CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

From the experimental data obtained, the following conclusions are made concerning the effects of temperature on catalytic hydrodesulfurization of thiophene in the presence of quinoline.

- 1. Thiophene HDS activities of both $CoMo/Al_2O_3$ and $NiMo/Al_2O_3$ catalysts strongly depend upon operating temperature in range of 240°C to 260°C. The conversion increases sharply with an increase of temperature on both catalysts.
- 2. $CoMo/Al_2O_3$ catalyst shows definitely higher thiophene HDS activity than $NiMo/Al_2O_3$ catalyst at a temperature less than 250°C, while at a temperature of 260°C HDS activities of both catalysts are identical. $NiMo/Al_2O_3$ catalyst is more sensitive to temperature than $CoMo/Al_2O_3$ catalyst for HDS of thiophene.
- 3. Addition of quinoline even at low concentration to the feedstock results in a substantial decrease in thiophene conversion on both $\text{CoMo/Al}_2\text{O}_3$ and $\text{NiMo/Al}_2\text{O}_3$ catalysts at all temperatures. Deactivation of both catalysts is due to a competitive adsorption on active sites of catalyst.

- 4. The quantity of quinoline which is adsorbed on both ${\rm CoMo/Al_2O_3}$ and ${\rm NiMo/Al_2O_3}$ catalysts surface is independent of temperature.
- 5. Rates of catalyst deactivation on HDS of thiophene by quinoline of both $CoMo/Al_2O_3$ and $NiMo/Al_2O_3$ catalysts are independent of operating temperature.

Recommendations

Recommendations for further work are as follows:

- 1. A similar study should be conducted with varying concentration of nitrogen compounds in order to determine the minimum concentrations at which nitrogen compounds begin to affect the activity of hydrodesulfurization.
- 2. A same set of study should be done with other nitrogen compounds to study the effect of operating conditions on the activity of hydrodesulfurization.
- 3. The types of HDS catalyst should be varied with other supports to study the effect of supports on the activity of hydrodesulfurization.