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Chapter |

Introduction

1.1) Background Information/ Statement of the Problem

Nowadays new technique such as/biosensor plays an important role for
detection of DNA especially electrochemical biosensor (1) because it is easy to
invent, rapid, specific, cost effective, less time-eonsuming, and can detect DNA semi-
quantitatively. Although.pelymerase chain reaction (PCR) using together with agarose
gel electrophoresis andereal iime-PCR techniques are generally used to identify the
gene-associated diseases (2, 3), detection of DNA by electrophoresis is time-
consuming and can vary upen many faétogs such as agarose gel quality, or type of
running buffer. Moreover, quantitative an’ql)'/sis of the amplification product by real-
time PCR technique IS very expensive ;nd..ujrequires sophisticated instrument and
technical skill. So,sthe electrochemical bflgsensor technique has been developed to
replace gel electrophaoresis procedure. Ba‘si-c;-‘ biosensor consists of two main parts.
First part is the recognition part. Biomole‘ci‘:j,ﬂewthat IS specific to the target such as
nucleic probe is immobilized on-the transdiaée},{;ln this part, the reaction between
specific target and immobilizing probe wiliéaféate the indicated signal that can be
detected by the.second pértj"The second partlé' a transducer-that can convert the
indicated signal from-the-previous-part-lo-a-readable-signal-suchas light or electrical
signal (4, 5). The transducer can be modified to gold electrodeto increase efficiency
of detection (6, 7), or using the electroactive indicator as mediator to transfer electron
from the reaction to the electrode, or use DNA intercalator that can bind to DNA and
causes change in glectron transfer:to electrode such as Hoeghst'33258 as a label (8).
However, all'of these methods heed difficult'steps of immobilizing the DNA probe on
the surface of the electrode before hybridization. To_reduce immobilization step, the
aggregation {phenamenon<ef the: target DNA with” of Hoechst 33258.1a determine
presence ana absence of DNA in' the “solution was-implemented (9,+10).“Hoechst
33258 can bind to minor groove of DNA so, it’s more specific to dsDNA than
SSDNA.

In this study, we applied electrochemical technique with DNA aggregation

induction by Hoechst 33258 to detect commonly expressed gene, [B-actin, and



compared its correlation and efficiency with conventional agarose gel technique.
Finally, this technique was applied to detect a gene of interest, receptor for advanced
glycation endproducts (RAGE). RAGE is a receptor which upon binding to some
types of its specific ligands will cause pathological effects in many types of chronic
iabetes, atherosclerosis and cancer (11-14). Human

: r (HeLa) cell lines which were
previously reported to_have RAC & 5) will be used for semi-
quantitative detection'@ “gene €X tudy. Thereafter, the degree
of gene expression ir ! {4 will be compared ‘ using the relative copy

numbers.

1.2) Objectives

ressed gene, B-actin, by
electrochemical bi¢ chni e ¢ ared it elation and efficiency with
2. To apply electroche josensor techni 0 detect a gene of interest, receptor

1.3) Key words: ele Hoechst 33258, gene

eXPression, RAGE =Bt =
p 7 WGt .\‘

n
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Chapter 11
Literature review

2.1 Technology for gene detection and application

There are several methods to detect DNA.

2.1.1) Conventional agarose gel electroephoresis. This is one of the most
well-known tools developed to detect severaltypes of genes. However, it is time-
consuming and has low sensitivity because the detection of product depends on gel
electrophoresis step.that*can _be varied, not only In type of agarose gel but also in
buffer and the appliedwoltage.

2.1.2) Real time RCR. /The téchnique has been introduced in order to
accelerate the speed of detegtion and enhance process efficiency. Real time PCR is a
quantitative determination that caﬁ detec'f__al real product at a real exponential phase
and can be used to detect chronic diseas'% such as diabetes (2) and cancer (3), etc.
However, this techniqué requires+a sophisticated instrument and high level of
technical skill. Furthermore, chemicals are expensive.

2.1.3) Biosensor techniqhe. Thié-'-ﬁiaw technology has been applied for
detecting nucleic acid, enzyme, ‘antibody, etc. Génerally, biosensor consists of two
main parts as shown in fig}u;re 1 The first pﬁ;s 'Irggognition part. This part contains

biological substances that are'uspec'ific to target énalysis sueh ag'nucleic acid, enzyme,

antibody which-are=tmmobiiizea: he-transducer: Fhe-seCofd part is transducer
which can convert specific signals to readable signals such as light, current or

frequency (4, 5). .

;m{fﬂE SIGNAL (light,
current,
frequérnty)

BIOSENSOR

Figure 1 Electrochemical biosensor (4).

2.1.3.1) Principle of biosensor. Detection by biosensor consists of three
steps. Firstly, the biological substance that is specific to the target is immobilized on



the transducer. Secondly, the target binds specifically to immobilized substance and
this is called biological recognition. This part will generate the indicated signal from
the reaction such as electron, ion, gas, thermal, light or mass, etc. Finally, the
transducer converts indicated signals from step two to readable signals, this step is
called physical transduction. The appropriate itransducer is an important factor for
detecting indicated signals efficiently. For examples, if the indicated signal is an
electron, the transducer is an electrode and if the.ndicated signal is ion, the transducer
is ISE (ion selective electrode), etc. In general, good transducer should be sensitive
and can response rapidly to.indicated signals.

2.1.3.2)"The gmain transducers. Transducers-which are used in the
biosensor techniquesare (a) optical biosénsor, this technigue depends on the optical
property such as absogption, transrission, reflection, fluorescence and luminescence;
(b) piezoelectric s€rystal” biosensor-depends on quartz crystal, the frequency of
vibration is affected by:/mass of a materiél adsorbed on the surface; and (c)
electrochemical biosenser (16, 17), which éan be subclassified into three types. The
first type is amperometric that measures a 6hahge in electric current as a result of
electron transferring from sampie-to the electrode by oxidation or reduction reaction.
The second type is potentiometric,-a measurmg mstrument is developed to capture a
change in voltage or electric peotential, this: techmque is based on pH or p(ion). The
last type is conductimetric in which capture conductivity or ¢hange in conductance/
resistance of the solution is measured, but this technique is unpopular (18, 19).

Each type of biosensor can be applied to detectt DNA. However, the
amperometric biosensor is widely used to detect gene of DNA hybridization or
expression than the "othérs. This is because most reactions give an electron directly
(depended on redox reaction) and the process is fast and cost-saving (7, 20-23).

2.1.3.3) The electrochemical DNA biosensor or genosensor. The
DNA probes that are specific with'the DNA target‘are immobilized on an‘electrode.
The'electrode for'detecting DNA hybridization mostly: uses carban, gold. and, mercury
electrode (20). However, amalgam, mercury film carbon, and other solid electrodes
can also be used as DNA electrode in the DNA hybridization sensors (24). After that,
indicated signal that is generated from the hybridization is transduced into a current

signal for displaying or analyzing as depicted in figure 2.
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ine residue plays an important role in detecting 'ne oxidation signal
because it is elecirc 1at afe more reactive than

other bases (26). This te al sﬁ as shown in figure 3,
carbon and mercury electrode were used to detect the signal. Regarding those steps, it

can be categorize biliz a be n the electrode,
hybrldlﬁ ﬁ % r?gj;ﬁﬁ he current via

guanine Oxidation S|gnal by voltammetry
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DNA probe

Complementary DNA (target)

Figure 3 Three step

oxidation signal (25).

1' o . ;
The signal decreases when ﬁ'brldlz n :" C

they themselves th
(guanine free) t ound to cytosme residue are adopted i
Consequently, the a@n&mcreases after hmdlzatlon because the signal depends

solely ﬂ ?Hargj Q?’\ w@: &}won ? ury electrode,
modlfylrmp obe to gold can increase the efficiency of hybridization detection and

mismatch oligonucleotide (30). AS a result, guaninesoxidation signal is.applied to

A o AL AR i o

and mismatch DNA (29) but also telomerase activity that is a biomarker for cancer

Hlne -substituted probes

ad of guanine probes.

cells (31), RNA hybridization for detection of the fecal indicator bacterium
Escherichia coli for water-quality monitoring (32), apolipoprotein E (apoE) sequences
in PCR samples (33) and the Catechol-O-methyltransferase (COMT) Val108/158 Met
polymorphism that is related to schizopheria (34).



B) Label based or indirect detection
This detection technique is introduced as a better alternative for
electrochemical detection. It depends on electroactive indicators for detecting DNA

hybridization. It consists of four basic steps; a) immobilization probes (ssSDNA) on the

electrode, b) hybridization betwee es and specific targets, c) reaction between
the indicator and dsDNA o the electror 2 surface,and d) transduction to current via
voltametry as illustrated in fige | refhany’ of indicators as following.

Cationic metale€omplexe  consist 0 - Co(pt "_Co(bpy)s>*, Fe(bpy)s**,
[Ru(NH3)e]*" and Rufbpy)s™, ete (35 icators are mostly used as
mediator for tran o i gelg S “ to electrode as shown
in figure 5. However, Yang & horp (38 lied tt ethod to detect trinucleotide
Repeat Expansion. ddation of the immobilized

; Mo
guanines by Ru(bpy | ouldnmcs of repeats at tin oxide
, ‘ ':JE:J-‘
P
i’.:ﬁ':'.; By

electrode.

DNA probe _ ; ' a3 a plementary DNA (target)

A- Electrochimcal adsorption B - Hybridisation

Aue mﬁw;wgm

RN 16

C 2- Electroactive hybridisation indicator (I) signal

Figure 4 The four steps- indirect detection by using electroactive indicators for
detection DNA hybridization (25).



T

Figure 5 Gua

electrochemical i

um complex in solution in

b) DNA iterga

DNA intercalators are the mol - “.l-'”': an in‘NAin different ways. The

properties of intercalator are i ive forh gh sensitivity gene detection. Various

. FoF I S e . .
types of intercalators were cqmﬁm’i-d; : 10 select an appropriate intercalator for
H—_- — e
the DNA sensor (1). SR T
SR

u,h) Organic dyes

) _ nd methylene blue.
Acridine orange||‘s us andp-pecific sequences of
Trichoderma harzianum which is difficult to culture (39). However,

electroc al acri can bind with
dsDNAﬁj77 u ﬁ ﬂ ﬁﬂ %W%j ?Is]nﬁapproprlate for

dlscrlmn’mmg dsDNA from ssDNA Methylene blue can bind specifically to guanine

SR TS

%ethylene blue can bind to dsDNA better than ssSDNA or used for gene sequence
related to Trichoderma harzianum (42) and used for recognition of native yeast DNA
sequence (43).



(b) Antibiotics

Antibiotics such as daunomycin and mitoxantrone (MXT) are anti-
tumor antibiotics. The daunomycin bound to dsDNA by intercalating and bound to
rates the dsDNA from ssDNA by detecting
i the electrochemical signal of

ssDNA by electrostatic interactions. It s

different electrochemical signals
daunomycin is not influe 5‘3‘\ t , at derived from oxygen and
oligonucleotide probe ).. Daunomycin is for detecting the hybridization of

DNA and capturing low-moleet ‘ weight compounds (toxins, pollutants, drugs) that
has affinity for nuclelc 8,45

)i Mitoxa ."'.-"'l,”“‘-i tightly to major groove
/AR,

of DNA in reversible re
@) Bish ‘{/

Example
shown in figure 6.

m. yQ
(T y
(http:Hen.w 8 (ms on 18/09/2553)

L Eaﬁ*m L7810 £ e

(48, 49) &Idouble strand DNA at A T rich region (fge 7) (48, 50- 52)
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10

major

i~y

groove

Figure#*Hoechst 33253 bindﬂing to minor groove.of DNA (53).

In the electrochemical detectionIJ, electrochemically active dye plays an
important role. In the'freeform, /it'is oxidiiéd on the electrode to give an electron to
produce electrocheémical signal which can%e measured as anodic current peak (8, 53).
The anodic current peak is measuredvia Iill'igar“sweep voltammetry (LSV). This dye is
widely used to detect hybridization: of the -{h;erested gene or DNA (1, 54) because it
can bind to dsDNA more specific than ssDNA according to minor groove property.
The anodic signal will ‘decrease when hybrldlzgpon occurs comparing to without
DNA in the solution. In addition e|ectrod€can be modified to gold to increase

efficiency (55). o o g SR

However; all-6f-the-elecirochemical-biosensors-that Were mentioned above
require immobilizing step of capturing probe on the electrode which is difficult to
prepare and time-consuming. Kobayashi, et al. (9) has developed electrochemical
DNA biosensor for DNA quantification without immobilizing probe on the electrode.
This help reducing time and cost by using Hoechst 33258 as'a redox-active compound
to aggregate with-DNA "that was previously-amplified-by polymerase chain reaction
(PCR). The Hoechst 33258 is commionly used because the effect of DNA.aggregation
by this* molecule®is’ better. than the. others' (56). The, anodic currefil isignal was
measured byinearsweep veltammetry (LSV) and was reversely‘proportionalto DNA
concentration. In other words, if there is a large number of DNA in the solution, the
anodic current signal will decrease because there is a small amount of free Hoechst
33258 left in the solution. On the other hand, if the amount of DNA in the solution is

low, the anodic current peak will increase as shown in figure 8.
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( , echs 3323& has been applied for
detecting DNA In ‘ 1S S| ,'. ecﬁon‘ f bovine constituents in feedstuff
' of clinically important

alleles by using disp 7 ; o , 3l _“ ‘ chip as demonstrated in
figure 9 (57), identification of mﬁ_spe ' _ smg EP chips with loop mediated
isothermal amplification tecﬁb‘l‘:q‘:ﬁ%) he ele trochemlcal biosensor aggregated
with Hoechst 33258 is easy L to,,usg,. cheag - and helpful in reducing time of testing

ating expenses for

because it elqnilhates immobilizing stg[; which ¢ gﬁe)r

’ , [ CR, it can increase
the efficiency of detection. =
ﬁe + i
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Disposable Electrochemical Printed

(DEP) chip for SNP detection DEP Chip

—

Potential

Figure 9 Disposable Electrochemical Printed (DEP) chip for SNP detection (57).
. ,..Al.J ‘;Jf...g
However, most of the electrochemleﬁr Jgtpsensor techniques are applied to

detect DNA hybridization Wlth electroactlve—fed icator. In this study, we has modified
the label-free electrochemicat biosensor by"déiﬁé"‘afsposable electrochemical printed
(DEP) chip, « Hoechst 33258, and linear sweep voltammetry (LSV) for semi-

quantitative deteCtlon of gene expression. The technique Wllt_be modified to detect
commonly expressed gene, B-actin, that is a housekeepmg gene and compare its
correlation and efficiency with conventional agarose gel electrophoresis technique.
Finally,«thisstechnique Js, applied«to detect.a-gene ofsinterest,.receptor for advanced
glycatian endproducts (RAGE), whichis a receptor which upon binding to some types
of its specific ligands will cause.pathological effects in many types of chronic

degenerative/diseases

2.2 Receptor for Advanced Glycation Endproducts (RAGE)

RAGE is a member of the immunoglobulin superfamily of cell surface
molecules which locates on chromosome 6 in the MHC class 11 region (59). The full

RAGE receptors consist of 5 domains. The first domain is cytosolic domain or
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cytoplasmic tail which is responsible for signal transduction. The second one is
transmembrane domain which anchors the receptor in the cell membrane. The third is
variable domain which binds the RAGE ligands, and the last two parts are constant
domains (figure 10).

; §1aal Peptide (aa 1-22)

]

et domain (aa 23-116)

i

|

Ilg-ﬂ;}. domain'{aa 124-221)

[g=C2 domain (aa 227-317)

Transmembrane domain (aa 343-363)

| 7 Cyloplasmic tdil (aa 364-404)

“ >

E iu_al:clll.l]:lt_

Intragellulag

Figure 10 Schematic representatmn of RAGE Domains of RAGE are shown

with corresponding amino aC|d numbers (60)
i ¥/ .

,u
The full length RAGE cDNA consists of:rr exons. RAGE can occur in many

isoforms as a result of alte'r“natl've:spllcmg (61). ~3Fhe spliced forms lead to change in

the protein coding region of RAGE, for example, protein :éhanges in the ligand-

binding domain of RAGE or the removal of the transmembrar}‘eudomain and cytosolic
tail. In human Iung and cultured aortic smooth muscle cells', there are 19 naturally
occurring RAGE éblicing. Most of the alternative spliced form is RAGEV1 and it is
named asresRAGE .or_soluble RAGE (sRAGE), (60, 62,.63).. However, the most
abundantly expressed form of RAGE In lung tissues and smooth muscle cells is full
length. In“human brain, there are three established RAGE isoforms (64) such as full
lengths RAGE, (RAGE), ~secretory -RAGE, (sRAGE),; sand. N-truncated, RAGE
(NtRAGE), but the. most abundantform-of RAGE iin the hippocampus iSRAGEV1 .
RAGE is normally found as surface receptor in endothelial cells, vascular
smooth muscle cells, leukocyte, macrophages, the nervous system, lungs, muscles,
peritoneum and the kidneys. RAGE is normally expressed at low levels in most tissue
except lung (65). It can bind to multiligands (66, 67); such as advanced glycation end-
products (AGESs) (68), amphoterin or HMGB1 (69), S100/calgranulin family (70),
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Mac-1 (aMpB2,CD11b/CD18) or leukocyte integrin (71) and Amyloid-B-protien (72,
73). Upon binding to its ligands, AGE can trigger signal transduction that leads to
pathogenesis. RAGE implicates with various chronic pathologies depend on its ligand

(74) such as diabetes, inflammation (75), cancer, macrovascular disease, Alzheimer’s

pathophysiological settings ar

Ligand for receptorfor Al - ysiolagic/ pathophysiologic impact

" Diabet naI failure, amyloidoses,

Advanced glycationehdp
‘ ‘ adducts) inflammation,

0> ~.\ stress, aging

Amyloid-b p bt ‘ .”Z\ disease, amyloidoses

el )
- ks .I':.‘- - ] .
li ‘“ = Development, neurite outgrowth

~inflammation, tumour biology

Figure AGE li logicatstate (68).

2.2.1) Advanced

This is the Common ligand for RAGE. Normally, AGQ are usually formed in

hypergl ia especiaflyin diabetic conditic ), prolonged inflammation, aging
and oﬁ:\ur ~condit gﬂy re\ rg tﬁﬁa three pathways as

iIIustrateﬂ]n figure 12.

ARIAINTUNNINGAY
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Glucose

@ Polyols

Protein-NH, Aldose reductase

Glycoxidation

— v i Oxidative stress
Schiff base 0\ ‘P[# -
dehydiod us Glyoxal
Alnadc;@ ‘ Methylglyoxal

Intery

The first pathway is pathway depends on glucose
concentrations, time and te several steps of AGE formation.
Glucose will bi ﬁg with proteln amﬁ‘Ormf Sch be transformed into

The second pa y is . glucose is transformed by
adolase reductasjo sorbitol. The 3 convertedg 3-deoxyglucosone by
sorbitol dehydrogen?e After that, protein WI|| bind with the intermediate product to

SR AL (10 1) 20 4

react wﬂﬂ‘{)rotem and form AGE. P

9 JREreaaal 11077186 ¢

The mechanism is reduction in endothelial nitric oxide synthase (eNOS) that

results in nitric oxide (NO) reduction; activation of nicotinamide dinucleotide
phosphate (NAD(P)H) oxidase which catalyzes the chemical reaction and provides
reactive oxygen species (ROS); activation of RAS p21 which is a GDP/GTP binding

G protein that leads to activation of MAP kinase signaling; activation of P38 mitogen-
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activated protein kinases (p38 MAP kinase) ; and activate cell division cycle 42
protein (Cdc 42) to activate Rac which is a subfamily of the Rho family of GTPases
and small (~21 kDa) signaling G proteins. The latter four pathways can activate

Interleukin-6 (IL-6), tumor neerotic factor RAGE. All of the proteins

cause functional and iral-chang mawch lead to symptoms of
diabetic vascular comy iI0Ns«(79) as shown i 13.

ADV oN
l ; % U=
Renal cafenger | A ' \ | AGE
Clearance regentgrs. - ac ion [%° crosslinked
‘ - tissues
13
.t‘-g'::';:l
L eNOS NAD(EH | p21 VAP Cdc42
activation oxidase "t kinase p38 l
TNQ . et o . _
inactivation - | Rac

INOo  F : /

anscription factors
eg NF-x

‘VEGF‘ IL-6, TNF-a, RAGE

ATV

unctional and structural
manifestations of diabetic vascular
complications

RINNNTE

Figure 13 Effects of AGEsS-RAGE interaction (79).
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AGE binds to RAGE in diabetes complication alters cellular properties especially
in vascular homeostasis (11) and causes many implication such as atherosclerosis
(12, 80), cardiovascular disease (81), renal glomerulus (82) and inflammation
(83, 84).

2.2.2) Amphoterin (HMGB1) ligand

Amphoterin (HMGBL) ligand or a high-mebility group box1 is a nonhistone

chromosomal DNA-binding-proiein. It s normakly-feund-in nucleus.
HMGB1- RAGE iateraction

Amphoterin 1s released by necratic cell (85) acting as a mediator in tissue

injury and inflammation«(86, 87), In addition, amphoterin is expressed and secreted
by cancer cells. It eauses cellular activdtién and results in increase expression of

cytokine and growth factor, NF-xB.\In tu!mor, the HMIGBL1 is implicated in tumor
formation, progression and metastasis. Hi“‘g_h level of HMGBZland RAGE appear in
several solid tumor implicate with metastasis tumors (88) except for corresponding
tumor tissue of non-small cell lung cancer that expresses RAGE at low level (89).
Thus, the HMGB1-RAGE axis is related to inflammation and cancer (90). In addition,
the RAGE-amphoterin reaction plays an essgﬁiial‘_role in the migration of monocytes
through the endethelium (91). b

2.2.3) S100/ calgranulin family ligand

S100 proteins has a low molecular weight (~11 kDa) that can bind with
calcium via EF hand motifs (92). An EF-hand is a helix-loop-helix motif that
coordinates Ca®* binding: It is expressed in Vertebrates exclusively,. display a cell-
specific distribution, and-regulate a large variety of intracellular activities such as cell
proliferation, differentiation and shape, membrane trafficking, Ca®* homeostasis,
protein phosphorylation, transcription; cyteskeleton.dynamics: S100 preteins consist
of many members (93) especially, S100A11 and S100B which is ‘secreted from

astrocytes and neuron (94, 95). They are the best characterized proteins (96).
S100/ calgranulin family- RAGE interaction (97)

S100A11 binding with RAGE stimulates inflammation-induced chondrocyte
hypertrophy (80, 87, 98). S100B binding with RAGE leads to neuronal survival (99,
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100) neurite extensionl, neuronal injury or apoptosis (101), stimulation of IFN-y-
inducible protein expression in monocytes3 (102). In addition, S100 protein family
such as S100P has been shown to mediate tumor growth, drug resistance, and

metastasis through RAGE binding because S100P is specifically expressed in cancer

‘1’7 eraction shows effective therapy for

ribed as a cell surface

cells in adults. So, blocking S
cancer (103, 104) ‘

marker for macrophages e 1_ ‘ inflammatory process and
contributes to emigrati ‘- ( mathe ‘ uitment of leukocytes from
S , ites of inflammation or injury requires
_ ) two, including selectin-
mediated capture anddrolling: st ‘_' kocyte tion; step four, integrin-
mediated firm adhesion/ fives ‘ nsendothelial migration
(107).
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Figure 14 Leukocyte recruitment in inflammation (108)
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MAC-1or leukocyte integrin- RAGE interaction

the RAGE-Mac-1 interaction related to leukocyte migration. In vitro, RAGE-
dependent leukocyte adhesion to endothelial cells is mediated by a direct interaction

of RAGE with the [32 mtegrln (Mac-1). involving in the transcription factor NF-xB

A, Q Miag-L sraction is a novel pathway of
leukocyte recruitment relevant in |nflgj1ma i s associated with increased

) “——
RAGE expression w |

barrier (BBB) into central sisystem (CN , exp ession of proinflammatory
cytokines and endothelin-1. o confir e role ¢ E in BBB transportation of
AB, the homogenous RAGE n ' udied (80). The result found that the

= Al
= a--"."-—':

BBB transport:gSAB was invisible in R/ GE null so'RAGE was related to
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Inflammatory RAGE ligands «», Amyloid plaques -
(s100/calgranulins, AGESs) )

Alzheimer’s disease

Figure 15 Potential strategy t
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A

-t e T
reduce the e[l:jts of other RAGE i ammatot ds (8100/calgranulins and
AGES) in the braih-ane-cireuiation-(siep-o):

In conclusio , n bind to multiligands
such as AGE, HWMIGB1, S100 family, Mac-land AP prdﬁn and cause signaling

induction of the deleterious cascades. ThetRAGE variants occur from alternative

splicinﬂduGEjaria ts%%@r%ﬂtﬂ éﬂ!f)ﬁthere are many

studies supporting that the soluble RAGE has an ability to neutralize AGE actions

(113) or can be used as therapeuti&'targets for cardiévascular diseases (114), reduced
ki
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Chapter 111
Materials and Methods

3.1) Materials

Equipments Manufacturers, Country

" / Electric, Japan

Korea

1) -20 °C Freezer

2) -80°C ULT Deep

3) 4°C Refrigerator/_"

4) Analytical Bala/ | A\ M\;h\: 0, Switzerland

5) Auto pipette iF ‘ 3 | \ \ ce
q

6) Block heatef S A

7) Cell Culture ‘ S s Korea

8) Centrifuge tub | ! ) \\

9) CO; incubator _ - eI‘ "‘ ufacturing, USA

10) DEP chip (SP-P and EP-I model) : Device Technology, Japan
11) DNA Chip Tester ) ioDevice Technology, Japan
e~
12) Dlsposable ~' SA

(5, 10 ml) V

- ¥
=
13) Electrophoreﬁpow J : ad, Usm

14) Gel documentatio ‘p (Gel Doc) Syngene UK

eIV Vlﬁ‘ﬂgl’lﬂ‘i

15) Ge lﬂjctrophorea

PRTRIN T NATANLAY

18) Microcentrifuge tubes (1.5 ml) Bio-Rad, USA
19) NanoDrop Bioactive, USA
(UV-Visible Spectrophotometer)

20) PCR tubes Bioscience, USA



21) Six-well plates Corning, USA
22) Syringe filter Corning Life Sciences, USA

23) Thermal Cycler (PTC-200) MJ Research, USA

’,yhermo Electron, USA

24) Vacuum Concentrator
(DNA SpeedVac)

25) Vortex Mixer

Chemicals ‘ Ctu
1) Agarose gel 'y ' - ’_ s ‘;-.  anics, USA
2) Ampicillin \tlanti, Thailar
3) Bacto tryptone
4) Diethyl pyrocarb ate‘
5) DNA ladder 100 bp "; : .,’ eas, Canada
6) Dulbecco’s odiﬁe - ' '
Eagle’s med; :__;:_‘A'u;;.;

7) EDTA-Trypsin 0.2¢ JSA

: il
8) Ethanol Merck, Ger :"J \

9) Ethidiu bromld ? ma Aldrich, USA

Fe JJEL%% EJVI? %J’lﬂ‘i

11) Maxi ep kit Inwtmen USA
Q3) Phosphate buffered saline (PBS) HyClone, USA
14) Potassium phosphate Biobasic, Canada

(Monobasic, anhydrous)
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15) Potassium phosphate Biobasic, Canada
(Dibasic, anhydrous)
16) Primer Pacific Science, France

17) Taq DNA polymerase kit  Fermentas, Canada

18) Tri-RNA Reagent I/ ogen, Taiwan
18) Verso cDNA synt ‘ |

19) Yeast extract

3.2) Methods

The methods used inthis study ean-be diy _artsaccording to the
diagram below. A SN W)

a |

AULINENTNYINS
RN TAUNIINGIAE
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3.2.1) Extraction of RNA and RT-PCR amplification

HelLa and HepG2 cell lines were cultured in 25 sq.cm flasks with 10% FBS
DMEM at 37 °C under 5% CO,. Then, HeLa and HepG2 cells were seeded in six-
well plate at a cell density of 1x10° cells/well in complete growth medium,
incubated overnight at 37 °C under 5% C@; and total RNA was extracted by two
techniques. The first techmque is Tri-RINAsreagent and the second is nucleospin
RNA 11 kit, then RNA concentration was measured by NanoDrop. For Tri-RNA
protocol, firstly, wash-eells. 2 times with 1X PBS, then, add Tri-RNA reagent 1
ml, then transferred 1 ml of cell suspension to 1.5 ml new tube. Add 200 pl
chloroform, mix bysinversion and vortex. Then, incubate at room temperature for
15 minutes. After that, centrifuged the mixture at >12,000 x g for 15 minutes at 4
°C and carefullyremoved the supernat;qr{t into a 1.5 ml new tube, add 500 pl cold
isopropanol ‘into the Superpatant tuble and gently mixed by inversion. Then,
incubate at -20.°C for 30 minutes and “uce_antrifuged the mixture at >12,000 x g for
15 minutes at 4 °C. Removed-and discarded the supernatant and dried by placing
the top of the tube on RNASE iree papérw"Ihen resuspended the RNA pellet in 1
mL 70% ethanol. (RNA/from this step ‘can be kept for 1 year at -20 °C).
Centrifuged the mixture at >7,500 X g for 5 minutes at 4 °C, removed and
discarded the supernatant Air-dried the pellet by plaeing the top of the tube on
RNase freg paper-toi-30-minties-and-speed-vac-toi-d-mirute. Then, resuspended
RNA pellet'in 30 pl RNase-free water (DEPC treated water). After that, incubated
at 65 °C for 10 minutes and stored RNA at -20 °C or - 80 °C. For RNA isolation
by commercial kit, the method was as described by the manufacturer’s manual
(119). Cells were lysed by incubation in-a lysis bufferthat‘contains large amounts
of chaotropic™-ions “in order~to fnactivate’ RNases. The lysis' buffer created
appropriate binding conditionsswhich favored adsorption of RNA o ;the silica
membrane. Contaminating DNA ‘which also bound“to the silica membrane was
removed by an rDNase solution” which' was directly applied” onto the" silica
membrane during preparation. Simple washing steps with two different buffers
removed salts, metabolites and macromolecular cellular components and pure
RNA was finally eluted under low ionic strength conditions with RNase-free

water. Then, total RNA from two techniques were diluted to two concentrations of
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300 ng/ul and 1,200 ng/pl. Then, RNA was reversed to cDNA in a total volume of
20 pl per reaction by Verso cDNA synthesis kit at 42 °C 30 min for 1cycle, and
inactivation at 95 °C 2 min for 1 cycle.

3.2.2) Creating standard curves for RAGE and B-actin genes

RAGE and B-actin fragments were ¢loned into pcDNA3.1/V5-His TOPO TA
expression kit and pGEM-T easy vector kit The iotal sizes (inserted cDNA + plasmid
vector) were 6,764 bprand-3,671 bp Lespectively. The recombinant plasmid were
transformed into E.coli. Then., the bacteria containing cloned RAGE and B-actin
plasmids were cultured inslysegeny broth (LB) or Luria broth, incubated overnight at
37°C with vigorous shaking. Afier that, ffllasmids were extracted by Maxiprep kit. The
extracted plasmids wereschecked by gel electrophoreSIS and the right plasmid was
used to make a 10-fold dilution for makmg 5 concentrations of standards. RAGE
standards were 10°, 104710%, 10°, and 10 ¢ copies and f3-actin standards were 10°, 10°,
107, 10°% 10° and 10" copies to cover thé ' applicable concentrations from samples.
Various standard concéntrations will be ampllﬁed by PCR in the same run of the
samples and used for creating standard curryés W|th agarose gel electrophoresis and

electrochemical biosenser methods. '}.?'] .-*‘f..
i - o

For standard calculation b hef =
P e

Standard conqeht“fations were calculated according to Applied éiq_,systems (120)

1. Calculate thesmass of a single plasmid molecule et

m =[ n] (1 096e-21g J where: n = plasmid size (bp)
L bp m = mass
e21] e

Note: Plasmid size is plasmid + insert

2. Calculatethe mass.of plasmid containing theicopy number of interest

Copy # of interest x mass of single plasmid = mass of plasmid DNA needed




27

For example
Copy of interest is 10° copies x mass from step one = mass of plasmid DNA
3. Calculate the concentrations of plasmid DNA needed to achieve the copy

T,j ‘ (calculated in step 2) by the volume

number of interest. Divide the

to be pipette into each reactio

In this example, 5 ul of

Copy # s inal concentration of

NAREede -, . 7_ Iasmld DNA (g/uL)
300,0004% o 4405 9.84e-13
30,000 rl‘fj_' "EIH 9.84e-14
3,000 ¢ A9 9.84e-15
300 | & 44 J \\\E\ 9.84e-16
30 "’[_@F‘F 9.84e-17

£ /1 (*' A4 |
4. Prepare a serial dilution ¢ the — " ] IIowmg formula

3.2.3) Polymerase chm@ﬁ . (PCR) a _pllflcatlon

Since fere f'DNA  detection by

electrochemic: DNAbiosensor, the design of sp: a‘ ecessary.

3.2.3.1)@99 GE gene E)ends on RAGE

specificity and % A-T.

1. Exon

SRR

“/Reverse 5’- GGA CTC GGT AGT TGG ACTTGG -3

awwﬁa&ﬁw YRIINYIAY

Forward (RAGE F1) 5 - GTGGGGACATGTGTGTCAGAGGGAA - 3’
Reverse (RAGE R1) 5° - TGAGGAGAGGGCTGGGCAGGGACT -3’
% A+T = 38.38
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Product size 216 bp

Forward (RAGE F1) 5> - GTGGGGACATGTGTGTCAGAGGGAA - 3’
Reverse (RAGE R2 inner) 5°-
TGGGCTGAAGCTACAGGAGAAGGTG -3’

% A+T =41.20

3.2.3.2) Primer for B-actin gene, product size 656 bp

Forward 5:- ACGGGTCACCACACTIGIGC.3’
Reverse @8=CTAGAAGCATTTGCGCGTGGACGATG - 3°
% A+T =46.0

3.2.3.3) Optimization of PCR ¢onditions

RAGE gene
1) Condition for figst primers, product size 332 bp:

1200 ng RNA of Hela and HepGZ cell lines were used to test the condition.
The PCR tube gontained 10X Tag Buffer, 1.5 mM MgCl,, 10 mM dNTPs , 10
MM primers and 1.25 UTag DNA'pélymgrase under PCR conditiion of pre-
denaturation at 95 °C:5 min, denaturaiipﬁ"ét 95 °C 30 sec, annealing between
50-59 °C for 30 sec, extension at 72,?C. 39 sec, and post extension at 72 °C 5
min. i
2) Condigion for F1 and R1 primers (product size 332/bp) and F1 and R2
primers (product size 216 bp).

The experiments were done in two conditions.

2.1) 10X Taq Buffer, 1.5°mM MgCl; (1.5 mM MgCl;for B- actin), 10
mM dNTPs, 10 pM primers and 1.25 U Tagq DNA polymerase under PCR
conditiion of pre-denaturation at 95 °C 5 min, denaturation at 95 2C 30 sec,
anneahingitemperature optimization between 59-63 °C for 30 secyextension at

72 °C 30 sec, and post extension at 72 °C 5 min.

2.2) 10X Taq Buffer, 1.0 mM MgCl;, (1.5 mM MgCl, for B- actin), 10
mM dNTPs, 10 uM primers and 1.25 U Taq DNA polymerase under PCR
conditiion of pre-denaturation at 95 °C 5 min, denaturation at 95 °C 30 sec,
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annealing temperature optimization between 59-63 °C for 30 sec, extension at

72 °C 30 sec, and post extension at 72 °C 5 min.

B- actin

Condition for - actin contained 10X Taq Buffer, 1.5 mM MgCl,, 10 mM
dNTPs, 10 uM primers and 1.25 U Fag:DNA polymerase and amplification
condition was pre-denaturation at 95°°C'5_min, denaturation at 95 °C 30 sec,
annealing temperature optimization between.58-61 °C for 30 sec, extension at
72 °C 45 sec.and"post extension at 72.°C.15 min:

3.24) RNA" comeentration and PCR condition for electrochemical
biosensor "

The sampleswere amplified for 30 é"ycles by Thermal Cycler in 50 pl reaction
mixture. For RAGE gene, the PCR mixtur? composed of & pLLeDNA of either 300 ng
or 1200 ng that reaghed gongentration to "7_5 hg/ 5 pland 300 ng/ 5 ul respectively.
Each PCR reaction contained 10X Taq Buffer, 1.0 mM MgCl, (1.5 mM MgCl, for B-
actin), 10 mM dNTPs', 10 M primers and .25 U Tag DNA polymerase under PCR
conditiion of pre-denaturatiop,at 95 °C 5 min, denaturation at 95 °C 30 sec, annealing
at 65 °C 30 sec, extensionat . 72 °C 30 seé}?ﬁmd- post extension at 72 °C 5 min. The
B- actin amplification condition was pre-der'\ét‘[fré‘t'ibh at 95 °C 5.min, denaturation at
95 °C 30 sec,'annealing.at 58 °C 30 sec, extension at 72 °*C 45iseC and post extension
at 72 °C 15 min<The same concentration of cDNA from Hela&and HepG2 were used

for amplification of both RAGE and - actin genes.
3.2.5) Electrochemical biosensor detegtion

3.2.5.1) Optimization of conditions; faor detéction. Stock solution
(200 pM) of Hoechst 33258, [2-( 4-hydroxyphenyl ) -5- (4-methyl-1-piperazinyl ) -
2,5 = bi_(1H-benzimidazole)] was prepared. by, dissolving Hoechst 33258_in high
purity distilled water which has leen. filtered through 0.2 pm syringe filter, then
divided into small aliquots and kept in the dark at -20 °C. Appropriate phosphate-
buffered saline (PBS) concentration and pH were tested with 25, 50, 100 and 200 mM
at pH 6.4, 7.4 and 7.8. Just before use, Hoechst 33258 stock solution was diluted in

various PBS and then mixed with negative PCR products and positive PCR product
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(10° copies) to reach the final Hoechst 33258 concentration of 20 pM. The mixture
was incubated in heat box at 37°C for 25 sec, and then 20 ul was loaded on working
electrode of the disposable electrochemical printed (DEP) chips both SP-P and EP-N

model in figure 16 and measured by biosensor device as shown in figure 17. The

EP-N
(carbon)

Figure 16 Disposabl¢ e ni ‘ , A) square working

model

on18/09/2553

Sl = TR

W

-1

B

S, RN ¥ A A

electrode reference electrode and gounter electrodeaut there are dlffere&’shapes of

TSI IR T RS T

area 2.64 mm?. The detection program is multichannel DNA chip tester (measurement
program) using linear sweep voltammetry (LSV) as shown in figure 18, scan rate is
100 mV/s, initial electric potential was 1,000 mV, and final electric potential was

1000 mV. The changes in anodic current were recorded and anodic current peak was
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used for further calculation. The appropriate concentration of Hoechst 33258 was

selected between 20 puM and 50 pM.

Linear sweep voltammetry (LSV)

The voltage change from v1 to a value v2 (linear increase with time).

V2

\

Potential
\
%

P
V1

Time L___;
Figure184 inear swee['}‘vo{tammetry (LSV)

3.2.5.2) Precision of electrochemical biosensor method.

The precision of electrochemical bioseﬁsor'Jﬁethod was evaluated using -actin
gene and RAGE gene at-iwo concentratioh_s:for within day, the B-actin DNA
standards were-tested at low level (10* copies) and high Jevel (10° copies) and
measured repeatedly for 10 times. Likewise, RAGE DNA standards were tested at
low level (10 copies) and high level (10° copies) and measured repeatedly for 10
times in a single day. For between day precision study, the B-actin DNA standards
were tested at _low level (10* copies) and high level (10° copies) and measured
repeatedly for 3 times a day for 10 days. Likewise, RAGE DNA standards were tested

at low leVel (10 copies) and high level (10° copies) in the same manner.
3.2.6) Electrophoresisidetection of DNA

PCR products of RAGE and - actin from the same tubes that have been used
for electrochemical biosensor detection were loaded on 2% agarose gel and run in 1X
Tris-acetate and EDTA (TAE) buffer with 90 V for 35 min. The agarose gel was

stained with ethidium bromide and specific bands measured with Gel Documentation

(Gel Doc) system.
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3.2.7) Comparison between electrochemical biosensor technique and
agarose gel electrophoresis technique. To detect commonly expressed gene, 3-actin,
by electrochemical biosensor technique and compared its correlation and efficiency
with conventional agarose gel technique. HeLa and HepG2 cDNA both at 300 ng and

1200 ng were amplified for 3-a JE ; . Each cDNA dilution from two cell
lines was measured in tripli ate (n=12). | PCR product from the same tubes
i conventional agarose gel
electrophoresis. Then, the copy he e were determined from
electrochemical biosenso _' v e lge oh 1 compare sensitivity and

hst 33258 was applied

for detection of RAGE gene from H L \ \ ing CONA from the same
tube of B-actin g ‘ pli ‘ ' Tlf\e_ﬂ 3‘ l~\0 \A ‘gene was interpolated
from standard curve a ‘ ge Xpression ‘-, alcL : ed in relative to B-actin

rrAEy T
‘%E;

estimated RAGE cD tion from: ela : d epG2 were analyzed by

w e used, the relative values or

ﬂﬂEJ’J‘VlEJWﬁWEﬂﬂ‘i
’QW’]G\"IﬂiﬂJ UAIINYAY



Chapter IV

Results

4.1) Optimization of PCR condition

Detailed primer reDorts
Primer pair 1

>NM_172197.1 HomaSapiens ( jlycos on en od "‘"a\ pecific receptor (AGER),
transcript variant 2 ‘ ‘ . ' .

product lengt
Forward primer
Template : . . .

Reverse primer 1 :u TAG jife

Template 3 A ‘.L:. ...... .

>NM_001136.3 Homo sapie advam y end product-specific receptor (AGER),
transcript variant 1, mRNA - ]

product length = 33 / ﬁsf;ﬂ

Forward primer 1 AGCAGTIGE
Template 1

Reverse prime

Template ]
"'1‘- - . - - — —

>XR 115124.1 PRE

miscRNA

product length== 208
Forward primer 5Cl
Template 748 GTTG.......G.....

Forward primer - AGCAGTTGGAGCCT G

3 a (LOC100508411), partial

AT mﬂ - SO

produc ength = 208
Forward primer AGCAGTT GAGCCTGGGTG
Template 1748 GTTG.......G.....

Qﬁﬁﬁ*ﬂﬂ%ﬁ&l%’]’éﬂﬂ?ﬁﬂ

XR 111719.1 PREDICTED: Homo sapiens hypothetical LOC100508411 (LOC100508411), partial

miscRNA

product length = 208

Forward primer 1 AGCAGTTGGAGCCTGGGTG 19
Template 1748 GTTG....... G..... G. 1766

Figure 19 The designed RAGE primers are specific for various genes.
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When RNA from two cell lines were amplified RAGE gene in the same run with
RAGE cDNA standard under condition 1.5 mM Mg?* and annealing temperature at
50 °C, the result shows that HeLa and HepG2 cell line have two non specific bands so
this condition cannot be used for amplification RAGE gene (figure 20).

100bpladder 10° 108 107 105 10° .'{

HeLa HepG2

o

Figure 20 RAG | ar pllflcatlon f&r RAGE cDNA standard and HelLa and
HepG2 RNA VA J, m"’* “ \
4.1.1.1) Opti “zaugéh?*{;} annea‘Egﬂg.;ngnperature under condition of 1.5
mM M92+ -’—_— :;"

The anneallng tempera‘ture*gradlent‘cr[“sd’&c B C, ng and 59 °C were

=/ 50°C s3°C 507 Comst 59°C
100 bp ladder depG : }'iesz HeLa HepG2 HeLa HepG2 HeLa

Figure 21 PCR products obtained when the annealing temperature gradient at
50 °C, 53 °C, 56 °C and 59 °C were used for HepG2 and HeLa respectively.

332bp

332bp
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From the results, there were two non specific bands found at all the
temperatures used, so these cannot as well be used for amplification of RAGE
gene. Thus, these primers are not suitable for RAGE gene amplification and design

of the new primers was done.

These primers are specific ‘ of RAGE, both variant one and
P — =

Length Tm GC%
Forward primer GGG TG | WiEAG p RN W N 6012  56.00%

Reverse primer 64.32 B6.67%

Products on target te
_ a = k! . .
>NM_172137.1 Homo sapiensi&d 2d glyeas) n-endiproduet-specific rec [A } transcript variant 2. mRNA
product length =
Forward primer

Template 4034

Eeverse primer 1
Template 785

>NM_001136.3 Homo sapiens ad\tan ecific rCeptDr (AGER). transcript variant 1, mRNA
product length = 383
Forward primer 1
Template £

'E- e EEEETET}EEEFEF}E}Y}E}FR}YFY}F}F}F}RTY}Y}PRPRPERTSTSTSBTSTsssasa ’

Reverse primes’ t T oACGACAGEEE T EEGE ‘
Template v;‘ \

Fn

Figure 22 Blastg RAGE primers, F1 and R1 shows speciﬂy for variants 1 and 2.

ARG

he range of annealing temperature was g °C - 66 °C. Frow)he result,

QAR N TINTRE
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62°C 63°C 64°C 65°C 66°C
100bp ladder HeLa HepG2 HeLa HepG2 HeLa HepG2HeLa HepG2 HeLa HepG2

1000 bp

500 bp

300 bp

_I|f|cat|on- of HeLa cell line and HepG2 cell line at

and 66"”C respectively.

o of an;ﬁalﬁng temperature under condition 1.0
iy |
s I';:‘ e J.l'..’&

if a ealmg,,temperaw was 63°C ~ 66 °C. At 63 and 64 °C,
b

two faded non-specifi baanWEre detem ereas at 65 °C and 66 °C gave one
specific band (figure 24). Hewever the @Tﬁture at 65 °C is better because the
band at 65 °C is sharper-than at 66 °C: et i )

| £
L S < s - - —rrv-rv—-l_.-"' 66°C

" = \ 4
100bplau HeLa HepG2  HeLa HepG2'

hel.a l'lqu?m._ HeLa HepGZ

383bp

Figure 24 RAGE gene amplification of HeLa cell line and HepG2 cell line at

63 °C, 64 °C, 65 °C and 66 °C respectively.
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4.1.3) F1 and R2 primers (product size 216 bp).

Similar to F1 and R1 primer, F1 and R2 primer are specific for amplification
of both RAGE variants one and two (figure 25).

Primer pair 1

Length Tm GC%
25 6012 56.00%
5995 56.00%

Forward primer
Reverse primer

Products on target te

=NM_172197 1 Homo sapiens ad edghvc =al: or (AGERY), transcript variant 2, mRMNA
product lengt e

Forward primer 1

Template -

Eeverse primsr 1 ‘
Template B o -

>NIM_001136 3 Horrio sapieg advaliediigensylation efid o s pecific rece AGER). transcript variant 1. mRMNA
product length

Forward
Template

primer &

Reverse primer
Template

Figure 25 Blast for F1 and. =M cificity for RAGE variants 1 and 2.

4.1. "V:'u it 1 ‘ er condition of 1.5
mM Mg®* _—
‘ .MJ

The range ff annealing temperatu&yvas 62 °C — 66 °C. Two non-specific

“FUY m EWITN g1n73
AR AINIUNAINYINY
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62°C 63°C 64°C 65°C 66°C

1.

100bp ladder HeLa Hq)GZ”}[eLa HepGZ] HeLa HepGZHI-[eLa HepGZl HeLa HepGZ‘

216bp

200bp ~>
100bp —>

and HepG2 ¢ ,63:°C, 64 °C, 65 °C and 66 °C showed non specific
amplification “ ,f "
i il idd
4.1.3.2) Optimization of: anneah@g Iemperature under condition of 1.0
2+ #
mM Mg ::J Jﬂ".u

———— L]
The range of nneql[ng-’temperatut&W@ 61 °C — 65 °C. From the result,

there were two non- specuﬁc Fnds at 61:64 °C whereas amplification at 65 °C

gave one speciflc band (flgure 27) ' f
e —

| = .
v Jr 61°C 62°C 63°C 64° C 65°C
100bp ladder U= - .

Figure 27 RAGE gene amplification with F1 and R2 primers of HeLa cell line
and HepG2 cell line at 61°C-65°C.
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From condition of F1 and R1 primers and F1 and R2 primer, the proper
annealing temperature is 65 °C so RNA of HeLa and HepG2 were amplified by
two primer sets to choose the best primer set. The results in figure 28 showed that
at 65 °C annealing temperature, F1 and R1 primers were better than F1 and R2

primers because the former gx ’fc plified RAGE gene product. Thus, F1
and R1 primers were use%x 1/ //
M < /

100bp ladder Hel.a epG2 He!a Hep G2

383bp

216bp

T
L
—_—

ST IG%E' amplification by (A) F1 and R1 primers

|£ respectively.

i

4.1.4) djctin;r-imers (product size 656 bp). )
At A
| ¢ = o/
%W’l ANTIIER NV INIE IR E

-

Figure 28 Compariscf
=
and (B) F1 and R2 primer.
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§89C §9°C 60°C 61°C
100bp ladder  ‘HeLa HepG2' HeLa HepG2' 'HeLa HepG2' HeLa HepG2'

1000 bp
500 bp

200 bp

J - = —

-
1

\
respectively.

oli &n-pf HeLW and HepG2 cell line at

»

4

e ——

d

-,

Total RNA of Hela and H@:Z;"'cell lines acted by commercial kit and
o . - -
Tri-RNA protocol. Extracted'dmawas'd@lzoo ng and 1600 ng and used for

amplification of RAGE gene (figure 30). « =
S ¥ 2:

a . '
-;_-; 1200ng 16&0»4_43@ {

l‘ o i T HeLa HepG2

Figure 30 RAGE gene amplification for1200 ng and 1600 ng RNA of HeLa cell line
and HepG2 cell lines respectively by using (A) commercial kit and (B) Tri-RNA
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The result showed that the commercial kit was better than Tri-RNA because it
gave one specific band. The proper concentration is 1200 ng RNA because there are
smear band less than 1600 ng and 1200 ng RNA had one specific band whereas 1600
ng RNA appeared to have non specific band. Then, 300 ng RNA and 1200 ng RNA
was amplified for RAGE gene (fl,g rb [3 The result showed that 300 ng was
invisible on agarose gel . separation, f ng was visible. So, this two
concentrations were _use to compare @between conventional gel
electrophoresis and e'l'E'ErrUEh'E“ ical bﬂsensomn the PCR condition for
RAGE gene and f3-

/i as mntloned above

™

300ng

ﬁeLa HepG2

383bp

Figure 31 Separgg})n of RAGE gene amplification for 1200 Jng and 300 ng RNA of

HelLa and HepG2 ceH—Imes upon agarose gelﬁctrophoresw

Ry SRS

©4.3.1) Appropriate pho;phate buffered saline (PBS) concentratlon and

ARTRINIUNRIANLIAAY. .

%4 7.4 and 7.8 to reach the final Hoechst 33258 concentration of 20 uM. The

mixture was loaded on EP-N chip, and anodic current (microampere) was measured
by linear sweep voltammetry (LSV). The anodic current peaks were plotted in line
chart as shown in figure 32.
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9
? . ——25mM PBS pH 7.4
11 —=—50mM PBS pH 7.4
E ! ——100mM PBSpH 7.4
§ 6 ——200mM PBS pH 7.4
g 5 ——25mMPBS pH 7.8
E . —+—50mM PBS pH 7.8
E ——100mM PBS pH 7.8
; 3 ——200mM PBS pH 7.8
E 2 ——25mM PBS pH 6.4
% ——50mM PBS pH 6.4
0 —=— 100 mM PBS pH 6.4
0 “ 3 —+—200mM PBS pH 6.4

Figure 32 Ano c dﬁ% Ve PCR ducts when various PBS

conditions were u m....

The results showed ‘ tPquj \

current peak. RAGE ger e =-v'-*- 1tro -: ‘ ct (0 copy) were also tested in
‘ gure 33. Then, the anodic current

the highest anodic

the same manner and the results;were

peak of positive and negatiw ' as vn in figure 34

—
i“
m —=—-50mMPBSpH 7.4

i¥ 100 mM PBS pH 7.4
—=—200mM PBS pH 7.4

: mM PBS pH 7.8
mi PBS pH 7.8
—+—100mM PBS pH 7.8
—ZOOWWS pH 7.8

25 BSpHIG.4
50 B! )

25mMPBS pH 7.4

ic current peak (micro Amp)

r;\t;
TN mmwrw

‘ ' ' | ——200mMPBSpH 6.4
0 200 400 600 800 1000
E/mV

ﬁ'

AR

—=—100mM PBS pH 6.4

Figure 33 Anodic current peak of RAGE negative PCR products when various PBS

conditions were used.



43

8
I positive
[ negative
6 -
4 -

i

b

S\ |
D \\

v
A

A

R
= —— AT S & B e W
1 L.

anodic current peak (micro Amp)

e —
b

e
i |

-

=
il

S mME———
oY R BT

-.\—' .
b

00 m?

&

3S

=

~ 25 mM

~200 mM|

ina |

" I
7.4 pH 7.8 PBS
|

o)

Figure 34 Comparison of anadic currer n EP-N chip of RAGE positive and

useds™

= == %

negative PCR preduc

}L‘g‘ eater the difference
cment peak, the better the

For elec ﬂ‘w

=

o —
=)
RIAINTUNRINEIAY
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PBS conditions _ Anodic current_ peak (microampe!'e)
Positive control | Negative control Difference

pH 6.4

25 mM 2.37 3.47 11

50 mM 2.45 3.65 1.2

100 mM ‘ 3.57 1.19
200 mM 351 1.17
pH 7.4 ;

25 mM 1.22

50 mM 2.06
100 mM 1.42
200 mM 1.25
pH 7.8

25mM 1.2

50 mM 1.53
100 mM 1.12
200 mM 1.05

The results from/both p owed that PBS at 50

mM, pH 7.4 provided the

respectively and gave t

Comparlson EP-N. -,. ;.«v

and negatlve R

ghes
highestdiff

at

14 a d7.20 microampere

m 1ixed with positive
X . and plotted in bar

chart as shown in -

’QW']Mﬂ?ﬂJ UAIINYAY
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anodic current peak (micro Amp)

mM: |-

h

TR

I positive
[ negative

-

¥ §

|;'7 BN .

RN IE | ‘\'\

’ B | I\.l

‘I 118 | | k\‘!l. |

T
pH 7.8 PBS

and negative PCR products whe#-va S sonditions were used.
. el
The dlffe[rﬁce from the positive peak were shown

in table 2.

o

9

ve

Table 2 Ano ﬁ ent pe n.positive and negative
PCR products.of RAGE from SP-P chip :

nditions
i | 34.49 [+
qlES mM

Ly~

nodic current peak (microampere)
Mvﬂc )ntrolﬁ [ %ference

[ 1

W s(ﬁlvl

“hagw] Vit
pH 7.4
25 mM 3.74 4.74 1.00
50 mM 4.22 6.05 1.83
100 mM 2.65 3.90 1.25
200 mM 2.50 371 1.21

SP-P chip of RAGE positive
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pH 7.8
25mM 3.62 4.77 1.15
50 mM 3.74 5.06 1.32
100 mM 2.24 3.33 1.09
200 mM 1.00
From the result, PBS at Vig dthe highest difference like EP-
N chip but SP-P chip gave | er than EP-N and had the
standard variation hi “EP-N. 'S0, EWused in this method with

Hoechst 33258 dis

4.3.2)

Acentration can increase
58 were mixed with 50 mM

In order to-

sensitivity of detecti

PBS pH 7.4 and
10 - — ‘*_.;'
g 89 P s s
Qo
8
E 6-
=
(]
(=8
5 4
St
3
2 g B
o
Qo
AL

0 = : A —
‘ ~Posi k ti w, DOSI egative
ARIANTEEEH N VTR
9
Figure 36 Anodic current peak from RAGE positive and negative PCR mixed with
20 uM and 50 uM Hoechst 33258.



47

According to figure 36, the anodic current peak of 20 uM Hoechst 33258
when mixed with positive and negative PCR product were 5.14 and 7.2 microampere
respectively and difference between the two anodic current peaks was 2.06

microampere while the anodic current peak of 50 uM Hoechst 33258 when mixed

products.

IIII i I’\\\}\‘L\
£ 4 J A BNNA N
ll Il — WA N
' NE

.\ ‘\ —e— positive

"x\\\‘\ —=— Negative
FAN

anodic current peak {microampere)

Lo R L J P ¥ ) o ) N A s B Ve

Figure v———— 3 : nositive and negative
PCR product-wh '

ﬂ‘NEJ’J‘V]EJ‘ﬂﬁWEﬂﬂ‘i
’QW']Mﬂ‘ifu UAIAINYAY
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6.13

anodic current peak (micro Amp)

Figure 38 Difference i actin positive and negative

i . ' 4 4 ; ‘ \ | h
PCR product whel ed ‘.'!'m,,,: chst %250

# F s
il

From figures 3 -.e:;’_:ru nt peaks of B-actin positive and

negative PCR product were gﬁ |

ere respectively and the difference
between the two curre 1 '

Yo

4.4) Precisio ‘
Within day precmn = , m
-

B-actin DNAystandards at low Ievel‘llp4 copies) and high level (10° copies)

were uﬂﬁtﬁa mﬂﬂﬁﬂjﬂfﬂiﬂnﬁo CV) was 4.68
% and 1.88% igh'and | s respectively.
RAGE DNA standards at Sw Ieviélo c ) andﬁ? level (20° copies)
i

QB b Bt b b0 E

9% and 3.74 % for the high and low levels respectively.
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Between day precision

B-actin DNA standards at low level (10 copies) and high level (10° copies)
were measured repeatedly for 30 times in 10 days and coefficient of variation (% CV)

was 4.94 % and 2.02 % for the high and Iow levels respectively.

RAGE DNA standards at Iow le /O opies) and high level (10° copies)
were measured repeatedly-for 30 times in 1 ép oefficient of variation (% CV)

was 2.38 % and 3.89 %_fp,[_thahlgh andJow Ieve vely
4.5) Standard c@;’ inand RAGE geneg'*-ﬁ_,
Standard curves® i ne were created for both agarose gel
electrophoresis d glegtr chemlcal biosensor method. The results in figure
; r - ql"'
39 showed that the | etéc bIe concentration of B-actin gene was10” copies and
—_— ol
figure 40 demonstra -.of IB actin (from Hela and HepG2 when DNA

actin DNA which can b ctéd #537 agaré‘éé’;tjef%lectrophgress was10* copies
A

; .ut! > 3 .A'.n

iz - il

—
10Ty A’

100bp ladder 10 10t 100 100 10!

1000bp ~>

00bp >

Figure 39 The lowest concentration of B-actin DNA which can be detected by
agarose gel electrophoresis was10” copies.

636 Dbp
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HeLa HepG2 HepG2 HeLa
f_‘_\ J . 1 [ 1 f_l_\
100b 1 2 3 1 2 3 1 2 3 1 2 3

656Dbp

< ——

Hel,_a and w\en different amount of

A

6.5x10°

6.0x10° o

5.5x10°

5.5 6.0 6.5 7.0 5 8.0 8.5 9.0 9.5

log copy number
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6.5x10°

6.0x10° - Y= 519408.070 X + 1161581.659
R?=0.9967

5.5x10°

5.0x106

density

4.5x106 -

3.5x106 -
55

9.0 9.5

Figure 41 Stan fd Y f a , ‘ y number and band

density from electrop

ectrophoresis method

for (A) B-actin géne

For electrochemical biosensor dete¢ , the current was dependent on free
Hoechst 33258 molecules -1 -the - ; X ne_current peak was inversely
proportional to-BDNA concentration. Sts ndard curve of p-act gene was plot between
log copy nu 5’_1 r’_ x; R? = 0.9783) as
A and coy' mbers of B-actin were

shown in flgureg
determined from s andard curve. Likewise, standard curve of RAGE gene was created

< P Ww%’w i .
AN TAUUMINGIAY
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>

5.0

4.5

Y =5.8249 - 0.3523X
R?=0.9783

anodic current peak (micro Amp)

uy)

anodic current peak (micro Amp)

ﬂﬁﬁl?%ﬂfﬂﬁwmﬂ’i

F| ure 42 Standard curve oielectrochemlcal'&)sensor method fo&gml-

ARIRAIRENTIEA Y

4.6) Comparison of gene expression between two methods

The copy numbers of B-actin gene were determined from electrochemical
biosensor and agarose gel electrophoresis. The concentration of (-actin gene (copy

numbers) were compared between the two techniques as shown as table 3.
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Table 3 Comparison of B-actin gene concentration (copies numbers) obtained from

electrochemical biosensor and conventional agarose gel electrophoresis.

75 ng/ 5pl of cDNA

Measurement Hela cell lines HepG2 cell lines
No.1 No.1 No.2 No.3
Anodic peak (LA) ‘
B-actin gene 3.52 3.54 3.54 3.55
Copy number of B-actin » \H :
gene (copies) 3,467,369, | 8,71 3,090,295 3,090,295 2,884,032
electrochemical biosensor 3,467,369~ 3,548 3,019,952 3,019,952 3,019,952
conventional PCR
Measurement HepG2 cell lines
No.2 No.3
Anodic peak (LA)
B-actin gene 2.76 2.77
Copy number of B-actin
gene (copies) 501,187,234 | 467,735,141
electrochemical biosensor 501,187,234 | 489,778,819
conventional PCR

From table 2

analyzed by Passing-Babl

copy

6x10% |-
S5x10%

S \

Q AT

= 4x10°

173

=

o

©

Q

=

L]

<

(6]

o

=

54

@

w

Intercept = -40
95% CL:2895:

]

gu 243,

Gel electrophoresis

ethods were compared and

x10% copy

Figure 43 Comparison between the electrochemical biosensor and the conventional

agarose gel electrophoressis for 3-actin semiquantitation using Passing—Bablok

regression analysis.
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The equation from Passing—Bablok regression was y =- 40383.0623 +
1.0233 x and the slope of 1.0233 fit with 95% confidence limit of 0.9771- 1.1834 as
shown in table 4. This result suggested that the electrochemical biosensor correlated

well with the conventional agarose gel electrophoresis.

Table 4 Passing—Bablok regression analysis'showed good correlation between gel

electrophoresis and electrochemical biosenser.meihods,

Passing andBablok regression

VariaV Gel electrophoresfs—
g i Gel electr phore5|s

Electroch_emlcal  biosensor

TR T AT —

e T 12
Y- ~\/arigble X , Variable Y
y 36&9952 0000 2884032.0000
_ ~ 575439937.0000
Avrithmetic mg 264811332.5833
Median 235725246.5000
Standard deviation 274753377.9307
79314468.3545
¢ Regressmn Eguatlon
y = -40383.0628 ¥ 1:0233 x ol £
Intercept A | -40383.0623
9506 Ll =39556395:3207 10 139521.9713
SIope‘B/ ______ 10233
95% ClI 0.9771 to 1.1834
Cusum test for linearity = No significant deviation from linearity

(P>0 10)

4.7) Application for detectlon of gene of interest

Electrochemical biosensor aggregation with Hoechst 33258 was applied for
detection-of RAGE; gene fromHela and HepG2nusing eDN Asfroprthessame tube of
B-actin gene.amplification..The copy.number of RAGE gene.was interpolated from
standard curve and RAGE gene expression was calculated in relative to -actin gene,

the results were shown in table 5.

Table 5 Determination of RAGE gene concentrations in HeLa and HEPG2 cell lines
by estimation of copy number of RAGE relative to B-actin (RAGE/ -actin).
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75 ng/ 5ul of cDNA

Measurement Hela cell lines HepG2 cell lines
No.1 No.2 No.3 No.1 No.2 No.3
Anodic peak (LA)
RAGE gene 6.36 6.36 6.37 6.44 6.44 6.45
B-actin gene 3.52 3,51 3.52 3.54 3.54 3.55
Copy number ‘
(copies) !
RAGE gene 3,311 .3 \ 1,479 1,318
B-actin gene 3,467,369 /15,35 3,090,295 2,884,032
Estimated RAGE 0.0009549 089 0.0004786 0.0004570
gene concentration
Measurement HepG2 cell lines
No.2 No.3
Anodic peak (PA)
RAGE gene 5.95 5.96
B-actin gene 3.54 3.55
Copy number
(copies) iy
RAGE gene 4,807 257,040 190,546
B-actin gene 575,439,937, 501,187,234 | 467,735,141
Estimated RAGE 0.00 0.0005129 0.0004074
gene concentration

When different
e
estimated RAGE cDNA n

paired t-test shown in table &Wp‘g ;gqr
Ho: no diffe

La and HepG2 were analyzed

ing hypothesis.

Hy: differenc ; Y )
o= o.osm

If significant Z-Ihlled) value > o. medns accept Ho

.ummmwmm

Y

’QW’]ﬁ\"IﬂiﬁU URIINYIAY
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vean N Std. Dewviation | 5td. Error Mean
Pair 1 ratio7s
0000053 3 (W] 0000239613 | 0.000097821394
ratio300 0_O00GES 38 3 " 6 0000244749 | 0000099918245
Paired SHMPIES Correlations
N Correlation Sig.
Parr 1  rang’s & ratmo300 N6 0.989 0
Paired Samples faan
Paired Differerices =2 t d Sig. (2-tailed)
Std Error | 95% Confidence Interval of the
Mean Std. Deviation Meas Difference
Lower Upper
Pair | ratio75 -

ratio300 (.000004666667| 0.000035524452] 0.000014502797] -0.000032613959] 0000041947292 0322 50 0.761

Table 6 Patred t-test for analvsis of the difference of means of relative valoe of
EAGE cDNA betweenHela and HepG2

9%
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The result from table 6 showed no statistically significant difference between
RAGE gene copy numbers when 75 ng or 300 ng of DNA were used (p= 0.761) or
accept Hy because of 0.761 > 0.05. The average RAGE gene expression of HelLa and
HEPG2 were 0.0009051 and O. 0004670 r spectlvely So, Hela cells expressed twice

more RAGE gene than HepG2 cells\ /
When the same sam,g_es of RAG &l various concentrations were

measured semi- quan e resplts '7 that the electrochemical
biosensor was morw the conventlarMphoresw method (figures
41). The lowest con L ' RAG gene band whtsb\‘n be visualized was 10*
copies (figure 44) bu detection in linearity range of electrophoresis method

was 10° copies ( | 44 B)cor '.. tglg'.cpples for the biesensor method (figure
42 B). RAGE gene

1000bp — v -

00bp —> <—383bp

300bp ~>
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re 44 The lowest concen&Lratlon of RAGE DNA which can be detected by
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Chapter V

Discussion and Conclusion

5.1) Discussion

Electrochemical biosensor using electrochemical indicator for direct or indirect
detection is faster than guanine oxidation becatisesthe signal that is generated by the
former is higher and sharper than the latter-signal.(25). There are many types of
indicators for this technique butusing iﬁtercalator as the indicator especially Hoechst
33258 is more useful thap.ethertypes (1). Since Hoechst 33258 binds to minor groove
of double strand DNA ai"A-T rich regign better other region (49, 51, 52) and bind
specifically to dsDNA, it is used for detection the hybridization between specific

target and immobilizing prebes in the reaction (55).

Electrochemicalbiosensor detectior{ depends on the immobilizing probe on the
electrode. Thus, this technigque inducinéf. with Hoechst 83258 was applied for
detection of DNA. This technigue isfast ahc-l.v'eas'y to perform because it shortcuts the
probe immobilizing Step. There was a study(’lhat used electrochemical biosensor for
detecting gene expression .im.-plant tissues but: they used enzyme-linked DNA
hybridization assay (121). In this siudy, the 7|c7>:_fr‘écision of electrochemical biosensor is
less than 5%-that means good ‘method béff&)}—:rﬁahce (122).~The electrochemical
biosensor aggregatich-—with-IHoechst.33258 - Was—applicd.for detection of gene
expression of the highly expressed gene, B-actin, and compared with conventional
agarose gel electrophoresis method. The technique was then applied to detect the gene
of interest which was{owly expressed, RAGE gene, from HeLa and HepG2 cell lines.
The result from this/sttdy demonstrated that, the electrochemical biosensor is faster
than conventional-electrophoresis=method as shown iin-table7" because it can reduce
time for electrophoresis and ethidium bromide staining, overall time for,detection
gene by bioseisor technique. is thirty minuies while'agarose gel electrophoresis needs
more than' one hour. Particularly, electrochemical detection was more “sensitive than
the electrophoresis method because it can detect RAGE gene at the lowest level of 10
copies whereas the gel electrophoresis method can detect semi-quantitative only at

concentration over 10° copies.

Table 7 Comparison of two techniques
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Conventional method Electrochemical biosensor

2
can be visualized at 10 can detect semi-quantitatively

. copies and can detect at 10 copies
Sensitivity 6
semi-quantitativelyat.40
copies
Time per test more than hour thirty minutes
Cost per test (Lo#tests) 130 baht 114 baht

This technique is sensitive and-easy-to use because it does not require specific
skill and reduces cost and time; however it requires one specific band of PCR
amplification product, sbecause the non '”-spelc_ific band ‘may interfere with the
electrochemical signal. Therefore, Specific prii;!méKrs are needed for DNA amplification.
For RAGE gene, design of specific primeré‘i\ivés‘ rather difficult because it has many
variants (60), thus limits the design for approé{jafje'"length of product and the selection
for A-T rich region. In this study, PCR Was\_pe_‘r;to,rmed with 30 cycles which was
effective to avold PCR saturation. For Hoechst 333258, beside A-T region, pH of
buffer can affect the efficiency of Hoechst 33258 (123). Normally, the working pH
for Hoechst 332581s pH 7.4 which is physiological condition (124, 125) and there is a
study using Hoechst 33258 for staining plant cell protoplasts. They found that the
optimum pH is pH 7.5(226). So, pH 7.4 - 7.5.is suitable for Hoechst 33258 dye. For
detection process, the different DEP chips between EP-N and SP-P model were used
in order toicompare the anodic current peak. The result shows that EP-N chip is better
than SP-P because the mixture on"SP-P with squaré-working electrode can flow out
the working electrode that causes low anodic current peak and high standard deviation
(S.D.) and air bubble on electrode must be avoided because it can cause error signal.
In addition culture condition may cause changing RAGE expression because there are
studies about RAGE expression in podocytes in the glomerulus which found that
interaction of cells with plastic and coated dishes and/or their exposure to high levels

of growth factors in fetal serum can upregulate RAGE antigen selectively in vitro




61

where as in vivo mesangial or renal tubular cells normally do not appear to express
RAGE, even in disease states (82, 127-129). To increase efficiency of
electrochemical biosensor using Hoechst 33258, electrode could be modified from

carbon to gold (56) but the cost will increase.

d can f use'gntitative detection of gene
|

5.2) Conclusion

The electroche

expression and can apid-scree ethod of many genes

including the low
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