

PRELIMINARIES

This chapter deals with some concepts of graph theory needed in our study.

1.1 Graphs

A graph G is an ordered pair of disjoint sets (V, X), where V is a finite non-empty set and X is a set of 2-subsets of V. Elements of V and X will be referred to as points and lines of G, respectively. For any graph G we usually denote its set of points by V(G) and its set of lines by X(G). For brevity we shall denote a line $\{u, v\}$ by uv and will be referred to as the line that joins u and v. By the order of G we mean the number of points of G, i.e. |V(G)|.

The degree of any point v of G, denoted by $\deg_G(v)$ is the number of lines containing v. Observe that each line is joined by two points, thus it contributes 2 to the sum of the degrees of the points, giving

(1.1)
$$\sum_{v \in V(G)} \deg_G(v) = 2|X(G)|.$$

For each graph G, its minimum degree will be denoted by $\delta(G)$.

For any two graphs G_1 and G_2 , we say that G_1 and G_2 are <u>disjoint</u> graphs when $V(G_1) \cap V(G_1) = \emptyset$.

It is customary to represent a graph by means of a diagram. We represent points of a graph by geometrical points in a one-to-one fashion and any line uv is represented by a geometrical line joining the geometrical points that represent u and v. As an example, let G = (V, X), where

$$V = \{a, b, c, d, e, f\},$$

 $X = \{ab, af, bc, bf, cd, ce, cf, df, ef\}.$

G can be represented by the diagram in Figure 1.1.

Figure 1.1

1.2 Isomorphism's

Two graphs G_1 and G_2 are said to be <u>isomorphic</u>, written $G_1 \cong G_2$ when there exists a one-to-one function θ from $V(G_1)$ onto $V(G_2)$ such that for any $u, v \in V(G_1)$, $uv \in X(G_1)$ if and only if $\theta(u)\theta(v) \in X(G_2)$. Such θ is said to be an <u>isomorphism</u>.

Figure 1.2

To illustrate the concept of isomorphism, consider the two graphs G_1 and G_2 shown in Figure 1.2. They look quite different, but they are isomorphic. An isomorphism θ from G_1 to G_2 is as follows:

$$\theta(a) = a', \ \theta(b) = b', \ \theta(c) = c',$$

 $\theta(d) = d', \ \theta(e) = e' \ \text{and} \ \theta(f) = f',$

It is straightforward to verify that θ is an isomorphism.

1.3 Subgraphs

By a <u>subgraph</u> of G we mean any graph G' = (V', X') such that $V' \subseteq V$ and $X' \subseteq X$. When G' is a subgraph of G, we also say that G is a <u>supergraph</u> of G'.

A subgraph G' of G is said to be a <u>spanning subgraph of G</u> if V(G') = V(G). Let $S \subseteq V(G)$. Among the subgraphs of G that has S as the set of points there is one and only one, with the maximum number of lines. It includes all the lines of G that join points of G. This is called the <u>subgraph of G induced by G</u> and will be denoted by G. As an example let G, G₁ and G₂ be the graphs given in Figure 1.3 (i), (ii) and (iii) respectively. G₂ is a spanning subgraph of G but G₁ is not; G₁ is the subgraph of G induced by G₂ in G₃.

Figure 1.3

1.4 Operations on graphs

Let G be a graph that contains at least two points. Let ν be any point of G. We shall denote the graph obtained from G by deleting the point ν and all lines containing ν by $G-\nu$, i.e.

$$V(G-v) = V(G) - \{v\},$$

$$X(G-v) = X(G) \setminus \{ uv \mid u \in V(G), uv \in X(G) \}.$$

In general, if $T = \{v_1, v_2,...,v_k\}$ is a subset of V(G) we use the notation $G \setminus T$ to denote the graph obtained from G by deleting all the points $v_1, v_2,...,v_k$ and all the lines that contain them.

Let x be any line of a graph G. We shall denote the graph obtained from G by deleting the line x by G-x, i.e.

$$V(G-x) = V(G),$$

$$X(G-x) = X(G) \setminus \{x\}.$$

Let u, v be any two points of G such that $uv \notin X(G)$. We shall denote the graph obtained from G by adding the line joining u and v by G+uv, i.e. -

$$V(G+uv) = V(G),$$

$$X(G+uv) = X(G) \cup \{uv\}.$$

Figure 1.4

As an example, let G be the graph given in Figure 1.4. Then G-e, G-be and G+ce are given in Figure 1.5, (i), (ii), (iii) respectively.

Figure 1.5

1.5 Special Classes of graphs

A graph G is said to be a <u>complete graph</u> if every pair of its points are joined by a line. Note that all complete graphs of the same order are

isomorphic. So, they can be considered abstractly as the same graph. We shall denote any complete graph of order p by K_p . Any graph which is K_I is said to be a <u>trivial graph</u>.

A graph G is said to be an <u>empty graph</u> if its line set X(G) is empty. Note that all empty graphs of the same order are isomorphic. We shall denote any empty graph of order p by E_p

A graph G is said to be <u>r-partite</u> if its point set V(G) can be partitioned into r disjoint non-empty subsets $V_1, V_2, ..., V_r$ such that no line joins two points of the same subsets. The subsets $V_1, V_2, ..., V_r$ are called the <u>parts of G</u>. 2-partite and 3-partite graphs are also referred to as a <u>bipartite</u> and a <u>tripartite</u>, respectively. The graph G_1 and G_2 of Figure 1.6 (i) and (ii) are examples of bipartite and tripartite graphs respectively.

Figure 1.6

An r-partite graph with parts V_1 , V_2 ,..., V_r is said to be a <u>complete r-partite graph</u> if every pair of points from distinct parts are joined by a line. A complete r-partite graph with parts V_1 , V_2 ,..., V_r is said to have part sizes $(p_1, p_2,...,p_r)$ if $|V_i| = p_i$; i = 1, 2,..., r. Two complete r-partite graphs G and G' with part sizes $(p_1, p_2,...,p_r)$ and $(p'_1, p'_2,...,p'_r)$ are said to have the same part sizes if there exist a permutation i_1 , i_2 ,..., i_r of 1, 2,..., r such that $p'_{i_1} = p_1$, $p'_{i_2} = p_2,...,p'_{i_r} = p_r$. Note that all complete r-partite graphs that have the same part sizes are isomorphic. We shall denote a complete r-partite graph with parts sizes $(p_1, p_2,...,p_r)$ by $K_{p_1, p_2,...,p_r}$.