
การสังเคราะห์เปปไตต์เพื่อยับยั้งโปรตีเอลในกระบวนการต่อต้านโรคไบข้อ และโรคเอมฟีซีมา

นางสาว องกลณี องอว่ามเรื่อง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสุตรปริญญาวิทยาศาสตรมหาบัณฑิต

กาควิชาเคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

W.A. 2538

ISBN-974-582-428-3

ลิบสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS OF PEPTIDES AS POTENTIAL PROTEASE INHIBITORS FOR ANTIARTHRITIS AND ANTIEMPHYSEMA

MISS JONGKOLNEE JONGARAMRUONG

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Chemistry

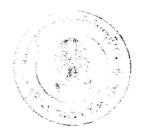
Graduate School

Chulalongkorn University

1993

ISBN-974-582-428-3

Thesis Title	Synthesis of Peptides as Potential
	Protease Inhibitors for Antiarthritis and
	Antiemphysema
Ву	Miss Jongkolnee Jongaramruong
Department	Chemistry
Thesis Advisor	Associate Professor Phichai Tovivich, Ph.d.
Accepted b	y the Graduate School, Chulalongkorn University
in Partial Ful	fillment of the Requirements for the Master's
Degree.	
0	Vois ustasa
1.0	warDean of Graduate School
(Professo	or Thavorn Vajrabhaya, Ph.D.)
m	
Thesis Committee	Chairman Chairman
(Associa)	ce Professor Pirawan Bhanthumnavin, Ph.D.)
	Tratica
(Associa)	te Professor Phichai Tovivich, Ph.D.)
	Smithad Pure Member
(Associat	te Professor Sunibhond Pummangura, Ph.D.)
	Member
(Associat	te Professor Supawan Tantayanon, Ph.D.)


พิมพ์ตันกษัยมรถัดย่อวิยยาจิสนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

จงกลณี จงอร่ามเรื่อง : การสังเคราะห์เปปไตด์เพื่อยับยั้งโปรตีเอส ในกระบวนการต่อต้าน โรคไขข้อและโรคเอมพีซีมา (synthesis of peptides as potential protease Inhibitors for antiarthritis and antiemphysema) อ.ที่ปรึกษา : รศ.ดร.พิชัย โตวิวิชญ์, 173 หน้า. ISBN 974-582-428-3

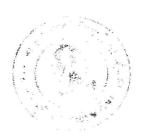
งานวิจัยนี้ได้ทำการสังเคราะห์เปปไตด์ หรืออนุพันธ์ของกรดอะมิโน จำนวน 13 ตัว ซึ่งทั้งหมดนี้ เป็นสารใหม่ที่ยังไม่เคยมีผู้ใดสังเคราะห์มาก่อน เปปไตด์ที่สังเคราะห์ได้ทำให้บริสุทธิ์โดยการตกผลึกหลายครั้ง และ แยกโดยคอลัมน์โครมาโทกราฟี ตรวจสอบความบริสุทธิ์ของสารสังเคราะห์โดยวิธีทินแลร์โครมาโทกราฟี เอชพีแอลซี (HPLC) และการวิเคราะห์หาองค์ประกอบของธาตุในสารประกอบ ทำการพิสูจน์สูตรโครงสร้างโดยวิธีอินฟราเรดสเปกโทรสโกปี โปรตอน และคาร์บอน–13 นิวเคลียร์แมกเนติกเรโซแนนซ์สเปกโทรสโกปี

จากการทดสอบสมบัติในการยับยั้งเอนไซม์กลุ่มเชรีนโปรตีเอส ในสภาวะที่เหมาะสม พบว่าสาร สังเคราะห์ทุกตัวเป็นตัวยับยั้งที่ดีสำหรับทริพชินและไคโมทริพชิน แต่สำหรับอิลาสเตสแสดงฤทธิ์ที่ต่ำมาก จน ไม่สามารถทำการทดสอบกับตัวยั้งยั้งที่สังเคราะห์ได้

สรุปได้ว่าสารสังเคราะห์ทั้งหมดไม่สามารถออกฤทธิ์อย่างเฉพาะเจาะจง จึงไม่อาจนำมาใช้เป็น สารต่อต้านโรคไขข้อ และสารต่อต้านโรคเอมพีซีมาในคนได้

ภาควิชา	เคมี	ลายมือชื่อนิสิตราก	S. R. Carllings .
สาขาวิชา	เคมีอินทรีย์	ลายมือชื่ออาจารย์ที่ปรึกษา	
ปีการศึกษา	2535	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม	

##C125098 : MAJOR ORGANIC CHEMISTRY
KEY WORD: PEPTIDE/PROTEASE/ARTHRITIS/EMPHYSEMA


JONGKOLNEE JONGARAMRUONG: SYNTHESIS OF PEPTIDES AS POTENTIAL PROTEASE INHIBITORS FOR ANTIARTHRITIS AND ANTIEMPHYSEMA. THESIS ADVISOR: ASSO.PROF.PHICHAI TOVIVICH, Ph.D., 173 PP. ISBN 974-582-428-3

a pagarantahan sa sa

In the course of this research work, a series of 13 peptides or amino acid derivatives were synthesized. All of the synthetic peptides were novel. These synthetic compounds were purified by fractional recrystallization and column chromatography. The purity of the final compounds was confirmed by thin-layer chromatography, high performance liquid chromatography and elemental analysis. The structure elucidation was performed by infrared spectroscopy, proton and carbon-13 nuclear magnetic resonance spectroscopies.

The enzyme inhibition activities of the synthetic compounds were tested with serine proteases in the optimum conditions. It was found that all the synthetic compounds were good inhibitors against trypsin and chymotrypsin. However, the elastase showed so low activity that it was impossible to be tested with the synthetic compounds.

In conclusion all the synthetic peptides were not specific inhibitors and they could not be used for further testing in treatment of antiarthritis and antiemphysema in human.

ภาควิชา	เคมี	ลายมือชื่อนิสิตราชี ชาว่า	· e
สาขาวิชา	เคมีอินทรีย์	ลายมือชื่ออาจารย์ที่ปรึกษา	6.00
ปีการศึกษา	2535	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม	

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere appreciation to Assoc. Prof. Dr. Phichai Tovivich, my thesis advisor who gave me valuable advice, assistance, and guidance of thoughtful suggestions throughout the entire period of this research. Also to Prof. Dr. Bela Ternai, my honourable advisor for his kindness in giving me valuable advice and also some chemicals including enzymes and substrates.

I am very grateful to Assoc. Prof. Dr. Amorn Petsom and Assist. Prof. Dr. Somchai Pengprecha for their helps in giving me suggestions about NMR. I am also grateful to Archan Eamchan for his kindness advice UV spectrophotometry. I wish to thank the thesis committee for their valuable comments. I also thank Miss Wanjana Wannaphahoun for her help to operate the NMR spectroscopy. Besides, I also thank Miss Siriwan Jirawattanapun for her help in typing some parts of my thesis.

Finally, I would like to express my greatest appreciation to my parents and brothers for their supports and encouragement throughout my study. Thanks are due to everyone who has contributed some suggestions and supports for my thesis.

CONTENTS

		P		pa	iges
Abstract	in T	'hai			iv
Abstract	in E	nglish.			Y
ACKNOWLE	EDGEME	:NT	* * * * * * * * *		vi
LIST OF	FIGUR	ES	*******		x
LIST OF	SCHEM	IES			xvi
LIST OF	TABLE	.s	* * * * * * * * *		xvii
LIST OF	ABBRE	MOITAIV	IS		xix
CHAPTER					
I	THEOR	Y AND E	BACKGROUN	ID	. 1
				emistry of peptides	
				synthesis	
				Classical method	
				Solid phase method	
		1.1.2		bond formation	
				Acid chloride method	
				The azide coupling method	
			1.1.2.3	The active ester method	
			1.1.2.4	The mixed anhydride method.	
				The carbodiimide method	
	1.2	Human r		conuclear leukocyte proteolytic	
				iseases, pulmonary emphysema	∓Ω
			thritis		10

	1.4	Synthe	tic	inhibi	tor	s of	hum	an	leukocyt	e
		proteo	lytic	enzym	es.					. 13
	1.5	Hydrop	hobic	inhi	bit	ors	of	prot	eolytic	
		enzyme	s							. 15
	1.6	Object:	ives o	f this	sti	ıdy				. 18
II	Exper	rimental	1, , , , ,		s: • :• :					. 19
	2.1	Startin	ng m	ateria	ls	and	pu	rific	ation o	£
		solvent	ts,							. 19
		2.1.1	Start	ing ma	ter:	ials.			* * * * * * * * * *	. 19
		2.1.2	purif	icatio	n of	f solv	vents		* * * * * * * * * * * * * * * * * * * *	. 20
	2.2	Synthes	ses							20
¥		2.2.1	Prepa	ration	of	N-ber	nzoyl-	-L-va	line	20
		2.2.2	Prepa	ration	of	carbo	benzo	oxyva	line	21
		2.2.3	Prepa	ration	(of N-	-t-but	ylox	ycarbony]	L
			valin	e				* * * *		21
		2.2.4	Prepa	ration	of	BZ-V-	-T-NH-	-C ₁₀ H;	21	22
		2.2.5	Prepa	ration	of	BZ-V-	-T-NH-	-C ₁₂ H;	25 · · · · · .	26
		2.2.6	Prepa	ration	of	BZ-V-	-P-NH-	-C ₁₀ H ₂	21	28
		2.2.7	Prepa	ration	of	BZ-V-	-P-NH-	-C ₁₂ H ₂	25	32
		2.2.8	Prepa	cation	of	Z-V-I	C-NH-C	1 ₀ H ₂₁		34
		2.2.9	Prepai	cation	of	Z-V-T	-NH-C	1 ₂ H ₂₅	· · · · · · · · · · · · · · · · · · ·	37
		2.2.10	Prepai	ration	of	Z-V-F)-NH-C	1 ₀ H ₂₁		40
		2.2.11	Prepai	cation	of	Z-V-F	,-NH-C	12H25		43
		2.2.12	Prepar	cation	of	Z-V-V	-T-NH	-C ₁₀ H	H ₂₁	46
		2.2.13	Prepai	cation	of	Z-V-V	-T-NH	-C ₁₂ H	I ₂₅	51
		2.2.14	Prepai	cation	of	Z-V-V	-P-NH	-C ₁₀ E	I ₂₁	54
		2.2.15	Prepai	cation	of	BOC-V	-T-NH	-C10F	121	58

		2.2.16	Preparation of BOC-V-T-NH- $C_{12}H_{25}$ 61
	2.3	Enzyme	kinetic assays 64
		2.3.1	Preparation of solution 64
		2.3.2	Determination of the optimum condition
			for the enzyme kinetics 65
		2.3.3	Determination of the percentage
	t	4	inhibition of synthetic inhibitors 73
III	Resu:	lts and	discussion 76
	3.1	Peptide	e synthesis 76
		3.1.1	Protection of the N-terminus 76
		3.1.2	Protection of the C-terminus 78
		3.1.3	Amide formation 78
		3.1.4	Deprotection of C-terminus methyl ester
		3.1.5	Another problems encountered in peptide
		II.	synthesis 83
	3.2	Struct	ural elucidation of the synthetic
		peptid	es
	3.3	Enzyme	kinetic results101
•		3.3.1	Enzyme kinetic assay conditions101
		3.3.2	Enzyme inhibition of synthetic
			peptides102
IA	Conc	lusion.	
REFEREN	CES		
APPENDI	X I.		
APPENDI	X II		
ATIV			

LIST OF FIGURES

Figures					Pages
I.1	IR spectr	um of	compound	I in KBr disc	119
I.2	IR spectr	um of	compound	II in KBr disc	119
I.3	IR spectr	um of	compound	III in KBr disc	120
I.4	IR spectr	um of	compound	IV in KBr disc	120
I.5	IR spectr	um of	compound	V in KBr disc	121
I.6	IR spectr	um of	compound	VI in KBr disc	121
I.7	IR spectr	um of	compound	VII in KBr disc	122
I.8	IR spectr	um of	compound	VIII in KBr disc	122
I.9	IR spectr	um of	compound	IX in KBr disc	123
I.10	IR spectr	um of	compound	X in KBr disc	123
I.11	IR spectr	um of	compound	XI in KBr disc	124
I.12	IR spectr	rum of	compound	XII in KBr disc	125
I.13	IR spectr	um of	compound	XIII in KBr disc	125
I.14	¹ H spectr	um of	compound	I in CDCl ₃ +DMSO	126
I.15	¹ H spectr	um of	compound	II in CDCl ₃ +DMSO	127
I.16	¹ H spectr	um of	compound	III in CDCl ₃ +DMSO	128
I.17	¹ H spectr	um of	compound	IV in CDCl ₃	129
I.18	¹ H spectr	um of	compound	V in CDCl ₃ +DMSO	130
I.19	¹ H spectr	um of	compound	VI in CDCl ₃ +DMSO	131
I.20	¹ H spectr	rum of	compound	VII in CDCl ₃ +DMSO	132
I.21				VIII in CDCl ₃	
I.22	¹ H spectr	rum of	compound	IX in CDCl ₃ +DMSO	134
I.23			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X in CDCl ₃ +DMSO	
I.24	¹ H spectr	um of	compound	XI in CDCl ₃	136
T. 25	¹ H spectr	nım of	compound	XII in CDCla	137

I.26	¹ H spectrum of compound XIII in CDCl ₃ +DMSO 138
I.27	13C spectrum of compound I in CDCl ₃ +DMSO 139
I.28	13C spectrum of compound II in CDCl ₃ +DMSO 140
I.29	13C spectrum of compound III in CDCl ₃
I.30	13C spectrum of compound IV in CDCl ₃ +DMSO 142
I.31	13C spectrum of compound V in CDCl ₃ 143
I.32	13C spectrum of compound VI in CDCl ₃ +DMSO 144
I.33	13C spectrum of compound VII in CDCl ₃ 145
I.34	13C spectrum of compound VIII in CDCl ₃ 146
I.35	13C spectrum of compound IX in CDCl ₃
I.36	13C spectrum of compound X in DMSO 148
I.37	13C spectrum of compound XI in CDCl ₃ +DMSO 149
I.38	13C spectrum of compound XII in CDCl ₃ +DMSO 150
I.39	13C spectrum of compound XIII in CDCl ₃ +DMSO 151
I.40	HPLC chromatogram of compound I in
	$CH_3OH: CH_3C1 = 1:19$
I.41	HPLC chromatogram of compound II in
	$CH_3OH: CH_3C1 = 1:19$
I.42	HPLC chromatogram of compound III in
	$CH_3OH: CH_3C1 = 1:19$
I.43	HPLC chromatogram of compound IV in
	$CH_3OH: CH_3C1 = 1:19$
I.44	HPLC chromatogram of compound V in
	$CH_3OH: CH_3C1 = 1:19$
I.45	HPLC chromatogram of compound VI in
	$CH_3OH: CH_3C1 = 1:19$
I,46	HPLC chromatogram of compound VII in

	$CH_3OH: CH_3C1 = 1:19$	54
I.47	HPLC chromatogram of compound VIII in	9
	CH ₃ OH: CH ₃ Cl = 1:1915	54
I.48	HPLC chromatogram of compound IX in	
	CH ₃ OH: CH ₃ Cl = 1:19	54
I.49	HPLC chromatogram of compound X in	5
	CH ₃ OH: CH ₃ Cl = 1:19	55
I.50	HPLC chromatogram of compound XI in	
	CH ₃ OH: CH ₃ Cl = 1:19	55
I.51	HPLC chromatogram of compound XII in	
	CH ₃ OH: CH ₃ Cl = 1:19	55
I.52	HPLC chromatogram of compound XIII in	
	CH ₃ OH:CH ₃ Cl = 1:19	56
II.1	The effect of trypsin concentration on the	
	initial velocities at fixed concentration	
	of BAPNA (2 mM 25 mL)	58
II.2	The effect of trypsin concentration on the	ıe
	initial velocities at fixed concentration	•
	of BAPNA (2 mM 50 mL)	59
II.3	The effect of trypsin concentration on the	
	initial velocities at fixed concentration	
	of BAPNA (2 mM 75 mL)	59
II.4	The effect of trypsin concentration on the	
	initial velocities at fixed concentration	
	of BAPNA (2 mM 100 mL)	50
II.5	The effect of trypsin concentration on the	
	and office of crypain concentration on the	

	of BAPNA (2 mM 125 mL)	
II.6	The effect of trypsin con	ncentration on the
	initial velocities at f	ixed concentration
v	of BAPNA (2 mM 150 mL)	
II.7	The effect of trypsin con	ncentration on the
	initial velocities at f	ixed concentration
	of BAPNA (2 mM 200 mL)	
8.II	The effect of chymotrypsin co	oncentration on the
	initial velocities at f	ixed concentration
	of Suc-Ala-Ala-Pro-Phe-ANA (2	2 mM 25 mL) 162
II.9	The effect of chymotrypsin co	oncentration on the
	initial velocities at fi	ixed concentration
. 8	of Suc-Ala-Ala-Pro-Phe-ANA (2	2 mM 50 mL) 162
II.10	The effect of chymotrypsin co	oncentration on the
	initial velocities at fi	ixed concentration
	of Suc-Ala-Ala-Pro-Phe-ANA (2	2 mM 75 mL) 163
II.11	The effect of chymotrypsin co	oncentration on the
	initial velocities at fi	ixed concentration
æ	of Suc-Ala-Ala-Pro-Phe-ANA (2	2 mM 100 mL) 163
II.12	The effect of chymotrypsin co	oncentration on the
	initial velocities at fi	ixed concentration
	of Suc-Ala-Ala-Pro-Phe-ANA (2	2 mM 150 mL) 164
II.13	The effect of chymotrypsin co	oncentration on the
	initial velocities at fi	ixed concentration
	of Suc-Ala-Ala-Pro-Phe-ANA (2	2 mM 200 mL) 164
II.14	The effect of BAPNA cond	centration on the
	initial velocities at fi	ixed concentration

	of try	psin (2	mM 25	mL).				. 165
II.15	The	effect	of B	APNA	concentr	ation	on the	
	initia	l vel	ocitie	s at	fixed	conce	ntration	
	of try	psin (2	mM 50	mL).				165
II.16	The e	effect	of B	APNA	concentr	ation	on the	
	initia	l vel	ocitie	s at	fixed	concer	ntration	
	of tryp	osin (2	mM 75	mL).				166
II.17					concentra			
	initial	l vel	ocities	at	fixed	concer	itration	
	of tryp	psin (2	mM 100) mL).				166
II.18					concentra			
	initial	l velo	ocities	at	fixed	concen	tration	
	of tryp	osin (2	mM 125	5 mL).				167
II.19	The e	effect	of BA	PNA	concentra	tion	on the	
	inítial	velo	ocities	at	fixed	concen	tration	
	of tryp	sin (2	mM 150	mL).		* * * * * * *		167
		*						
II.20	The e	effect	of BA	PNA	concentra	tion	on the	×
	initial	. velo	cities	at	fixed	concen	tration	
	of tryp	osin (2	mM 200	mL).				168
II.21					uc-Ala-Al			,
	concent	ration	on	the	initial	vel	ocities	
	at f	ixed	concen	trati	on of	chymo	trypsin	
	(2 mM 2	5 mL)						169
II.22	The	effect	of	S	uc-Ala-Al	a-Pro-I	Phe- <i>p</i> NA	
	concent	ration	on	the	initial	velo	ocities	
	at f	ixed	concen	trati	on of	chymot	rypsin	

(2 mM 50 mL)
II.23 The effect of Suc-Ala-Ala-Pro-Phe-ANA
concentration on the initial velocities
at fixed concentration of chymotrypsin
(2 mM 75 mL)
II.24 The effect of Suc-Ala-Ala-Pro-Phe-ANA
concentration on the initial velocities
at fixed concentration of chymotrypsin
(2 mM 100 mL)
·II.25 The effect of Suc-Ala-Ala-Pro-Phe-ANA
concentration on the initial velocities
at fixed concentration of chymotrypsin
(2 mM 125 mL) 171
II.26 The effect of Suc-Ala-Ala-Pro-Phe-ANA
concentration on the initial velocities
at fixed concentration of chymotrypsin
(2 mM 150 mL) 171
II.27 The effect of Suc-Ala-Ala-Pro-Phe-pNA
concentration on the initial velocities
at fixed concentration of chymotrypsin
(2 mM 200 mL)

LIST OF SCHEMES

Schemes		Pages
2.1	Preparation of BZ-V-T-NH-C ₁₀ H ₂₁	
2.2	Preparation of BZ-V-T-NH-C ₁₂ H ₂₅	
2.3	Preparation of BZ-V-P-NH-C ₁₀ H ₂₁	
2.4	Preparation of BZ-V-P-NH-C ₁₂ H ₂₅	
2.5	Preparation of Z-V-T-NH-C ₁₀ H ₂₁	
2.6	Preparation of Z-V-T-NH-C ₁₂ H ₂₅	
2.7	Preparation of Z-V-P-NH-C ₁₀ H ₂₁	
2.8	Preparation of Z-V-P-NH-C ₁₂ H ₂₅	44
2.9	Preparation of Z-V-V-T-NH-C ₁₀ H ₂₁	46
2.10	Preparation of Z-V-V-T-NH-C ₁₂ H ₂₅	52
2.11	Preparation of Z-V-V-P-NH-C ₁₀ H ₂₁	55
2.12	Preparation of BOC-V-T-NH-C ₁₀ H ₂₁	58
2.13	Preparation of BOC-V-T-NH-C ₁₂ H ₂₅	62
3.1	Protection of the N-terminus, Valine	. 77
3.2	Protection of the N-terminus	. 78
3.3	The coupling of amino acid via the mixed	i
e	anhydride method	79
3.4	Racemization mechanisms	81
3.5	The esterification of a di- or tripeptide	;
	fragment	03

LIST OF TABLES

Table	Pages
1.1	Some HLE and HLC-G inhibitors
1.2	Synthesized and tested compounds
2.1	The prepared solution as a function of varying
	enzyme concentration
2.2	The prepared solution as a function of varying
	substrate concentration
2.3	Initial velocities as a function of varying
	trypsin concentration
2.4	Initial velocities as a function of varying
	chymotrypsin concentration
2.5	Initial velocities as a function of varying
	BAPNA concentration 71
2.6	Initial velocities as a function of varying
	Suc-Ala-Ala-Pro-Phe-ANA concentration
2.7	Percentage inhibition of synthetic inhibitors 75
3.1	The elemental analysis of synthetic inhibitors 88
3.2	Assignment of the JH NMR of compound I and II 89
3.3	Assignment of the ¹ H NMR of compound III and IV 90
3.4	Assignment of the ¹ H NMR of compound V and VI 91
3.5	Assignment of the ¹ H NMR of compound VII and VIII. 92
3.6	Assignment of the ¹ H NMR of compound IX,X, and XI 93
3.7	Assignment of the ¹ H NMR of compound XII and XIII. 94
3.8	Assignment of the ¹³ C NMR of compound I and II95
3.9	Assignment of the ¹³ C NMR of compound III and IV 96

3.10	Assignment	of	the	¹³ C	NMR	οf	compound	V and VI97
3.11	Assignment	of	the	13C	NMR	of	compound	VII and VIII.98
3.12	Ássignment	of	the	13C	NMR	οf	compound	IX,X,and XI99
3.13	Assignment	of	the	13C	NMR	of	compound	XII and XIII 100

3.14 Inhibition by N-protected amino acid derivatives...105

LIST OF ABBREVIATIONS

Abs

absorbance

Ar

aromatic

BAPNA

 ${\tt N-benzoyl-DL-arginine-\it p-nitroanilide}$

BOC

tertiary butyloxycarbonyl

b.p.

boiling point

br.

broad

ΒZ

benzoyl

calc'd

calculated

°C

degree celcius

cm

centimeter

d

doublet

DMSO

dimethyl sulfoxide

Fig.

Figure

g

gram

HEPES

N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid

HLE

human leukocyte elastase

Lit

literature

m

multiplet

M

mole per liter or molar

mg

milligram

min

minute

mL

milliliter

mm

millimeter

mM

millimolar

mmole

millimole

m.p. melting point

Mr relative molecular weight

nm nanometer

ppm parts per million

P phenylalanine

q quartet

Rf rate of flow in chromatography

s singlet

Suc-Ala-Ala-Pro-Phe-pNA

Succinyl-Alanine-Alanine-Proline-Phenylalanine-

paranitroanilide

t triplet

T tyrosine

THF tetrahydrofuran

TLC thin layer chromatography

valine valine

Z carbobenzoxy