การกำจัดสารประกอบอาร์เซนิกโดยใช้การดูดซับ บนตัวดูดซับนิกเกิลโมลิบดีนัม

นาย ณัฐวุฒิ นิภานันท์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต ภาควิชาวิศวกรรมเคมี

พ.ศ. 2538

ISBN 974-632-333-4

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

REMOVAL OF ARSENIC COMPOUNDS BY ADSORPTION ON Ni-Mo ADSORBENTS

Mr. NATTAWUT NIPANAN

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Chemical Engineering

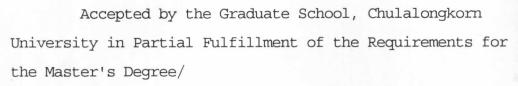
Graduate School

Chulalongkorn University

1995

ISBN 974-632-333-4

Thesis Title Removal of Arsenic Compounds by


Adsorption on Ni-Mo Adsorbents

By Mr. Nattawut Nipanan

Department Chemical Engineering

Thesis Advisor Jirdsak Tscheikuna, Ph.D.

Santi Thompson Santi Thoongsuwan, Ph.D.)

Thesis Committee

lig- Petel Chairman

(Professor Piyasan Praserthdam, Dr. Ing.)

Indsat Technil Thesis Advisor

(Jirdsak Tscheikuna, Ph.D.)

Sasithon Book - Long Member

(Assistance Professor Sasithorn Boon-Long, Dr.3^e cycle)

Wehihe Chagnes Member

(Assistance Professor Vichitra Chongvisal, Ph.D.)

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

ณัฐวุฒิ นิภานันท์ : การกำจัดสารประกอบอาร์เซนิกโดยใช้การดูดซับบนตัวดูดซับนิกเกิลโมลิบดีนัม (REMOVAL OF ARSENIC COMPOUNDS BY ADSORPTION ON Ni-Mo ADSORBENTS) อ.ที่ปรึกษา : ดร.เจิดศักดิ์ ไชยคุนา, 160 หน้า. ISBN 974-632-333-4

การวิจัยครั้งนี้ เป็นการศึกษาการกำจัดสารประกอบของอาร์เซนิกบนตัวดูดซับ การทดลองทำในเครื่อง
ปฏิกรณ์แบบแบตซ์ที่ความดันในช่วง 200 ปอนด์ต่อตารางนิ้ว ถึง 600 ปอนด์ต่อตารางนิ้ว และอุณหภูมิในช่วง 30 องศา
เซลเซียส ถึง 75 องศาเซลเซียส พีนิลอาร์ซีนออกไซด์และอาร์เซนิกออกไซด์ใช้เป็นตัวแทนสำหรับรูปแบบของสารประกอบ
อาร์เซนิกในรูปอินทรีย์และอนินทรีย์ที่ปรากฏอยู่ในปิโตรเลียม พีนิลอาร์ซีนออกไซด์และอาร์เซนิกออกไซด์เติมลงในโทลูอื่น
เพื่อทำให้สารละลายมีอาร์เซนิกในปริมาณ 20 และ 10 ส่วนในล้านส่วนตามลำดับ ดัวดูดซับที่ใช้คือ อะลูมินา นิกเกิล
ออกไซด์บนอะลูมินา โมลิบดีนัมออกไซด์บนอะลูมินา โมลิบดีนัมนิกเกิลบนอะลูมินา และนิกเกิลโมลิบดีนัมบนอะลูมินา
และเตรียมโดยใช้เทคนิกการเคลือบฝังแบบแห้ง สารละลายนิกเกิลในเตรตใช้เคลือบฝังอะลูมินาสำหรับการเตรียมนิกเกิล
ออกไซด์บนอะลูมินา และสารละลายแอมโมเนียมโมลิบเดตเตตระไฮเดรตสำหรับการเตรียมโมลิบดีนัมออกไซด์บนอะลูมินา
ปริมาณนิกเกิลและโมลิบดีนัมที่เคลือบฝังอยู่บนอะลูมินาคือ 2.5% 5% 7.5% และ 10% โดยน้ำหนักของโลหะแต่ละชนิด
โมลิบดีนัมนิกเกิลบนอะลูมินาเตรียมจากการเคลือบฝังของแอมโมเนียมโมลิบเดตเตตระไฮเดรต แล้วตามด้วยนิกเกิล
ในเตรต ในทางกลับกันนิกเกิลโมลิบดีนัมบนอะลูมินาเตรียมจากการเคลือบฝังของแอมโมเนียมโมลิบเดตเตตระไฮเดรต แล้วตามด้วยนอมโมเนียม
โมลิบเดตเตตระไฮเดรต ปริมาณโลหะทั้งหมดในโมลิบดีนัมนิกเกิลบนอะลูมินาและนิกเกิล โมลิบดีนัมบนอะลูมินาเท่ากับ
10 เปอร์เซ็นต์โดยน้ำหนักของโลหะทั้งหมด อัตราส่วนเของนิกเกิลต่อโมลิบดีนัมเป็น 1:1 1:3 และ 3:1

ผลที่ได้แสดงว่าการกำจัดสารประกอบอาร์เซนิกไม่ขึ้นกับความดันแต่ขึ้นกับอุณหภูมิอย่างเห็นได้ชัด
ประสิทธิภาพการดูดซับของอาร์เซนิกเพิ่มขึ้นเรียงตามลำดับดังนี้ ตัวดูดซับนิกเกิล > ตัวดูดซับอะลูมินา > ตัวดูดซับ
โมลิบดีนัม เมื่อปริมาณนิกเกิลในตัวดูดเพิ่มขึ้นประสิทธิภาพของตัวดูดซับนิกเกิลในการกำจัดอาร์เซนิกไม่เปลี่ยนแปลง
อย่างเห็นได้ชัด ในทางกลับกันประสิทธิภาพการกำจัดอาร์เซนิกของตัวดูดซับโมลิบดีนัมลดลงเมื่อเพิ่มปริมาณโมลิบดีนัม
เพิ่มขึ้น สารประกอบอาร์เซนิกจะดูดซับบนเฟสของนิกเกิลและก่อตัวเป็นนิกเกิลอาร์เซไนด์ (NiAs,) ในขณะที่การก่อตัว
ระหว่างโมลิบดีนัมและสารประกอบอาร์เซนิกไม่สามารถระบุได้ ประสิทธิภาพของการกำจัดอาร์เซนิกในโมลิบดีนัมนิกเกิล
บนอะลูมินาและนิกเกิลโมลิบดีนัมบนอะลูมินสูงขึ้นเมื่อปริมาณนิกเกิลเพิ่มขึ้นและต่ำลงเมื่อปริมาณโมลิบดีนัมเพิ่มขึ้น
ลำดับของการเคลือบฝังมีผลต่อประสิทธิภาพของการดูดซับอย่างเห็นได้ชัด

ภาควิชา	วิศวกรรมเคมี
สาขาวิชา	วิศวกรรมเครี
ปีการศึกษา	2537

ลายมือชื่อนิสิต	1 AND
ลายมือชื่ออาจารย์ที่ปรึก	
ลายมือชื่ออาจารย์ที่ปรึก	ษาร่วม

C416451 :MAJOR CHEMICAL ENGINEERING DEPARTMENT
KEY WORD:PHENYLARSINE OXIDE/ ARSENIC OXIDE/ ADSORPTION
NATTAWUT NIPANAN : REMOVAL OF ARSENIC COMPOUNDS BY ADSORPTION ON
Ni-Mo ADSORBENTS. THESIS ADVISOR : JIRDSAK TSCHEIKUNA, Ph.D. 160
pp. ISBN 974-632-333-4

Removal of arsenic compounds on several adsorbents was investigated in this study. The experiments were conducted in a batch reactor at a pressure range of 200 psig to 600 psig and a temperature range of 30°C to 75°C. Phenylarsine oxide and arsenic oxide were used as representatives for typical organic and inorganic arsenic compounds in petroleum. Phenylarsine oxide and arsenic oxide were added directly to toluene to obtain solutions containing 20 ppm and 10 ppm of arsenic, respectively. The adsorbents were alumina, NiO/Al_2O_3 , MoO_3/Al_2O_3 , $Mo-Ni/Al_2O_3$ and $Ni-Mo/Al_2O_3$ and were prepared by dry impregnation technique. Aluminas were impregnated with nickel nitrate solution for NiO/Al₂O₃ preparation and with ammoniammolybdate tetrahydrate solution for MoO₁/Al₂O₂ preparation. Nickel and molybdenum loadings were 2.5%, 5%, 7.5% and 10% by weight of each metal. Mo-Ni/Al₂O₃ was prepared by impregnation of ammoniammolybdate tetrahydrate followed by nickel nitrate. On the other hand, Ni-Mo/Al₂O₃ was prepared by impregnation of nickel nitrate followed by ammoniammolybdate tetrahydrate. Total metal loading in Mo-Ni/Al,O, and Ni-Mo/Al,O, was kept at 10% by weight of total metal. Loading ratios of Ni:Mo were 1:1, 1:3 and 3:1.

Results showed that the removal of arsenic compounds was independent of pressure but strongly dependent on temperature. Adsorption efficiency on arsenic increased in the following order: nickel adsorbent > alumina adsorbent > molybdenum adsorbent. The efficiency of nickel adsorbents on arsenic removal did not change significantly when nickel loading increased. On the other hand, the efficiency of molybdenum adsorbents on arsenic removal decreased when molybdenum loading increased. Arsenic compound was adsorbed on nickel phase and formed nickel arsenide (NiAs $_2$), while the formation of molybdenum and arsenic could not be indentified. The efficiency of arsenic removal in Mo-Ni/Al $_2$ O $_3$ and Ni-Mo/Al $_2$ O $_3$ was higher when nickel loading increased and was lower when molybdenum loading increased. Order of impregnation affected adsorption efficiency significantly.

ภาควิชาวิศวกรรมเคยี	ลายมือชื่อนิสิต 🐠 🕰 🗸
สาขาวิชา วิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา /
ปีการศึกษา2537	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

The author would like to express his gratitude and deep appreciation to his advisor, Dr. Jirdsak Tscheikuna for his guidance, valuable help and super-vision during this study. In addition, he is also grateful to Prof. Dr. Piyasan Praserthdam Assist. Prof. Sasithorn Boon-Long and Assist. Prof Vichitra Chongvisalfor serving as thesis comittee. He is also thankful to the staffs in the Sciencetific and Technological Research Equiment Center Chulalongkorn University who assisted in analyzing the arsenic concentration. Finally, he would like to thank his parents for their encouragement and financial support throughout this study.

CONTENTS

		PAGE
ABSTRACT (IN ENGLISH)		IV
ABSTRACT (IN THAI)		V
ACKNOWLEDGEMENTS		VI
LIST OF TABLES		IX
LIST OF FIGURES		X
CHAPTER		
I. INTRODUCTION		1
II. LITERATURE REVIEWS		7
Arsenic Compounds		7
Chraterization and Identification o	f	
Arsenic in Petroleum		8
Study of Catalyst Poisoning by Arse	nic	
Compounds		11
Study of Arsenic Compounds Removing		
from Petroleum		14
Thermal Treatment		15
Chemical Treatment		16
Adsorption		19
III. Experimental Apparatus and Analysis		
Techniques		31
Experimental Apparatus		31
Adsorbent Preparation		32
Experimental Procedures		37
Analysis Technique		38

LIST OF CONTENTS (continue)

TABLE			PAGE
		Product Characterization	38
		Adsorbent Chracterization	40
	IV.	RESULTS AND DISCUSSIONS	53
		Procedures	53
		Results and Discussions	55
		Effect of Amount of Adsorbent	
		Contacting Time	55
		Effect of Reactor	60
		Experiment Errors	62
		Effect of pressure and Temperature	65
		Effect of Adsorbents	81
	V.	CONCLUSIONS AND RECOMMENDATIONS	127
		Conclusions	127
		Recommendations	128
REFEREN	CES.		129
APPENDI	х	·····	.133
VTTA			162

LIST OF TABLES

TABLE			PAGE
	2.1	Commercial Uses of Arsenic Compounds	
		in 1975	. 8
	2.2	Arsenic Content in Petroleum	. 9
	2.3	Catalytic metals most susceptible to	
		poisoning	11
	3.1	Nickel and Molybdenum content in	
		Adsorbents	37
	3.2	Properties of Toluene	42
	3.3	Properties of Nitric Acid	43
	3.4	Properties of Hydrogen Peroxide	44
	3.5	Properties of Hydrofluoric Acid	45
	3.6	Properties of Hydrochloric Acid	46
	3.7	Properties of Sulfuric Acid	47
	3.8	Properties of Phenylarsine oxide	48
	3.9	Properties of Phenylarsonic Acid	49
	3.10	Properties of Nickel nitrate	
		Hexahydrate	50
	3.11	Properties of Ammonium molybdenum	
		Tetrahydrate	51
	3.12	Properties of Aluminum oxide	52
	4.1	Average and %Deviation of Remaining	
		Arsenic Removal	64
	4.2	Average and %Deviation of %Arsenic	
		Removal	64

LIST OF FIGURES

FIGURE			PAGE
	2.1	Arsenic Distribution in	
		Condensate	10
	3.1	Experimental Apparatus	31
	4.1	Remaining phenylarsine oxide in study	
		the effect of the amount of adsorbent	58
	4.2	Remaining arsenic oxide in study the	
		effect of the amount of adsorbent	58
	4.3	Remaining phenylarsine oxide in study	
		the effect of contacting time	59
	4.4	Remaining arsenic oxide in study	
		the effect of contacting time	59
	4.5	Remaining phenylarsine oxide in each	
		times that used alumina as the	
		adsorbent	60
	4.6	Remaining phenylarsine oxide which used	
		alumina as the adsorbent in study the	
		effect of reactor	61
	4.7	Remaining arsenic oxide which used	
		alumina as the adsorbent in study the	
		effect of reactor	61
	4.8	Repeatability of phenylarsine oxide	
		remotal	63

FIFURE			PAGE
	4.9	Repeatability of arsenic oxide	
		removal	63
4	4.10	Remaining of Phenylarsine oxide in study	
		the effect of pressures and temperatures	
		on efficiency of alumina adsorbent	66
4	4.11	Remaining of arsenic oxide in study	
		the effect of pressures and temperatures	
		on efficiency of alumina adsorbent	66
4	1.12	Remaining of Phenylarsine oxide in study	
		the effect of pressures and temperatures	
		on efficiency of 2.5 Ni adsorbent	67
4	1.13	Remaining of arsenic oxide in study	
		the effect of pressures and temperatures	
		on efficiency of 2.5 Ni adsorbent	67
4	1.14	Remaining of Phenylarsine oxide in study	
		the effect of pressures and temperatures	
		on efficiency of 5 Ni adsorbent	68
4	.15	Remaining of arsenic oxide in study	
		the effect of pressures and temperatures	
		on efficiency of 5 Ni adsorbent	68
4	.16	Remaining of Phenylarsine oxide in study	
		the effect of pressures and temperatures	

on efficiency of 7.5 Ni adsorbent.....

FIFURE PAGE

4.17	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 7.5 Ni adsorbent	69
4.18	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 10 Ni adsorbent	70
4.19	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 10 Ni adsorbent	70
4.20	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 2.5 Mo adsorbent	71
4.21	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 2.5 Mo adsorbent	71
4.22	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 5 Mo adsorbent	72
4.23	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 5 Mo adsorbent	72
4.24	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 7.5 Mo adsorbent	73

FIFURE PAGE

4.25	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 7.5 Mo adsorbent	73
4.26	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 10 Mo adsorbent	74
4.27	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 10 Mo adsorbent	74
4.28	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 2.5-7.5 MoNi adsorbent. 7	15
4.29	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 2.5-7.5 MoNi adsorbent. 7	15
4.30	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 5-5 MoNi adsorbent 7	6
4.31	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 5-5 MoNi adsorbent 7	6
4.32	Remaining of phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 2.5-7.5 NiMo adsorbent7	7

FIFURE PAGE

4.33	Remaining of arsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 7.5-2.5 NiMo adsorbent	77
4.34	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 2.5-7.5 NiMo adsorbent	78
4.35	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 2.5-7.5 NiMo adsorbent	78
4.36	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 5-5 NiMo adsorbent	79
4.37	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 5-5 NiMo adsorbent	79
4.38	Remaining of Phenylarsine oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 7.5-2.5 NiMo adsorbent	80
4.39	Remaining of arsenic oxide in study	
	the effect of pressures and temperatures	
	on efficiency of 7.5-2.5 NiMo adsorbent	80

FIGURE			PAGI
	4.40	Comparison of surface area between	
		alumina and nickel adsorbents	85
	4.41	Comparison of pore volume between	
		alumina and nickel adsorbents	85
	4.42	Comparison of pore sizes distribution	
		between alumina and nickel adsorbent	86
	4.43	Comparison of remaining phenylarsine	
		oxide which used alumina and 2.5Ni	
		adsorbents	87
	4.44	Comparison of remaining arsenic	
		oxide which used alumina and 2.5Ni	
		adsorbents	87
	4.45	XRD pattern of spent nickel adsorbent	89
2	4.46	Comparison of remaining phenylarsine	
		oxide which used alumina and	
		2.5Ni-10Ni adsorbents	90
	4.47	Comparison of remaining arsenic	
		oxide which used alumina and	
		2.5Ni-10Ni adsorbents	91
	4.48	Comparison of surface area between fresh	
		and spent alumina and nickel adsorbents.	92

FIGURE			PAGE
	4.49	Comparison of pore volume between fresh	
		and spent alumina and nickel adsorbents	95
	4.50	Comparison of pore sizes distribution	
		between fresh and spent alumina	
		adsorbents	95
	4.51	Comparison of pore sizes distribution	
		between fresh and spent alumina(5 times)	
		adsorbents	96
	4.52	Comparison of pore sizes distribution	
		between fresh and spent 2.5 Ni	
		adsorbents	96
	4.53	Comparison of pore sizes distribution	
		between fresh and spent 5 Ni	
		adsorbents	97
	4.54	Comparison of pore sizes distribution	
		between fresh and spent 7.5 Ni	
		adsorbents	97
	4.55	Comparison of pore sizes distribution	
		between fresh and spent 10 Ni	
		adsorbents	98
,	4.56	Comparison of surface area between	
		alumina and molybdenum adsorbents	99
	4.57	Comparison of pore volume between	
		alumina and molybdenum adsorbents	99

FIGURE			PAGE
	4.58	Comparison of pore sizes distribution	
		between alumina and molybdenum adsorbent.	. 100
	4.59	Comparison of remaining phenylarsine	
		oxide which used alumina and 2.5Mo	
		adsorbents	. 102
	4.60	Comparison of remaining arsenic	
		oxide which used alumina and 2.5Mo	
		adsorbents	102
	4.61	XRD pattern of spent molybdenum	
		adsorbent	103
	4.62	Comparison of remaining phenylarsine	
		oxide which used alumina and	
		2.5Mo-10Mo adsorbents	104
	4.63	Comparison of remaining arsenic	
		oxide which used alumina and	
		2.5Mo-10Mo adsorbents	104
	4.64	Comparison of surface area between fresh	
		and spent alumina and molybdenum	
		adsorbents	105
9	4.65	Comparison of pore volume between fresh	
		and spent alumina and molybdenum	
		adsorbents	105

FIGURE			PAGE
	4.66	Comparison of pore sizes distribution	
		between fresh and spent 2.5Mo	
		adsorbents	106
	4.67	Comparison of pore sizes distribution	
		between fresh and spent 5 Mo	
		adsorbents	106
	4.68	Comparison of pore sizes distribution	
		between fresh and spent 7.5 Mo	
		adsorbents	107
	4.69	Comparison of pore sizes distribution	
		between fresh and spent 10 Mo	
		adsorbents	107
	4.70	Comparison of surface area between	
		alumina and molybdenum-nickel	
		adsorbents	109
	4.71	Comparison of surface area between	
		alumina and nickel-molybdenum	
		adsorbents	109
	4.72	Comparison of pore volume between	
		alumina and molybdenum-nickel	
		adsorbents	110
	4.73	Comparison of pore volume between	
		alumina and nickel-molybdenum	
		adsorbents	110

FIGURE			PAGE
	4 74	Comparison of pore sizes distribution	
	1.71	between alumina and molybdenum-nickel	
		adsorbent	111
	4.75	Comparison of pore sizes distribution	
		between alumina and nickel-molybdenum	
		adsorbent	111
	4.76	Comparison of remaining phenylarsine	
		oxide which used alumina and	
		molybdenum-nickel adsorbents	115
	4.77	Comparison of remaining arsenic	
		oxide which used alumina and	
		molybdenum-nickel adsorbents	115
	4.78	Comparison of remaining phenylarsine	
		oxide which used alumina and	
		nickel-molybdenum adsorbents	116
	4.79	Comparison of remaining arsenic	
		oxide which used alumina and	
		nickel-molybdenum adsorbents	116
	4.80	Comparison of surface area between fresh	
		and spent alumina and molybdenum-nickel	
		adsorbents	117
	4.81	Comparison of surface area between fresh	
		and spent alumina and nickel-molybdenum	
		adsorbents	117

FIGURE			PAGE
	4.82	Comparison of pore volume between fresh	
		and spent molybdenum-nickel	
		adsorbents	118
	4.83	Comparison of pore volume between fresh	
		and spent nickel-molybdenum	
		adsorbents	118
	4.84	Comparison of pore sizes distribution	
		between fresh and spent 2.5-7.5 MoNi	
		adsorbents	119
	4.85	Comparison of pore sizes distribution	
		between fresh and spent 5-5 MoNi	
		adsorbents	119
	4.86	Comparison of pore sizes distribution	
		between fresh and spent 7.5-2.5 MoNi	
		adsorbents	120
	4.87	Comparison of pore sizes distribution	
		between fresh and spent 2.5-7.5 NiMo	
		adsorbents	120
	4.88	Comparison of pore sizes distribution	
		between fresh and spent 5-5 NiMo	

adsorbents.....

FIGURE			PAGE
	4.89	Comparison of pore sizes distribution	
		between fresh and spent 7.5-2.5 NiMo	
		adsorbents	121
	4.90	Comparison of remaining phenylarsine	
		oxide which used 7.5% nickel loading	
		on MoNi and MoNi adsorbents	123
	4.91	Comparison of remaining arsenic	
		oxide which used 7.5% nickel loading	
		on MoNi and MoNi adsorbents	124
	4.92	Comparison of remaining phenylarsine	
		oxide which used 5% nickel loading	
		on MoNi and MoNi adsorbents	124
	4.93	Comparison of remaining arsenic	
		oxide which used 5% nickel loading	
		on MoNi and MoNi adsorbents	125
	4.94	Comparison of remaining phenylarsine	
		oxide which used 2.5% nickel loading	
		on MoNi and MoNi adsorbents	125
	4.95	Comparison of remaining arsenic	
		oxide which used 2.5% nickel loading	
		on MoNi and MoNi adsorbents	126