

∫ ∞

0

dtts−1exp

{
−t

[
c

(
n+

bm

2c

)2

+∆m2 + q

]}

=
1

Γ (s)

∫ ∞

0

dtts−1
∑
n

exp

[
−ct

(
n+

bm

2c

)2
]

×
∑
m

exp
(
−∆m2t− qt

)
. (A.5)

Consider the Fourier transform of the function f (x) = exp
[
−ct

(
x− bm

2c

)2]
F
(
k̄
)

=

∫ ∞

−∞
dxeik̄xexp

(
x− bm

2c

)2

, k̄ = 2πk

=

√
π

ct
exp

(
− k̄2

4ct
+
ik̄bm

2c

)
. (A.6)
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From the Poisson resummation formula,

∑
n

exp

[
−ct

(
x− bm

2c

)2
]
=

√
π

ct

∑
k

exp

(
−π

2k2

ct
+ i

πbkm

c

)
, (A.7)

substitute it in Eqs.(A.5), we obtain

F (s; a, b, c; q) =

√
π√

c Γ (s)

∞∑
m, n=−∞

e
iπkmb

c

∫ ∞

0

dtts−1− 1
2 e{−

π2k2

ct
+ iπbkm

c
−t(∆m2+q)}

=

√
π√

c Γ (s)
{

∞∑
m=−∞

∞∑
k=1

cos

(
πbkm

c

)∫ ∞

0

dtts−1− 1
2

×exp
[
−π

2k2

ct
+
iπbkm

c
− t
(
∆m2 + q

)]
+

∞∑
m=−∞

∫ ∞

0

dtts−1− 1
2 exp

(
−t∆m2 + q

)
}. (A.8)

Change the variable t′ = t (∆m2 + q) and use the integral representation of the

modified Bessel function of the second kind

Kν (z) =
1

2

(z
2

)ν ∫ ∞

0

t−ν−1e−t−
z2

4t ,

and the Epstein-Hurwitz zeta function

ζEH (s; q) =
1

2

∑
n∈z

(
n2 + q

)−s
= −q

−s

2
+

√
π Γ

(
s− 1

2

)
2Γ (s)

q−s+
1
2 +

∞∑
n=1

2πsq−
s
2
+ 1

4

Γ (s)
ns−

1
2Ks− 1

2
(2πn

√
q) ,

where the prime at the first sum indicates that the term n = 0 is excluded, the

above equation becomes

F (s; a, b, c; q) =

√
π√

c Γ (s)
{4π

s− 1
2

c
s
2
− 1

4

∆− s
2
+ 1

4

∞∑
m=−∞

∞∑
k=1

cos
(
πkmb
c

)(
m2 + q

∆

) s
2
− 1

4

ks−
1
2

Ks− 1
2

(
2πk

√
∆

c
m2 +

q

c

)
+

Γ
(
s− 1

2

)
∆s− 1

2

∞∑
m=−∞

(
m2 +

q

∆

)−(s− 1
2)}

=

√
π√

c Γ (s)
{4π

s− 1
2

c
s
2
− 1

4

∆− s
2
+ 1

4

∞∑
k=1

q−
s
2
+ 1

4ks−
1
2Ks− 1

2

(
2πk

√
q

c

)

+
∞∑

m,k=1

8πs−
1
2

c
s
2
− 1

4

∆− s
2
+ 1

4
cos
(
πbkm
c

)(
m2 + q

∆

) s
2
− 1

4

ks−
1
2Ks− 1

2

(
2πk

√
∆
m2

c
+
q

c

)

+Γ(s− 1

2
)q−s+

1
2 +

2Γ(s− 1
2
)

∆s− 1
2

ζEH(s−
1

2
,
q

∆
)},
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rewrite again into the following form

F (s; a, b, c; q) =

√
π√

c Γ (s)
{Γ(s− 1

2
)q−s+

1
2 + 4πs−

1
2

∞∑
k=1

q−
s
2
+ 1

4

c
s
2
− 1

4

ks−
1
2Ks− 1

2
(2πk

√
q

c
)

+
2Γ(s− 1

2
)

∆s− 1
2

ζEH(s−
1

2
,
q

∆
) +

∞∑
m,k=1

8πs−
1
2

c
s
2
− 1

4

∆− s
2
+ 1

4
cos
(
πbkm
c

)(
m2 + q

∆

) s
2
− 1

4

ks−
1
2

Ks− 1
2

(
2πk

√
∆
m2

c
+
q

c

)
}.

Finally use the definition of Epstein-Hurwitz zeta function we obtain

F (s; a, b, c; q) = q−s + 2c−sζEH(s,
q

c
) +

2
√
πΓ(s− 1

2
)

√
cΓ(s)∆s− 1

2

ζEH(s−
1

2
,
q

∆
)

+
∞∑

m,k=1

8πs−
1
2

c
s
2
− 1

4

∆− s
2
+ 1

4
cos
(
πbkm
c
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∆

) s
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4
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1
2

Ks− 1
2

(
2πk

√
∆
m2

c
+
q

c

)
. (A.9)
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Appendix B

The Casimir Effect

An experimentally verification of quantum vacuum is the Casimir effect.

This effect is manifest as an attractive force between two parallel uncharged con-

ducting plates. In fact, a realistic description requires quantization of the elec-

tromagnetic field in the presence of conducting plates. This section describes the

calculation of the Casimir energy [41]. To simplify the calculations, we consider

the simple case of a scalar field ϕ with mass m in d-dimensional space between

two plates at x = 0 and x = a, introduce the boundary conditions

ϕ(x)|x=0 = ϕ(x)|x=a = 0. (B.1)

The scalar field satisfies the Klein-Gordon equation

(∂2 +m2)ϕ(x) = 0. (B.2)

Under the above boundary conditions the modes of the field become

ϕ(x, xT , t) = sin(
nπx

a
)eikT xT e−iωkt, (B.3)

where

ωk =

√
(
nπ

a
)2 + k2T +m2, (B.4)

and n is positive integer. The zero-point energy of the field between the plates is

then

E = (
L

2π
)d−1

∫
dd−1kT

∞∑
n=1

1

2
ωk. (B.5)

Using polar coordinate ∫
ddkf(k) =

2πd/2

Γ(d
2
)

∫
dkkd−1f(k), (B.6)

substitute into Eqs.(B.5) we obtain

E = (
L

2π
)d−12π

d−1/2

Γ(d−1
2
)

∞∑
n=1

∫ ∞

0

dkTk
d−2
T

1

2

√
(
nπ

a
)2 + k2T +m2. (B.7)
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Define u = k2T so

dkTk
d−2
T =

1

2
(k2T )

d−3/2dk2T , (B.8)

then

E = (
L

2π
)d−12π

d−1/2

Γ(d−1
2
)

∞∑
n=1

∫ ∞

0

1

2
(k2T )

d−3/2dk2T
1

2

√
(
nπ

a
)2 + k2T +m2. (B.9)

Using the Beta function relations

B(1 + r,−s− r − 1) =

∫ ∞

0

tr(1 + r)sdt =
Γ(r + 1)Γ(−s− r − 1)

Γ(−s)
, (B.10)

and imposing t =
k2T

(nπ
a
)2+m2 , so

E = (
L

2π
)d−12π

d−1/2

Γ(d−1
2
)

1

2

∞∑
n=1

[(
nπ

a
)2 +m2]d/2

∫ ∞

0

td−3/2(1 + t)1/2dt. (B.11)

since r = d−3
2

and s = 1
2
then yields

E =
1

2

Γ(−d
2
)

Γ(−1
2
)
πd+1/2 (

L

2
)d−1 1

ad

∞∑
n=1

[(
am

π
)2 + n2]d/2. (B.12)

For the massless scalar field m = 0 the summation is
∞∑
n=1

nd = ζ(−d), (B.13)

where ζ(s) is the usual Riemann zeta function. Using the reflection formula

Γ(
s

2
)]π−s/2ζ(s) = Γ(

1− s

2
)]πs−1/2ζ(1− s), (B.14)

and change s→ −d so

ζ(−d) =
Γ(d+1

2
)π−d−1/2ζ(d+ 1)

Γ(−d
2
)

. (B.15)

The total energy is

E = −L
d−1

ad
Γ(
d+ 1

2
)(4π)−(d+1)/2ζ(d+ 1). (B.16)

The force per unit area on the two plates is defined as

P = − ∂

∂a
(
E

Ld−1
) = − d

ad+1
Γ(
d+ 1

2
)(4π)−(d+1)/2ζ(d+ 1). (B.17)

In our 3-dimensional space d = 3, we obtain

P = − 3

a4
Γ(2)(4π)−2ζ(4), (B.18)

since ζ(4) = π4

90
therefore

P = − π2

480a4
. (B.19)
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