CHAPTER III

SEMINEAR-FIELDS

<u>Definition 3.1.</u> A seminear-ring $(K,+,\cdot)$ is said to be a <u>seminear-field</u> iff there exists an elemelnt a in K such that $a^2 = a$ and $(K \setminus \{a\}, \cdot)$ is a group.

It is clear that any near-field is a seminear-field.

Example 3.2. $Q^{\dagger}U$ (0) and $R^{\dagger}U$ (0) with the usual addition and multiplication are seminear-fields.

Example 3.3. Let (G, \cdot) be a group with zero element ∞ . We can define + on G so that $(G, +, \cdot)$ is a seminear-field by

- (1) $x + y = \infty$ for all $x, y \in G$,
- (2) $x + y = \infty$ if $x \neq y$ and x + y = x if x = y for all x, y.

 Example 3.4. Let (G, \cdot) be a group and a be a symbol not representing an element of G. Let $G' = G U \{a\}$. We can define + on G' and extend + to G' by
 - (1) $a \cdot x = x \cdot a = a$ and x + y = x for all $x, y \in G$,
 - (2) $a \cdot x = x \cdot a = a$ and x + y = y for all $x \cdot y \in G$.
 - (3) $a \cdot x = x \cdot a = x$ and x + y = x for all x, $y \in G$ and
- (4) $a \cdot x = x \cdot a = x$ and x + y = y for all $x, y \in G^*$, then $(G^*, +, \cdot)$ is a seminear-field.

Example 3.5. Let D be a division seminear-ring. Let a be a symbol not representing an element of D. We can extend + and \cdot to $D^* = D U \{a\}$ by

- (1) $a \cdot x = x \cdot a = a$ and a + x = x + a = x for all $x \in D$,
- (2) $a \cdot x = x \cdot a = a$ and a + x = x + a = a for all $x \in D$ and
- (3) $a \cdot x = x \cdot a = x$ and x + a = x + 1, a + x = 1 + x for all $x \in D$.

Then (D*,+,.) is a seminear-field.

Example 3.6. Let $K = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, c \in \mathbb{Q}^+, b \in \mathbb{Q} \right\} \cup \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ with the usual addition and multiplication. Then $(K,+,\cdot)$ is a seminear-field.

Remark. Let $K = \{a, x\}$. Define and + on K by $a \cdot x = x \cdot a = a$, $a \cdot a = a$, $x \cdot x = x$, and a + a = x + a = a, x + x = a + x = x. Then $(K,+,\cdot)$ is a seminear-field. In this case there does not exist a unique element a in K such that $(K \cdot \{a\}, \cdot)$ is a group and $a^2 = a$. However, if K > 2, we do get the uniqueness as the following shows.

Theorem 3.7. Let $(K,+,\cdot)$ be a seminear-field of order > 2. Let $a \in K$ be such that $a^2 = a$ and $(K \setminus \{a\}, \cdot)$ is a group. If there is an element b in K such that $b^2 = b$ and $(K \setminus \{b\}, \cdot)$ is a group, then b = a.

Proof. Let 1 denote the identity of $K \cdot \{a\}$. Suppose $b \neq a$. Since $a^2 = a \in K \cdot \{b\}$, a is the identity of $(K \cdot \{b\}, .)$. Since $b^2 = b$ is in $K \cdot \{a\}$, b = 1. Hence $(K \cdot \{1\}, .)$ is a group with the identity a. Let $x \in K \cdot \{1, a\}$. Then there exists a $y \in K \cdot \{1\}$ such that xy = a. If y = a, then x = xa = xy = a. Thus x = a, a contradiction. If $y \neq a$, then we have that $x \neq a$ and $y \neq a$ but xy = a which contradicts $(K \cdot \{a\}, .)$ is a group. Hence $b = a \cdot \#$

<u>Definition 3.8.</u> Let $(K,+,\cdot)$ be a seminear-field and $L\subseteq K$. L is a <u>subseminear-field</u> of K iff $(L,+,\cdot)$ is a seminear-field.

Theorem 3.9. Let K be a seminear-field. Then there exists a smallest subseminear-field contained in K.

Proof. Let $a \in K$ be such that $a^2 = a$ and $(K \setminus \{a\}, \cdot)$ is a group. Let $1 \in K \setminus \{a\}$ be the multiplicative identity. Then a and 1 are the only two idempotents in K. Let L be a subseminear-field of K. Then $L \subseteq K$ and L has exactly two idempotents. Hence a, $1 \in L$.

Case 1. K contains a subseminear-field L of order 2. Then $L = \{a, 1\}$. Clearly, L is the smallest subseminear-field of K. So done.

Case 2. Every subseminear-field of K has order L Let L be a subseminear-field of L. There exists an L such that $L \setminus \{a_1\}$,.) is a group and L and L Let L be the identity of L such that L claim that L and L and L and L is an idempotent. Let L and L is L then L then L and L is an idempotent. Let L and L is a group. Then L is an idempotent L is an idempotent. Let L and L is a group. Then L is an idempotent L in L is an idempotent L

Let $\{L_{k}\}_{k\in I}$ be the set of all subseminear-fields of K. Then $(L_{k}\setminus\{a\}, \cdot)$ is a group for all $k\in I$. Let $M=\bigcap_{k\in I}L_{k}$. Clearly, M is a subseminear-ring of K and 1, $a\in M$. $M\setminus\{a\}=(\bigcap_{k\in I}L_{k})\setminus\{a\}=\bigcap_{k\in I}(L_{k}\setminus\{a\})$ is an intersection of subgroups of $(K\setminus\{a\}, \cdot)$. Thus $(M\setminus\{a\}, \cdot)$ is a group. Hence M is a subseminear-field of K. Clearly, M is the smallest subseminear-field of K.

<u>Definition 3. 10.</u> Let K be a seminear-field. Then the <u>prime</u>

<u>seminear-field of K</u> is the smallest subseminear-field of K (which

must exist by Theorem 3.9).

Theorem 3.11. Let $(K,+,\cdot)$ be a seminear-field and a an element in K such that $a^2 = a$ and $(K - \{a\}, \cdot)$ is a group. Then $(a \cdot x = a \text{ for all } x \in K \text{ or } a \cdot x = x \text{ for all } x \in K)$ and $(x \cdot a = a \text{ for all } x \in K \text{ or } x \cdot a = x \text{ for all } x \in K)$.

Proof. Consider a.1.

Case 1. a.1 = a. Claim that a.x = a for all $x \in K$. Let $x \in K - \{a\}$. Suppose $a \cdot x \neq a$. Thus $a \cdot x \in K - \{a\}$ which is a group, so there exists a $y \in K - \{a\}$ such that $(a \cdot x) \cdot y = 1$. Thus $a = a \cdot 1 = a \cdot ((a \cdot x) \cdot y) = a \cdot (a \cdot (x \cdot y)) = (a \cdot a) \cdot (x \cdot y) = a \cdot (x \cdot y) = (a \cdot x) \cdot y = 1$. Thus a = 1, a contradiction. Hence $a \cdot x = a$ for all $x \in K$.

Case 2. a.1 \neq a. Thus $(a.1)^2 = (a.1) \cdot (a.1) = a \cdot (1 \cdot (a.1)) = a \cdot (a.1)$ = $(a.a) \cdot 1 = a.1$, so a.1 = 1. Let $x \in K \setminus \{a\}$. Thus $a.x = a \cdot (1.x) = (a.1) \cdot x = 1.x = x$. Hence a.x = x for all $x \in K$.

Therefore $a \cdot x = a$ for all $x \in K$ or $a \cdot x = x$ for all $x \in K$. Similarly, we can show that $x \cdot a = a$ for all $x \in K$ or $x \cdot a = x$ for all $x \in K$.

From Theorem 3.11, we see that there are four types of seminear-fields:

- (1) Seminear-fields with ax = xa = a for all x.
- (2) Seminear-fields with ax = xa = x for all x.
- (3) Seminear-fields with ax = a and xa = x for all x.
- (4) Seminear-fields with ax = x and xa = a for all x.

 We call (1) category I seminear-fields, (2) category II seminear-fields, (3) category III seminear-fields and (4) category IV seminear-fields.*

See page 57.

Note that Example 3.2, Example 3.3, Example 3.4(1), Example 3.4(2), Example 3.5(1) and Example 3.5(2) are category I seminear-fields, Example 3.4(3), Example 3.4(4) and Example 3.5(3) are category II seminear-fields. In Example 3.4(1) if |G| = 1, define by a.x = a and x.a = x for all $x \in G$, then $(G, +, \cdot)$ is a category III seminear-field and if we define by a.x = x and x.a = a for all $x \in G$, then $(G, +, \cdot)$ is a category IV seminear-field.

Theorem 3.12. If K is a category III or a category IV seminear-field then |K| = 2.

<u>Proof.</u> Let K be a category III seminear-field. Thus ax = a and xa = x for all x \in K. Suppose ||K|| > 2. Let x \in K \setminus {a, 1}. Then $x^2 = xx = (xa)x = x(ax) = xa = x$. Thus x = 1 or a, a contradiction. Hence ||K|| = 2.

Let K be a category IV seminear-field. Thus ax = x and xa = a for all $x \in K$. Suppose ||K|| > 2. Let $x \in K \setminus \{a, 1\}$. Then $x^2 = xx = x(ax) = (xa)x = ax = x$. Thus x = 1 or a, a contradiction.

From Theorem 3.12, we can easily find all category III and category IV seminear-fields. Since |K| = 2, 1 + 1 = 1 or a + a = a. For category III seminear-fields we have 12 cases to consider. They are:

(3), (4), (10) and (12) cannot be seminear-fields since:

For
$$(3)$$
, $1 + (a + 1) = 1 + a = 1$ but $(1 + a) + 1 = 1 + 1 = a$,

for
$$(4)$$
, $1 + (a + 1) = 1 + 1 = a$ but $(1 + a) + 1 = a + 1 = 1$,

for (10),
$$a + (1 + a) = a + a = 1$$
 but $(a + 1) + a = 1 + a = a$,

for
$$(12)$$
, $a + (1 + a) = a + 1 = a$ but $(a + 1) + a = a + a = 1$.

To show (1), (2), (5), (6), (7), (8), (9) and (11) are seminear-fields, let x, y, $z \in K$.

For (5),
$$(x + y) + z = x + z = x + (y + z)$$
 and $(x + y)z = xz = xz + yz$,

for (6),
$$(x + y) + z = z = y + z = x + (y + z)$$
 and $(x + y)z = yz =$

$$xz + yz$$
, for (1), $(x + y) + z = a = x + (y + z)$ and $(x + y)z = az =$

$$a = xz + yz$$
, for (9), $(x + y) + z = 1 = x + (y + z)$ and $(x + y)z =$

1z = 1 = xz + yz.

For (2),
$$(a + a) + a = a + a = a + (a + a)$$
,

$$(a + a) + 1 = a + 1 = a + a = a + (a + 1),$$

$$(a + 1) + a = a + a = a + (1 + a),$$

$$(1+a)+a=a+a=1+a=1+(a+a),$$

$$(1 + 1) + a = 1 + a = 1 + (1 + a),$$

$$(1 + a) + 1 = a + 1 = 1 + a = 1 + (a + 1),$$

$$(a + 1) + 1 = a + 1 = a + (1 + 1)$$

$$(1+1)+1=1+1=1+(1+1)$$

$$(a + a)a = aa = a + a = aa + aa,$$

$$(a + a)1 = a1 = a = a + a = a1 + a1$$

$$(a + 1)a = aa = a = a + 1 = aa + 1a$$

$$(1 + a)a = aa = a = 1 + a = 1a + aa,$$

(1+1)+1=1+1=1+(1+1),

By defining f(a) = 1 and f(1) = a, f(1) = f(2), f(2) = f(3) and f(3) = f(3). Therefore, up to isomorphism, there are 5 category III seminear-fields.

For category IV seminear-fields, we have ax = x and xa = a for all x. Thus a + a = 1a + 1a = (1 + 1)a = a and 1 + 1 = a1 + a1 =

(a + a)1 = a1 = 1. Thus a + a = a and 1 + 1 = 1. Hence they are four cases to consider. They are

Claim that (1), (2), (3) and (4) are all seminear-fields. Let x, y, z be in K. For (2), (x + y) + z = x + z = x = x + (y + z) and (x + y)z = xz = xz + yz. For (3), (x + y) + z = y + z = x + (y + z) and (x + y)z = yz = xz + yz.

For (4),
$$(a + a) + a = a + a = a + (a + a)$$
, $(a + a) + 1 = a + 1 = a + (a + 1)$,

By defining f(a) = 1 and f(1) = a, we have that $(1) \approx (4)$.

Therefore, up to isomorphism, there are three category IV seminear-fields.

From now on we shall study category I and category II seminear-fields. First we shall study category I seminear-fields and from
now on the word "seminear-field" will mean a category I seminear-field.

If we wish to study category II seminear-fields, we shall say
"category II seminear-fields".

Remark. Note that if K is a category I seminear-field, then K x K is never a seminear-field since (a,1)(1,a) = (a,a) so K x K \ $\{(a,a)\}$ is not a group under multiplication.

Theorem 3.13. Let K be a seminear-field and $a \in K$ be such that $a^2 = a$ and $(K \setminus \{a\}, \bullet)$ is a group. Then either a + x = a for all $x \in K$ or a + x = x for all $x \in K$ and either x + a = a for all $x \in K$ or x + a = x for all $x \in K$.

Proof. First we shall show that a + a = a. a + a = aa + aa = (a + a)a = a. Now consider a + x.

Case 1. There exists an $x \in K - \{a\}$ such that a + x = a. Let $u \in K$. Then $a + u = ax^{-1}u + xx^{-1}u = (a + x)x^{-1}u = ax^{-1}u = a$. Thus a + u = a for all $u \in K$.

Case 2. $a + x \neq a$ for all $x \in K - \{a\}$. Then $a + 1 \neq a$. Let y = a + 1. Then $y \neq a$ and a + y = a + (a + 1) = (a + a) + 1 = a + 1 = y. Let $u \in K$. Then $a + u = ay^{-1}u + yy^{-1}u = (a + y)y^{-1}u = yy^{-1}u = u$. Thus a + u = u for all $u \in K$.

Therefore either a + x = a for all $x \in K$ or a + x = x for all $x \in K$. Similarly, we can show that either x + a = a for all $x \in K$ or x + a = x for all $x \in K_{\bullet \#}$

Theorem 3.13 indicates that there are four types of seminear-fields.

(1) a + x = x + a = x for all x. In this case, a behaves as an additive identity (which is usually denoted by 0) we call this type a <u>seminear-field of zero type</u> or a <u>O-seminear-field</u>. We shall denote the zero element of this type by 0.

Note that Example 3.2 and example 3.6 are 0-seminear-fields.

(2) a + x = x + a = a for all x. In this case, we call a seminear-field of infinity type or ∞ -seminear-field and denote the zero element of this type by ∞ .

Note that Example 3.5(2) is an @-seminear-field.

(3) a + x = x and x + a = a for all x. Then for all x, y x + y = x + (a + y) = (x + a) + y = a + y = y.

Thus (K,+) is a right zero semigroup, so we call this type a <u>right</u> zero seminear-field.

Note that Example 3.4(2) is a right zero seminear-field.

(4) a + x = a and x + a = x for all x. Then for all x, y x + y = (x + a) + y = x + (a + y) = x + a = x.

Thus (K,+) is a left zero semigroup, so we call this type a <u>left zero</u> seminear-field.

Note that Example 3.4(1) is a left zero seminear-field.

Remark. Note that right zero and left zero seminear-fields are also left distributive and they all come from division seminear-rings by adjoining a multiplicative zero.

Theorem 3.14. Let K be a 0-seminear-field. Then either every nonzero element of K has an additive inverse (in which case K is a near-field) or no nonzero element of K has an additive inverse.

<u>Proof.</u> Suppose that there exists an $x \in K^{-}\{0\}$ such that x has an additive inverse y. Thus x + y = y + x = 0. Let $z \in K$. Then $z + yx^{-1}z = xx^{-1}z + yx^{-1}z = (x + y)x^{-1}z = 0x^{-1}z = 0$ and $yx^{-1}z + z = yx^{-1}z + xx^{-1}z = (y + x)x^{-1}z = 0x^{-1}z = 0$.

Thus z has an additive inverse. Hence we have the theorem.

Definition 3.15. Let S be a seminear-ring with ∞ . Let $y \in S$. Then $z \in S$ is said to be a <u>right complement</u> of y iff $y + z = \infty$. A <u>left complement</u> of y is similarly defined. A <u>complement</u> of y is an element of S which is both a right and a left complement of y.

Definition 3.16. Let S be a seminear-ring with ∞ . Let $y \in S$. Then y is said to be <u>right limited</u> iff the only right complement of y is ∞ . Left limited is similarly defined. y is <u>limited</u> iff it is both right and left limited. If every noninfinity element of S is right limited then S is <u>right limited</u>. Left <u>limited</u> and <u>limited</u> seminear-rings are similarly defined.

Definition 3.17. Let K be an ∞ -seminear-field and let $x \in K$. The left core of x, denoted by LCor(x), = $\{y \in K \mid y + x = \infty\}$. The right core of x, denoted by RCor(x), = $\{y \in K \mid x + y = \infty\}$. The core of x, denoted by Cor(x), = $LCor(x) \cap RCor(x)$.

Theorem 3.18. Let K be an w-seminear-field. Then

- (1) $\infty \in Cor(x)$ for all $x \in K$.
- (2) For all $x \in K$ ($y \in LCor(x)$ and $z \in K$ imply that z + y is in LCor(x)) and ($y \in RCor(x)$ and $z \in K$ imply that $y + z \in RCor(x)$).
- (3) For all x, $y \in K^{-1}\{\infty\}$ ($y \in LCor(x)$ iff $yx^{-1} \in LCor(1)$ and $xy^{-1} \in RCor(1)$) and ($y \in RCor(x)$ iff $yx^{-1} \in RCor(1)$ and $xy^{-1} \in LCor(1)$). (Therefore $y \in Cor(x)$ iff $yx^{-1} \in Cor(1)$ and $xy^{-1} \in Cor(1)$.)
- (4) For all x, y ∈ K (x ∈ LCor(y) iff y ∈ RCor(x))
 (Therefore for all x, y ∈ K x ∈ Cor(y) iff y ∈ Cor(x).)
- (5) For all $x \in K^{\infty}$ LCor(x) = LCor(1).x, RCor(x) = RCor(1).x and Cor(x) = Cor(1).x.
- (6) For all $x \in K$ ($x \in LCor(y)$ implies $xz \in LCor(yz)$ for all z in K) and ($x \in RCor(y)$ implies $xz \in RCor(yz)$ for all z in K).

 (Hence for all $x \in K$ ($x \in Cor(y)$ implies $xz \in Cor(yz)$ for all $z \in K$.)

 The converse is true for $z \in K \{\infty\}$.
- (7) For all x, y, $z \in K$ ($x \in LCor(y + z)$ iff $x + y \in LCor(z)$) and ($x \in RCor(y + z)$ iff $z + x \in RCor(y)$).

- <u>Proof.</u> (1) Since $x + \infty = \infty + x = \infty$ for all $x \in K$, $\infty \in Cor(x)$ for all $x \in K$.
- (2) Let $x \in K$. Let $y \in LCor(x)$ and $z \in K$. Then $y + x = \infty$ and so $(z + y) + x = z + (y + x) = z + \infty = \infty$. Hence $z + y \in LCor(x)$. Thus for all $x \in K$ $y \in LCor(x)$ and $z \in K$ imply that $z + y \in LCor(x)$. Similarly, we can prove that for all $x \in K$ $y \in RCor(x)$ and $z \in K$ imply that $y + z \in RCor(x)$.
- (3) Let x, $y \in K \{\infty\}$. Assume that $y \in LCor(x)$. Thus $y + x = \infty$. Then $yx^{-1} + 1 = yx^{-1} + xx^{-1} = (y + x)x^{-1} = \infty x^{-1} = \infty$ and $1 + xy^{-1} = yy^{-1} + xy^{-1} = (y + x)y^{-1} = \infty y^{-1} = \infty$. Thus $yx^{-1} \in LCor(1)$ and $xy^{-1} \in RCor(1)$.

Conversely, assume that $yx^{-1} \in Lcor(1)$ and $xy^{-1} \in RCor(1)$. Then $1 + xy^{-1} = yx^{-1} + 1 = \infty$. Thus $y + x = (1 + xy^{-1})y = \infty y = \infty$, so $y \in LCor(x)$.

Therefore $y \in LCor(x)$ iff $yx^{-1} \in LCor(1)$ and $xy^{-1} \in RCor(1)$.

By similarly proof, we have that $y \in RCor(x)$ iff $yx^{-1} \in RCor(1)$ and $xy^{-1} \in LCor(1)$.

- (4) Let x, $y \in K$. Thus $x \in LCor(y) \iff x + y = \infty \iff y \in RCor(x)$.
- (5) Let $x \in K \setminus \{\infty\}$. To show $LCor(x) \subseteq LCor(1) \cdot x$, let $y \in LCor(x)$. By (3), $yx^{-1} \in LCor(1)$. Thus $y = (yx^{-1})x \in LCor(1) \cdot x$. Conversely, let $z \in LCor(1)$. Thus $z + 1 = \infty$. Then $zx + x = (z + 1)x = \infty = \infty$, so $zx \in LCor(x)$. Hence $LCor(x) = LCor(1) \cdot x$.

By similarly proof, $RCor(x) = RCor(1) \cdot x$ and $Cor(x) = Cor(1) \cdot x$.

(6) Let $x \in K$. Let $y \in K$ be such that $x \in LCor(y)$ and let $z \in K$. Thus $x + y = \infty$, so $xz + yz = (x + y)z = \infty z = \infty$. Thus $xz \in LCor(yz)$. By similarly proof, $x \in RCor(y)$ and $z \in K$ imply

xz ∈ RCor(yz).

Conversely, assume that x, $y \in K$, $z \in K \setminus \{\omega\}$ and $xz \in LCor(yz)$. Thus $xz + yz = \omega$, so $x + y = (x + y)zz^{-1} = (xz + yz)z^{-1} = \omega z^{-1} = \omega$. Thus $x \in LCor(y)$. By similarly proof, for all x, $y \in K$, $z \in K \setminus \{\omega\}$ $xz \in RCor(yz)$ implies $x \in RCor(y)$.

(7) Let x, y, $z \in K$. $x \in LCor(y + z) \iff x + (y + z) = \infty$ $\iff (x + y) + z = \infty \iff x + y \in LCor(z)$.

 $x \in RCor(y + z) \iff (y + z) + x = \infty \iff y + (z + x) = \infty \iff z + x \in RCor(y)_{\bullet}$

Theorem 3.19. Let K be an ∞ -seminear-field and let x, $y \in K - \{\infty\}$. Then

- (1) The cardinality of LCor(x) equals the cardinality of LCor(y) and each one is a right multiplicative translate of the other.
- (2) The cardinality of RCor(x) equals the cardinality of RCor(y) and each one is a right multiplicative translate of the other.
- (3) The cardinality of Cor(x) equals the cardinality of Cor(y) and each one is a right multiplicative translate of the other.

<u>Proof.</u> (1) For $z \in LCor(x)$, by Theorem 3.18(5), there is a $u \in LCor(1)$ such that z = ux. Define $f: LCor(x) \rightarrow LCor(y)$ by f(z) = uy. By Theorem 3.18(5), $uy \in LCor(y)$. To show that f is well-defined, let $z_1 = z_2 \in LCor(x)$. Let u_1 , $u_2 \in LCor(1)$ be such that $z_1 = u_1x$ and $z_2 = u_2x$. Thus $u_1x = u_2x$. Since $x \neq \infty$, so $u_1 = u_2$. Thus $u_1y = u_2y$. To show f is one-to-one, let z_1 , $z_2 \in LCor(x)$ be such that $f(z_1) = f(z_2)$. Let u_1 , $u_2 \in LCor(1)$ be such that $z_1 = u_1x$ and $z_2 = u_2x$. Thus $u_1y = u_2y$. Since $y \neq \infty$, so $u_1 = u_2$. Thus $z_1 = z_2$. To show that f is onto, let $f(x_1) = f(x_2)$. Thus $f(x_2) = f(x_1)$ is a right multiplicative translate of $f(x_1)$.

By Theorem 3.18(3), $zx^{-1} \in LCor(1)$. By Theorem 3.18(5), $zx^{-1}y \in LCor(y)$. Thus $z = (zx^{-1}y)y^{-1}x \in LCor(y) \cdot y^{-1}x$, so $LCor(x) \subseteq LCor(y) \cdot y^{-1}x$. Now let $w \in LCor(y)$. By Theorem 3.18(3), $wy^{-1} \in LCor(1)$. By Theorem 3.18(5), $wy^{-1}x \in LCor(x)$. Thus $LCor(y) \cdot y^{-1}x \subseteq LCor(x)$. Therefore $LCor(x) = LCor(y) \cdot y^{-1}x$.

By similarly proof, we have (2) and (3). #

<u>Corollary</u>. If one noninfinity element of an ∞ -seminear-field is left limited (right limited, limited), then all noninfinity elements are left limited (right limited, limited).

<u>Proof.</u> Follows from an argument similar to the one given in Theorem $3.19_{-\#}$

Definition 3.20. Let K be a seminear-field and a the zero of (K, \bullet) .

Define $A_L = \{ x \in K \mid x + y = a \text{ for all } y \in K \}$, $A_R = \{ x \in K \mid y + x = a \text{ for all } y \in K \}$ and $A = A_L \cap A_R \bullet$

Theorem 3.21. Let K be a seminear-field. Then

- (1) If K is a 0-seminear-field, then $A = A_L = A_R = \emptyset$.
- (2) If K is an ∞ -seminear-field, then $A = \{\infty\}$ or A = K, $A_L = \{\infty\}$ or $A_L = K$ and $A_R = \{\infty\}$ or $A_R = K$.
- (3) If K is a right zero seminear-field, then A = A_L = \emptyset and A_R = {a}.
- (4) If K is a left zero seminear-field, then A = A $_{\rm R}$ = \emptyset and A = {a}.

Proof.

(1) Let K be a 0-seminear-field. Thus x + 0 = 0 + x = x for all $x \in K$. Suppose that $A_L \neq \emptyset$. Thus there exists an $x \in K$ such that

x + y = 0 for all $y \in K$. Hence x = x + 0 = 0. Thus 0 + y = 0 for all $y \in K$, so y = 0 + y = 0 for all $y \in K$. Hence $K = \{0\}$, a contradiction. Therefore $A_L = \emptyset$. Similarly, we can show that $A_R = \emptyset$. Thus $A = \emptyset$.

- (2) Let K be an ∞ -seminear-field. Thus $x + \infty = \infty + x = \infty$ for all $x \in K$. Thus $A \neq \emptyset$, $A_L \neq \emptyset$ and $A_R \neq \emptyset$. Assume that $A_L \neq \{\infty\}$. Thus there exists an $x \in K \setminus \{\infty\}$ such that $x + y = \infty$ for all $y \in K$. Thus $1 + yx^{-1} = xx^{-1} + yx^{-1} = (x + y)x^{-1} = \infty x^{-1} = \infty$ for all $y \in K$. Let $z \in K \setminus \{\infty\}$. Let $w \in K$. Then $1 + wz^{-1} = 1 + (wz^{-1}x)x^{-1} = \infty$. Thus $z + w = (1 + wz^{-1})z$ $= \infty z = \infty$. Thus $z \in A_L$. Hence $A_L = K$. Therefore $A_L = \{\infty\}$ or $A_L = K$. By similarly proof, $A_R = \{\infty\}$ or $A_R = K$. Hence $A = \{\infty\}$ or A = K.
- (3) Let K be a right zero seminear-field. Thus x + y = y for all x, $y \in K$. Suppose $A_L \neq \emptyset$. Thus there exists an $x \in K$ such that x + y = a for all $y \in K$. Then y = x + y = a for all $y \in K$. Thus $K = \{a\}$, a contradiction. Hence $A_L = \emptyset$.

Since x + a = a for all $x \in K$, $a \in A_R^*$. Let $x \in A_R^*$. Thus y + x = a for all $y \in K$. Then x = y + x = a, so x = a. Hence $A_R = \{a\}$. Therefore $A = \emptyset$.

(4) Let K be a left zero seminear-field. Thus x + y = x for all x, $y \in K$. Suppose $A_R \neq \emptyset$. Thus there exists an $x \in K$ such that y + x = a for all $y \in K$. Thus y = y + x = a for all $y \in K$. Thus $K = \{a\}$, a contradiction. Hence $A_R = \emptyset$.

Since a + x = a for all $x \in K$, $A_L \neq \emptyset$. Let $x \in A_L$. Thus x + y = a for all $y \in K$. Then x = x + y = a, so x = a. Hence $A_L = \{a\}$. Therefore $A = \emptyset_{\bullet \#}$

Theorem 3.22. Let K be a 0-seminear-field. If there exists an a_0 in $K \setminus \{0\}$ such that for all x, $y \in K$ ($x + a_0 = y + a_0$ implies x = y), then for all $z \in K$ we get that (x + z = y + z implies x = y).

<u>Proof.</u> Let $z \in K$. Let x, $y \in K$ be such that x + z = y + z. If z = 0, then x = y. Assume $z \neq 0$. Then

 $xz^{-1}a_0 + a_0 = (x + z)z^{-1}a_0 = (y + z)z^{-1}a_0 = yz^{-1}a_0 + a_0$ By assumption, $xz^{-1}a_0 = yz^{-1}a_0$. Since $z^{-1}a_0 \neq 0$, $x = y_0$.

In a 0-seminear-field of order 2 such that 1 + 1 = 1, we have that 1 + 0 = 1, 0 + 1 = 1 and 1 + 1 = 1. Thus 1 is an additive zero and $1 \neq 0$. This cannot occur in a seminear-field of order > 2.

Theorem 3.23. Let K be a seminear-field of order \geq 2. Let a be the zero of K. If K has an additive zero e, then e = a.

Proof. Suppose $e \neq a$. Since x + e = e + x = e for all $x \in K$, $xe^{-1} + 1 = 1 + xe^{-1} = 1$ for all $x \in K$. Let $C = \{xe^{-1} \mid x \in K\}$. Thus C = K. Then 1 is also an additive zero. Hence e = e + 1 = 1. Let $x \in K - \{0, 1\}$. Thus x + 1 = 1, so $1 + x^{-1} = x^{-1}$. Since $1 + x^{-1} = 1$, $x^{-1} = 1$. Thus x = 1, a contradiction. Hence $e = a \cdot \#$

In an ∞ -seminear-field of order 2 such that 1+1=1, we have that 1 is an additive identity and $1 \neq \infty$. This cannot occur in a seminear-field of order > 2.

Theorem 3.24. Let K be a seminear-field of order > 2. Let a be the zero of K. If K has an additive identity e, then e = a.

<u>Proof.</u> Suppose $e \neq a$. Since x + e = e + x = x for all $x \in K$, $xe^{-1} + 1 = 1 + xe^{-1} = xe^{-1}$ for all $x \in K$. Let $C = \{xe^{-1} \mid x \in K\}$. Thus C = K. Then 1 is also an additive identity. Hence e = e + 1 = 1. Let $x \in K \setminus \{0, 1\}$. Thus x + 1 = x, so $1 + x^{-1} = 1$. Since $1 + x^{-1} = x^{-1}$, $x^{-1} = 1$. Thus x = 1, a contradiction. Hence $e = a \cdot \#$

Theorem 3.25. If K is a seminear-field such that + and \cdot are equal, then ||K|| = 2.

<u>Proof.</u> Suppose ||K|| > 2. Let $x \in K - \{0, 1\}$. Thus $x^2 = xx = x + x = (1 + 1)x = (1.1)x = 1.x = x$. Thus x = 1 or 0, a contradiction. Hence $||K|| = 2 \cdot \#$

If a seminear-ring S of order > 1 contains an additive infinity $(x + \infty = \infty + x = \infty \text{ for all } x \in S)$, then ∞ is not left and right additively cancellative. However, we can give the following definition.

Definition 3.26. Let S be a seminear-ring with additive infinity ∞ . Then S is said to be <u>infinity left additively cancellative</u> (∞ -L.A.C.) iff for all x, y, $z \in S$ (x + y = x + z and $x \neq \infty$ imply that y = z). Infinity right additive cancellativity (∞ -R.A.C.) and infinity additive cancellativity (∞ -A.C.) are similarly defined.

If a seminear-ring S of order > 1 contains a multiplicative zero 0, then 0 is not left and right multiplicatively cancellative. However, we can give the following definition.

Definition 3.27. Let S be a seminear-ring with multiplicative zero 0. Then S is said to be zero left multiplicatively cancellative (0-L.M.C.) iff for all x, y, z \in S (xy = xz and x \neq 0 imply y = z). Zero right multiplicative cancellativity(0-R.M.C.) and zero multiplicative cancellativity(0-M.C.) are similarly defined.

Definition 3.28. Let S be a seminear-ring. Define $B_{L} = \{x \in S \mid x \text{ is L.A.C.}\}, \ B_{R} = \{x \in S \mid x \text{ is R.A.C.}\}, \ B = B_{L} \cap B_{R}, \\ M_{L} = \{x \in S \mid x \text{ is L.M.C.}\}, \ M_{R} = \{x \in S \mid x \text{ is R.M.C.}\} \ \text{and} \ M = M_{L} \cap M_{R}.$

Theorem 3.29. Let S be a seminear-ring. Then

- (1) $B_L = \emptyset$ or B_L is an additive subsemigroup of S.
- (2) $B_R = \emptyset$ or B_R is an additive subsemigroup of S. (Therefore $B = \emptyset$ or B is an additive subsemigroup of S.)
 - (3) $M_L = \emptyset$ or M_L is a multiplicative subsemigroup of S.
- (4) $M_R = \emptyset$ or M_R is a multiplicative subsemigroup of S. (Therefore $M = \emptyset$ or M is a multiplicative subsemigroup of S.)

Proof.

- (1) Assume that $B_L \neq \emptyset$. Let $x, y \in B_L$ and $z_1, z_2 \in S$ be such that $(x + y) + z_1 = (x + y) + z_2$. Then $x + (y + z_1) = x + (y + z_2)$. Thus $y + z_1 = y + z_2$ because $x \in B_L$. Since $y \in B_L$, $z_1 = z_2$. Thus $x + y \in B_L$. Hence B_L is an additive subsemigroup of S. Therefore $B_L \neq \emptyset$ or B_L is an additive subsemigroup of S.
 - (2) By similarly proof as (1).
- (3) Assume that $M_L \neq \emptyset$. Let $x_1, y \in M_L$ and $z_1, z_2 \in S$ be such that $(xy)z_1 = (xy)z_2$. Then $x(yz_1) = x(yz_2)$. Thus $yz_1 = yz_2$ because $x \in M_L$. Since $y \in M_L$, $z_1 = z_2$. Thus $xy \in M_L$. Hence M_L is a multiplicative subsemigroup of S. Therefore $M_L = \emptyset$ or M_L is a multiplicative subsemigroup of S.
 - (4) By similarly proof as (3).#

Theorem 3.30. Let K be a 0-seminear-field. Then B_L , B_R and B are right idels of (K, \cdot) .

<u>Proof.</u> Since $0 \in B = B_L \cap B_R$, $B \neq \emptyset$, $B_L \neq \emptyset$ and $B_R \neq \emptyset$. To show that B_L is a right ideal of (K, \cdot) , let $x \in K$ and $z \in B_L$. Let $z_1, z_2 \in K$ be such that $zx + z_1 = zx + z_2$. If x = 0, then $z_1 = z_2$. Assume that $x \neq 0$. Thus $z + z_1x^{-1} = (zx + z_1)x^{-1} = (zx + z_2)x^{-1} = (zx + z_2)x^{-1}$.

 $z + z_2x^{-1}$. Since $z \in B_L$, $z_1x^{-1} = z_2x^{-1}$. Thus $z_1 = z_2$, so $zx \in B_L$. Thus $B_LK \subseteq B_L$. Therefore B_L is a right ideal of (K, \cdot) .

Similarly, we can show that B_R is a right ideal of (K, \cdot) . Since $B = B_L \cap B_R$, B is a right ideal of $(K, \cdot)_{\cdot \#}$

Theorem 3.31. Let K be an co-seminear-field. Then

- (1) If $x \in B_L$ and $y \in K \setminus \{\infty\}$, then $xy \in B_L$.
- (2) If $x \in B_R$ and $y \in K \{\infty\}$, then $xy \in B_R$.

 (Therefore if $x \in B$ and $y \in K \{\infty\}$, then $xy \in B$.)

Proof.

- (1) Let $x \in B_L$ and $y \in K \setminus \{\infty\}$. Let $z_1, z_2 \in K$ be such that $xy + z_1 = xy + z_2$. Then $x + z_1y^{-1} = (xy + z_1)y^{-1} = (xy + z_2)y^{-1} = x + z_2y^{-1}$. Since $x \in B_L$, $z_1y^{-1} = z_2y^{-1}$. Thus $z_1 = z_2$, so $xy \in B_L$.
 - (2) By similarly proof as (1) $_{\#}$

Theorem 3.32. A seminear-field can be left additively cancellative only if it is a O-seminear-field or a right zero seminear-field. Furthermore, a right zero seminear-field must be left additively cancellative.

<u>Proof.</u> Let K be an ∞ -seminear-field. Then ∞ is not left additively cancellative. Hence K cannot be left additively cancellative.

Let K be a left zero seminear-field and a the zero of K. Then 1 is not left additively cancellative since 1 + 1 = 1 = 1 + a but $1 \neq a$.

Let K be a right zero seminear-field. Let $x \in K$ and y, $z \in K$ be such that x + y = x + z. Thus y = x + y = x + z = z, so x is left additively cancellative. Hence K is left additively cancellative.

Theorem 3.33. A seminear-field can be right additively cancellative only if it is a 0-seminear-field or a left zero seminear-field. Furthermore, a left zero seminear-field must be right additively cancellative.

Proof. The proof is similar to Theorem 3.32.

Corollary. A seminear-field can be additively cancellative only if it is a O-seminear-field.

Proof. Follows directly from Theorem 3.32 and Theorem 3.33.#

Theorem 3.34. Let K be an co-seminear-field. Then

- (1) If K is ∞-L.A.C., then K is right limited.
- (2) If K is ∞ -R.A.C., then K is left limited. (Therefore if K is ∞ -A.C., then K is limited.)

Proof.

- (1) Let $x \in K \{\infty\}$ and y be a right complement of x. Thus $x + y = \infty$. Then $x + y = x + \infty$, so $y = \infty$ since K is ∞ -L.A.C. Hence x is right limited. Thus K is right limited.
 - (2) The proof is similar to (1).#

Theorem 3.35. Let K be a seminear-field. Then

- (1) If one nonzero element of K is left additively cancellative, then all nonzero elements are left additively cancellative.
- (2) If one nonzero element of K is right additively cancellative, then all nonzero elements are right additively cancellative.
 (Therefore if one nonzero of K is additively cancellative, then all nonzero elements are additively cancellative.)

Proof. Let a be the zero of K.

- (1) Let $x \in K \{a\}$ be left additively cancellative. Let y be an element in $K \{a\}$ and z_1 , $z_2 \in K$ be such that $y + z_1 = y + z_2$. Then $1 + z_1 y^{-1} = (y + z_1) y^{-1} = (y + z_2) y^{-1} = 1 + z_2 y^{-1}$, so $x + z_1 y^{-1} x = x + z_2 y^{-1} x$. Since x is left additively cancellative, $z_1 y^{-1} x = z_2 y^{-1} x$. Thus $z_1 = z_2$, so y is left additively cancellative. Therefore all nonzero elements are left additively cancellative.
 - (2) The proof is simlar to $(1)_{\bullet_{\#}}$
- Remark. (1) Let K be a 0-seminear-field which is not a near-field. By theorem 3.15, $x + y \neq 0$ if x, $y \in K \{0\}$. Thus $(K \{0\}, +, \cdot)$ is a division seminear-ring.
- (2) Let K be a limited ∞ -seminear-field. Then $x + y \neq \infty$ if x, $y \in K \{\infty\}$. So again $(K \setminus \{\infty\}, +, \cdot)$ is a division seminear-ring.

Theorem 3.36. If S is a finite seminear-ring with multiplicative zero O which is O-M.C., then S must be a seminear-field.

<u>Proof.</u> Since S is 0-M.C., $(S-\{0\},.)$ is a finite cancellative semigroup. Thus $(S-\{0\},.)$ is a group by Theorem 1.18. Since 0 is a multiplicative zero of S, (S,.) is a group with zero. Hence S is a seminear-field.

Theorem 3.37. Let K be a right zero seminear-field and K the prime seminear-field of K, Then $K'\cong\{0,1\}$ with the structure

Proof. Since K is a right zero seminear-field, x + y = y for

all x, $y \in K$. Thus 0 + 0 = 0, 0 + 1 = 1, 1 + 1 = 1 and 1 + 0 = 0. where 0 is the zero of K and 1 is the identity of $(K \setminus \{0\}, .)$. Thus we have the theorem.

Theorem 3.38. Let K be a left zero seminear-field and K the prime seminear-field of K. Then $K \stackrel{\sim}{=} \{0, 1\}$ with the structure

<u>Proof.</u> Since K is a left zero seminear-field, x + y = x for all x, $y \in K$. Thus 0 + 0 = 0, 0 + 1 = 0, 1 + 0 = 1 and 1 + 1 = 1where 0 is the zero of K and 1 is the identity of $(K - \{0\}, .)$. Thus we have the theorem.#

Theorem 3.39. Let K be a finite 0-seminear-field and K the prime seminear-field of K. Then $K \cong \mathbf{Z}_p$, p a prime or $K \cong \{0, 1\}$ with the structure

Proof. By Theorem 3.14, K is a near-field or no nonzero of K has an additive inverse.

Case. No nonzero of K has an additive inverse. Thus (K-{0},+) is a finite semigroup, so there exists an $x \in K - \{0\}$ such that x + x = x. Thus 1 + 1 = 1. Thus $K \cong \{0, 1\}$ with the structure

Case K is a near-field. Define f: Z → K by

$$f(n) = \begin{cases} 1 + \dots + 1 & (n \text{ times}) & \text{if } n > 0, \\ 0 & \text{if } n = 0, \\ (-1) + \dots + (-1) & (\ln 1 \text{ times}) & \text{if } n < 0. \end{cases}$$

Claim that f(mn) = f(m)f(n) and f(m+n) = f(m) + f(n) for all $m, n \in \mathbb{Z}$. Case m > 0, n > 0. Thus mn > 0 and m + n > 0. Then

$$f(m)f(n) = (1 + \cdots + 1)(1 + \cdots + 1)$$
 $= 1(1 + \cdots + 1) + \cdots + 1(1 + \cdots + 1) \quad (m \text{ times})$
 $= (1 + \cdots + 1) + \cdots + (1 + \cdots + 1) \quad (m \text{ times})$
 $= (1 + \cdots + 1) + \cdots + (1 + \cdots + 1) \quad (m \text{ times})$
 $= 1 + \cdots + 1 \quad (mn \text{ times})$

$$f(m + n) = 1 + \cdots + 1$$
 $(m + n \text{ times})$

$$= (1 + \cdots + 1) + (1 + \cdots + 1)$$

$$= f(m) + f(n)$$

Case m > 0, n < 0, Thus mn < 0 and |n| = -n.

(1)
$$m = |n| \cdot f(m) + f(n) = (1 + \cdots + 1) + ((-1) + \cdots + (-1))$$

$$= 0 = f(0) = f(m + (-|n|)) = f(m + n)$$
(2) $m < |n| \cdot f(m + n) = f(m - |n|) = (-1) + \cdots + (-1) (|m - |n|| \text{ times})$

$$f(m) + f(n) = (1 + \cdots + 1) + ((-1) + \cdots + (-1))$$

$$= (-1) + \cdots + (-1) (|n| - m \text{ times})$$

Case m $\langle 0, n \rangle 0$. Thus |mn| = -mn = |m|n. Then

The proof that f(m + n) = f(m) + f(n) is similar to the case that m > 0, n < 0.

Case
$$m = n = 0$$
. $f(mn) = f(0) = 0 = 0.0 = f(m)f(n)$ and $f(m + n) = f(0) = 0 = 0 + 0 = f(m) + f(n)$.

Case $m = 0$. $f(mn) = f(0) = 0 = 0.f(n) = f(m)f(n)$ and $f(m + n) = f(n) = 0 + f(n) = f(m) + f(n)$.

Case
$$m \neq 0$$
, $n = 0$. $f(mn) = f(0) = 0 = f(m) \cdot 0 = f(m)f(n)$ and $f(m + n) = f(m) = f(m) + 0 = f(m) + f(n)$.

Therefore we have the claim, so f is a homomorphism. Since K m times n times is finite, there exist $m \neq n \in \mathbb{Z}^+$ such that $(1 + \cdots + 1) = (1 + \cdots + 1)$. Thus f is not one-to-one. Hence $\ker f \neq \{0\}$. Since $\ker f$ is an ideal of \mathbb{Z} which is a P.I.D., $\ker f = \langle n \rangle$ for some $n \in \mathbb{Z}^+$. Since $f(1) = 1 \neq 0$, 1 \(\xi \text{ Ker f. Thus } \text{ Ker f } \neq \mathbf{Z}, \text{ so } n \neq 1. \text{ Suppose n is not a prime.} \)

Then there exist 1 \(\zeta \, r, s \leq n, r, s \in \mathbf{Z}^+ \text{ such that } n = rs. \text{ Since } r, s \(\xi \text{ Ker f, } f(r)f(s) \neq 0. \text{ Now } 0 \neq f(r)f(s) = f(rs) = f(n) = 0, \text{ a contradiction. Hence n must be a prime. Therefore

 $\text{K}\supseteq \text{Im } f \cong \mathbf{Z}/\text{Ker } f = \mathbf{Z}/\langle n \rangle = \mathbf{Z}_n \text{ , n a prime.}$ Claim that \mathbf{Z}_n contains no proper subseminear-field. Let $\mathbf{F} \subseteq \mathbf{Z}_n$ be a subseminear-field of \mathbf{Z}_n . Thus $1 \in \mathbf{F}$, so 1+1, 1+1+1, ..., $1+\dots+1$ (notions) $\in \mathbf{F}$. Thus $\mathbf{Z}_n \subseteq \mathbf{F}$, so $\mathbf{F} = \mathbf{Z}_n$. Thus we have the claim. Therefore Im f is a subseminear-field of K which contains no proper subseminear-field. Thus $\mathbf{K} = \text{Im } f \cong \mathbf{Z}_n$, not a prime \mathbf{Z}_n .

Theorem 3.40. Let K be a finite ∞ -seminear-field and K the prime seminear-field of K. Then $K'\cong\{\infty, 1\}$ with the structure

Proof. For $n \in \mathbb{Z}^{+}$ define $n1 = 1 + \dots + 1$ (n times) and define $0.1 = \infty$. Note that (mn)1 = (m1)(n1) for all m, $n \in \mathbb{Z}^{+}$. Since K is finite, there exist m, $n \in \mathbb{Z}^{+}_{0}$ such that m < n and m1 = n1. Let $m' = \min \{ m \in \mathbb{Z}^{+}_{0} \mid \text{there is an } n \in \mathbb{Z}^{+} \text{ such that } n > m \text{ and } m1 = n1 \}$ and $n' = \min \{ n \in \mathbb{Z}^{+} \mid n > m' \text{ and } m' = n1 \}$.

Case m = 1. Claim that $m1 \neq \infty$ for all $m \in \mathbb{Z}^+$. Suppose that there exists an $m \in \mathbb{Z}^+$ such that $m1 = \infty$, then m1 = 0.1. Thus m' = 0, a contradiction. Hence $m1 \neq \infty$ for all $m \in \mathbb{Z}^+$. Let $C = \{m1 \mid m \in \mathbb{Z}^+\}$. Then (C,+) is a finite semigroup. Thus there exists an $m \in \mathbb{Z}^+$ such that m1 + m1 = m1. Since $m1 \neq \infty$ and $(K \setminus \{\infty\}, \cdot)$ is a group, 1 + 1 = 1. Thus n' = 2. Hence we have that K' is (1) above.

Case $m \neq 1$. Suppose m' = 0. Then $n' \neq 1$ since $1 \cdot 1 = 1 \neq \infty$. If m' = 0 and n' = 2, then $1 + 1 = \infty$. So K is (2) above. Suppose m' = 0 and n' > 2. It follows from the associativity of addition that for all $k \in \mathbb{Z}^+$ (k > n' implies $k1 = \infty$) and it follows from the property of n' that (k < n' implies $k1 \neq \infty$). Since n' > 2, $n'^2 - 2n' + 1 > n'$. Since n' > 1, $n' = 1 \in \mathbb{Z}^+$. Thus $(n' = 1)1 \neq \infty$, so

 $\infty \neq ((n'-1)1)((n'-1)1) = ((n'-1)(n'-1))1 = (n'^2 - 2n' + 1)1$ = ∞ , a contradiction. Therefore this case cannot occur. Suppose m' > 1. Thus again $m1 \neq \infty$ for all $m \in \mathbb{Z}^+$ by the same argument as the first case. Let $C = \{m1 \mid m \in \mathbb{Z}^+\}$. Then (C,+) is a finite semigroup. As in the first case, 1+1=1. Thus m'=1, a contradiction.

Therefore 1 + 1 = 1 or $1 + 1 = \infty$ we have the theorem.

Now we shall study category II seminear-fields.

Theorem 3.41. Let K be a category II seminear-field with respect to $a \in K$. Then $(K \setminus \{a\}, +, \cdot)$ is a division seminear-ring.

<u>Proof.</u> Let x, y \in K \setminus {a}. Then xy \in K \setminus {a}. We must show that $x + y \in$ K \setminus {a}. Suppose not. Then x + y = a. Let 1 be the identity of $(K \setminus \{a\}, \cdot)$. Then $1 = a \cdot 1 = (x + y)1 = x \cdot 1 + y \cdot 1 = x + y = a$, a contradiction. Thus $x + y \in$ K \setminus {a}. Hence $(K \setminus \{a\}, +, \cdot)$ is a

division seminear-ring $_{*\#}$

Remark. This theorem shows that every category II seminear-field comes from a division seminear-ring by adding an element.

Theorem 3.42. Let K be a category II seminear-field with respect to a ϵ K and denote the identity of $(K \setminus \{a\}, \cdot)$ by 1. Then

- (1) If a + a = a, then (K,+) is a band.
- (2) If $a + a \neq a$, then (for all x, $y \in K \setminus \{a\} \times + x = y + y$ iff x = y) and a + a = 1 + 1.
 - (3) 1 + a = a or 1 + a = 1 + 1.
 - (4) a + 1 = a or a + 1 = 1 + 1
 - (5) $x + a = a \text{ or } x + a = 1 + 1 \text{ for all } x \neq a$.
 - (6) $a + x = a \text{ or } a + x = 1 + 1 \text{ for all } x \neq a$.

Proof.

- (1) If a + a = a, then x + x = ax + ax = (a + a)x = ax = x for all $x \in K$. Thus (K,+) is a band.
- (2) If $a + a \neq a$, then x + x = ax + ax = (a + a)x for all x. Thus if x + x = y + y, then (a + a)x = (a + a)y. Thus x = y since $a + a \neq a$. If x = 1, then 1 + 1 = a + a.
 - (3) If $1 + a \neq a$, then $1 + a = (1 + a)1 = 1 \cdot 1 + a \cdot 1 = 1 + 1$.
 - (4) If $a + 1 \neq a$, then $a + 1 = (a + 1)1 = a \cdot 1 + 1 \cdot 1 = 1 + 1$.
- (5) Let $x \in K$ be such that $x \neq a$. If $x + a \neq a$, then $x + a = (x + a)1 = x \cdot 1 + a \cdot 1 = x + 1$.
- (6) Let $x \in K$ be such that $x \neq a$. If $a + x \neq a$, then $a + x = (a + x)1 = a \cdot 1 + x \cdot 1 = 1 + x \cdot \#$

Corollary. If D is a division seminear-ring, then for all x, $y \in D$ x + x = y + y iff x = y.

<u>Proof.</u> Since D can be embedded in a category II seminear-field as in Example 3.5(3), for all x, $y \in D \times + \times = y + y$ iff x = y by Theorem 3.42(1) and (2).

Theorem 3.43. Let K be a finite category II seminear-field and K the prime seminear-field of K. Then $K \cong \{a, 1\}$ with a.1 = 1.a = 1, $a^2 = a$, 1.1 = 1 and

<u>Proof.</u> Let $n1 = 1 + \dots + 1$ (n times) for all $n \in \mathbb{Z}^{\frac{1}{4}}$. Since K is finite, there exist $n \in \mathbb{Z}^{\frac{1}{4}}$ such that n1 + n1 = n1. Let $a \in K$ be such that $a^2 = a$ and $(K \setminus \{a\}, \cdot)$ is a group.

Case n1 = a. Thus a + a = a. By Theorem 3.42(1), (3) and (4), 1 + 1 = 1, 1 + a = a or 1 + a = 1, a + 1 = a or a + 1 = 1. Thus we have four cases to consider. They are (1), (2), (3) and (4) above. It is easy to check that they are all seminear-fields. Thus $K \cong (1)$ or $K \cong (2)$ or $K \cong (3)$ or $K \cong (4)$.

Case $n1 \neq a$. Thus $(n1)^{-1}$ exists and so 1 + 1 = 1. By Theorem 3.42, a + a = a or $a \neq a = 1$, a + 1 = a or a + 1 = 1, 1 + a = a or 1 + a = 1. Thus we have eight cases to consider. They are (1) - (6) above and

(7)	+	а	1
	а	1	1
	1	а	1

(8)	+	а	1
	a	1	а
	1	1	1

It is easy to check that (5) and (6) are seminaer-fields but (7) and (8) are not. Thus $K^{'}\cong$ (1) or $K^{'}\cong$ (2) or $K^{'}\cong$ (3) or $K^{'}\cong$ (4) or $K^{'}\cong$ (5) or $K^{'}\cong$ (6).

<u>Definition 3.44.</u> Let D be a division seminear-ring and $x \in D$. Then x is said to be <u>right standard</u> iff xy + y = y for all $y \in D$ and x is said to be <u>left standard</u> iff y + xy = y for all $y \in D$.

Theorem 3.45. Let K be a category II seminear-field with respect to a $\in K_{\bullet}$

- (1) If $x \in K \setminus \{a\}$ has the property that x + a = a then x is right standard in the division seminear-ring $(K \setminus \{a\},+,\cdot)$.
- (2) If $x \in K \{a\}$ has the property that a + x = a then x is left standard in the division seminear-ring $(K \{a\}, +, \cdot)$.

Proof.

- (1) Let $y \in K$. Thus xy + y = xy + ay = (x + a)y = ay = y, so x is right standard.
 - (2) The proof is similar to (1) $_{*\#}$

Footnote.

If |K| > 2, then there exists a unique $a \in K$ such that $a^2 = a$ and $(K - \{a\}, .)$ is a group. Therefore the concept of category is well—defined in this case. If |K| = 2, then an element $a \in K$ such that $a^2 = a$ and $(K - \{a\}, .)$ is a group is not unique. In this case, the category depends on the element. Hence we must say that K is a category I seminear—field with respect to a certain element a. If it is a category I seminear—field with respect to a, then it is a category II seminear—field with respect to the other element and conversely. However, if it is a category III seminear—field with respect to one element, it will be a category III seminear—field with respect to the other element also. Also, if it is a category IV seminear—field with respect to one element, it will be a category IV seminear—field with respect to the other element.