CHAPTER III

SEMINEAR-FIELDS

Definition 3.1. A seminear-ring (K,+,.) is said to be a seminear-field

iff there exists an elemelnt a in K such that &2 = a and (K~{a},.) is

a group.

It is clear that any near-field is a seminear=-field.

Exemple 3.2. Q'U {0} and R*U {0} with the usual addition and multi-

plicatiom are seminear-fields.

Example 3.3. Let (Gy.) be a group with zero element w. We can define
+ on G so that (Gy+,.) is a seminear-field by

(1) x+ y =0 for all x, y€G,

(2) x+y=wifxfy andx+y=x if x = y for all x; ye
Example 3.4 Let (G,.) be a group and a be a symbol not representing
an element of G. Let G* =G U (ale We can define + on ey and extend

al
« to G by

*
(1) aex=xa=aandx+ y=x for all x, y€G ,

%
(2) axx=xa=aendx+y=yforall x, y&G ,

L3
(3) 8eX = Xe8 = X and x + y = x for all x, y €G and

3
xand x + y =y for all x, yEG ,

(4) aeux = xe2

5%
then (G ,+,.) is a seminear-field.

Example 3.5. Let D be a division seminear-ring. Let a be a symbol
not representing an element of D. We can extend + and . to

D*--DU{a}by
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*
(1) asx=xa=aanda+x=x+a=x for all x€D ,

*
(2) aex=xa=aanda+x=x+a=afor all xeD and

X+ 1hya+xe=1+ xfor all

Xea = X and X + a

(3) a.x

3*
x€D o

=%
Then (D ,+s;.) is a seminear-field.

Example 3.6. LetK:{[g :] la’ ceQ"', beQ‘} U {8 8”

with the usual addition and multiplication. Then (Ky+5e) is a

seminear-field.

Remark. Let K = {a, x} « Define ¢ and + on K by a.x = xe.a = a,

Qe = 8y XeX =Xy anda+ a=X+a=2ay X+X=a+ X =Xe Then
(Ky#y+) is a seminear-field. In this case there does not exist a
unique element a in K such that (K-{a}s;.) is a group and . = ae .-

However, if |K|>2; we do get the uniqueness as the following shows.

Theorem 3.7. Let (K,+,+) be a seminear-field of order > 2. Let a¢K

be such that a2 = a and (K\{a},.) is a group. If there is an element

b in K such that t> = b and (kK~{b},.) is a group, then b = a.

Proof. Let 1 denote the identity of K~{a}e Suppose b # a.
Since &= = a € K:{b} 4 a is the identity of (K~{b},.). Since B
is in K~fa}, b = 1. Hence (XK*{1},.) is a group with the identity a.
Let x€ K~{1y, a} . Then there exists a y € K~{1} such that xy = a.
If y =.a, then x = xa = xy = as« Thus x = a,a’contradiction. If y # a,
then we have that x # a and y #£ a but xy = a which contradicts

(K~ {a}y+) is a group. Hence b = aey

Definition 3.8 Let (K,-l-,.) be a seminear-field and LEK. L is a

subseminear-field of K iff (L,-l-,.) is a seminear-field.
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Theorem 3.9. Let K be a seminear-field. Then there exists a smallest

subseminear-field contained in K.

Proofo Let a €K be such that a® = a and (k~{a}y.) is a group.

Let 1€ K~{a} be the multiplicative identity. Then a and 1 are the
only two idempotents in Ko Let L be a subseminear-field of K. Then
LSK and L has exactly two idempotents. Hence a, 1 €L.

Case 1. K contains a subseminear-field L of order 2. Then L = {a, 1}.
Clearly, L is the smallest subseminear-field of K. So donee.

Case 2. Every subseminear-field of K has order > 2. Let L be a sub-
seminear-field of K. There exists an a,€ L such that (L~{a1},.) is a
group and af = a,. Let e be the identity of (L~fafse)s Claim that
a, =a and e = 1. Sincee2=e, either e =aore=1., If e = a,

then a, = 1 (since a, is an idempotent). Let x€L~{ay, 1}« Then

1 1
there exists a yeL‘{ﬂ; such that xy = a« If y = a, then x = xe = xa
= xy = @& Thus x = &, & contradictions If y # a, then we have that
x # a, y £ a and xy = a which contradicts (K~{a},.) is a group.

Hence e = 1, so a, = a.

Let {I,} . be the set of all subseminear-fields of K. Then
(L~{a}se) is a group for alld€I. Let M =df21L.l. Clearly, M is a
subseminear-ring of K and 1, a€M, M\{aﬁ = (dfe\ILd)\{a} =el?I(Ld\ {a})
is an intersection of subgroups of (K~ {a},+)s Thus (M~ {a},.). is a
groups Hence M is a subseminear-field of K. Clearly,M is the smallest
subseminear-field of K. #

Definition 3. 10. Let K be a seminear-field. Then the prime

seminear-field of K is the smallest subseminear-field of K (which

must exist by Theorem 3.9).
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Theorem 3.11. Let (K,+,.) be a seminear-field and a an element in K

such that 2° = & and (k~{a},.) is a group. Then (a.x = a for all
x €K or a.x = x for all x €K) and (x.a = a for all x€K or xea = x

for all x €K).

Proof. Consider a.1.
Case 1. a.1 = a. Claim that a«x = a for all x€K. Let x€eK~{al.
Suppose a.x # a. Thus a.x €K~ {a} which is a group, so there, exists -
a y€K~{a} such that (a.x).y = 1. Thus a = a.1 = a.((a.x).y) =
8e( @e(xey)) = (aea)e(xey) = ae(xey) = (@ex)ey = 1. Thus a =1, a

contradiction. Hence a«x = a for all x€K.

Case 2. a.1#a. Thus (a,1)% = (4.1)+(a.1) = au(1e(ae1)) = a.(a.1)
‘= (@ea)e1 = @aely S0 ae1 = 1. Let x¢€ K~{a}e Thus a.x = a.(1.x) =
(2e1)eX = 1ex = x. Hence a.x = x for all x €K.

Therefore a.x = a for all x €K or a.x = x for all x €K.

Similarly, we can show that x.a = a for all x €K or x.a = x for all

x €K,

#

From Theorem 3.11, we see that there are four types of semi-
near-fields:

(1) Seminear-fields with ax = xa = a for all x.

(2) Seminear-fields with ax = xa = x for all x.

(3) Seminear-fields with ax = a and xa = x for all x.

(4) Semiﬁear—fields with ax = x and xa = a for all x.
We call (1) category I seminéaz\-;‘ields. (2) category II seminear=
fields, (3) category III seminearwf:
near-fields.

and (4) category IV semi-

*
See page 57,
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Note that Example 3.2, Example 3.3, Example 3.4(1), Example
344(2), Example 3.5(1) and Exax;lple 3.5(2) are category I seminear-
fields, Example 3.4(3), Example 3.4(4) and Example 3.5(3) are category
II seminear-fields. In Example 3.4(1) if IGl| = 1, define « by aex = a
and Xea = x for all x eG*, then (G*,-I-,.) is a category III seminear—
field and if we define o by @aex = x and xe.a = a fér all xEG*, then

™
(G ,+5+) is a category IV seminear—field.

Theorem 3.12. If K is a category III or a category IV seminear-field

then [K| = 2.

Proof. Let K be a category III seminear-fields Thus ax = a
and xa = x for all x€ K. Suppose |KI > 2. Let x¢K~{a, 1} .+ Then
x* = xx = (%a)x = x(ax) = xa = x« Thus x = 1or a, a contradiction,
Hence [K| = 2.

Let K be a category IV seminear-i“ield. Thus ax = x and xa = a
for all x€K. Suppose | K[ > 2. Let x¢ K:{a, 1} « Then X° = xx =

x(a.x) = (xa)x =axXx = Xe Thus x=1o0r a, a contradiction, -;,.-#

Fronm The;wrem 312, we can easily find all category III and
category IV seminear-fields. Since I K|=2,1+1=10ra+a=a.
For category III seminear-fields we have 12 cases to consider. They
are:

(1)—‘+a1(2)+a1(3)+a1(4)+a1

al|al a al|la|a al|l a|a alal1

1| al a 11 a |1 11 11| a 1| a| a

5) +[af1(6) +[al1.m +[al1 () +|a]1
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(9) + [a |1 (10) + 1 (1) +|al1 (12)+ [aln
a|1]1 a 1 al|1]|a ‘a 1| a
1)1 |1 1 1 1(a]1 'BERE

(3)s (4)y (10) and (12) cannot be seminear-fields since:

For (3)y 1+ (a+1) =1+a=1but (1+a)+1=1+1=a,

for (4)y, 1+ (a+1) =1+1=abut (1+a)+1=a+1=1,

for (10)y a+ (1+a)=a+a=1but (a+1)+a=1+a-=a,
~for (12), a+ (1+a)=a+1=abut (a+1)+a=2a+a=1.

To show (1), (2), (5)s (6)y (7)s (8), (9) and (11) are seminear-fields,
let x, y, z€ K. ‘ '

For (5), (x+y)+z=x+z=x+(y+z)and(x+y)z=xz=xz+yz,

z=y+z=x+.(y+z) and(x+y)z=yz=

for (6)y (x +y) + z

+y)+z=a=x+(y+z) and (x + y)z = az

xz + yz, for (1), (x

a=2xz+yz for (9), (x+y)+z2=1=x+ (y+ 2) and (x +y)z

1z = 1 = X2 + Yz

For (2), (a+a)+a=a+a=2a+ (a+a),
(a+a)+1=a+1=a+a=a+ (a+ 1),
(a+1)+a=a+a=a+(1+a)
(1+a)+a=a+a=1+a=1+ (a+a)
(M1+1)+a=1+a=1+(1+a),
(1va)*1=a+1=1+a=1+(a+1),
(a+ VN +1=a+1=a+(1+1)
(M+1)+1=1+1=1+(1+1)
(a+a)a=asa=a=a+a=aa+ aa,
(a+a)l=al=a=a+a=al+al,
(a+1)a=aa=a=a+1=aa+ 1a,
(M+a)a=aa=a=1+a=1a+ aa,



For (7),

For (8),

(1
(1
(a
(1

(a
(a
(1
(1
(1
(a
(1
(a
(a
(a
(1
(1
(1
(a
(1

(a
(a
(1

(1 >4

(1
(a
(1

1)&

a)l

1)1

a) + a
a) + 1
1) + a
a) + a
1)+ a
a) + 1
1) + 1

1) + 1

a)a
a)l =

1)a =

1)a

a)1

1)1

a) + a
a) + 1
1) + a
a) +a
1) + a
a) + 1
1);1
1) + 1

1a

al

1

al

1a

1a

B

11
11

1]

+

+

1a + 1a,

11 + al,

al + 11,

1+ 1.

(a + a),
(a + 1),
1=a+ (1
(a + a),
1=1+ (1
(a+ 1),
a=a+ (1
a=1+ (1
= aa + aa,
= al + al,

aa + 1la,

= 1a + aa,
=1a + 1a,

11 + al,

al + 119

i

1 + 1.
(E’vr" a),

(a + 1),

+ a),

+ a),

+ 1),
+ 1),

+1=a+ (1+a)

+

(a + a),

+1=14+(1+ a),

-+

+1=a+(1+1),

+

(a + 1),

(14 1),

31
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(a+a)a=aa=2a=a+a=oeaa+ aa,
(a+a)l=al=a=a+a=al+al
(a+1)a=1a=1=a+1=aa+ 1a
(1+a)Ja=1a=1=1+a=1a+ aa,
(M+1Ma=1a=1=1+1="1a+ 1g
(M+a)l=11=1=1+a=11+ al,
(a+1)1=1=1=a+1=al+ 1,

M+ 1)1=11=1=1+1=114+ 1,

a+ (a+ a)

For (11),(a+a) +a=1+a=2a+ 1

a+ (a+ 1),

[
=Y
+
-
L}
]
+
m
]

(a+a)+1

(a+1)+a=a+a=a+(1+a)
(M+a)+a=a+a=1+1=1+(a+a)
(1+#1)+a=1+2=1+(1+a)

(M+a)+1=a+1=1+a=1+(a+1),
(a+1)+1=a+1=a+ (1+1),

(M+1)+1=141=1+(1+1),

(a+a)a=1a=1=a+a=aa+ as,
(a+a)l=11=1=a+a=al+al
(a+1)a=aa=a=a+1=aa+ 1a,
(1+a)a=2a=a=1+a=1a+ aa,
(M+1)a=1=1=1+1=1a4+ 1a,
M+a)yl=al=a=1+a=11+al,
(a+1)1‘=a1=a=a+1=a1+11,

1+1)1=1M1=1=1+1=1+ 1.
By defining f(a) = 1 and £(1) = a, (1) £(9), (2) = (8) and (7) & (11).
Therefore, up to isomorphism, there are 5 category III seminear-‘ﬁelds.
For categéry IV seminear-fields, we have ax = x and xa = a for

all xe Thusa+a=1a+1la=(1+1)a=aand1+1=al+al-=
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(a+a)l=al=1. Thusa+a=aand 1+ 1=1. Hence they are four

cases to consider. They are

(1) + (a1 (@ +]lal1 3) +]|a | 1 (&) + a1
alala ala|a al|a|l1 alal|1
1]lal1 14111 1 (a1 111 |1

Claim that (1), (2), (3) and (4) are all seminear-fields. Let x, y, z

be in K. For

(x+ y)z = xz

and (x +y)z
For (1), (a
(a
(a
(1
(1
(1
(a
(1
(a
(a
(a
(1
(1
(1
(a
(1
For (4), (a

+

+

+

(a +

(2)y x+y)+z2=x+z=x=x+(y+ 2) and

=Xz + yze For (3), (x+y)+z=y+z=x+(y+ 2z)

¥z = Xz + yz

a)+a=a+

n
o
+*

a) + 1

1) +a

1l
0]
+

a) +a=a+

1) +a=1+

-
)
0]
+

a) +

1) +

-
]
W
+

1) +1

L}
-
+

a)a‘=' aa = a
a)1 =al =1

1)a

aa = a

1)a

n
-
1]
]
)]

a)l =al =1

1)1

M=1
a)+a=a+

a)+1

]
o
+*

L]

I

+

+

a

+ (a + a),
+a=a+ (a+ 1),
+ (1 4+ a),
+a=1+ (a+a),
+ {1+ a),
+a=1+(a+1),
+ (1+ 1),
+(1+1).

a = aa + aa,

1 =281+ al,

a = aa+ 1a,

a = 1a + aa,

o
]

1a + 1a,

-
[}

1 + al,

1 al + 11,

1=114+ 1.

+ (a+a)

a+ (a+ 1),



(a
(1
(1
(1
(a
(1
(a
(a
(a
(1
(1
(1
(a
(1

+

4

1) +a=1
a) +a=1
1) +a=1
a)+1=1
1)+1=1
1) +1=1
a)a = aa =
a)l =al =
1)a = 1a =
a)a = 1a =
1)a = 1a =
a)l =11 =
1)1 =11 =
)1=11=

1
1

By defining f(a) = 1 and £(1)

+ 1

n
)

a+ (1+ a)
=1+ (a+a)

1+ (1 4+ a),

"
-

+ 1

+ (a+ 1),

L}
-

=a+1=a+(1+1),
=1+ (1+1),
a+ a=aa+ aa,

1+ 1

al + al,

aa + 1a,

o
+
o
]

a+ a=19a+ aa,

1a + 1a,

1]
+
»
i

11 + al,

-
+
-
n

1+ 1=al+ 11,
141=11+ M

= a, we have that (1) £ (4).

Therefore, up to isomorphism, there are three category IV

seminear-fields.

From now on we shall study category I and category II semi-

near-fields. First we shall study category I seminear-fields and from

now on the word "seminear-field" will mean a category I seminear-field.

If we wish to study category II seminear-fields, we shall say

"category II seminear—fields".

Remark. Note that if K is a category I seminear-field, then K x K is

never a seminear-field since (a,1)(1,a) = (aya) so K x K~ {(aya)} is

not a group under multiplication.
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Theorem 3.13. Let K be a seminear-field and a€ K be such that a2 = a
and (K~ {a},s) is a group. Then either a + x = a for all x ¢K or
a8 + x =X for allx€K and either x + a = a for all x€Kor x + a = x

for all xeK.

Proof. First we shall show that a + a = a. a+as=aa+ aa
=(a.+ a)a = a. Now consider a + X.
Case 1. There exists an x€K~{a} such that a + x = a. Let u¢Kk.
Thena+u=ax-1u+x:c-1u=(a+x)x-1u=ax-1u=a. Thus a + u = a
for all ue€k,
Case 2. a+ x# a for all x€K-{ajs Thena + 1. £ as Let y =a + 1s
Theny #aanda+y=a+(a+1)=(a+a)+1=a+1=y Let

W 4 yy-1u = (a + y)y'1u = yy-1u = us Thus

u€Ke Then a + u = ay
a+ u=1ufor all ucke.

Therefore either a + x = a for all x€K or a + x = x for all
x €Ke Similarly, we can show that either x + a = a for all x€¢K or

x+a=xforallx€K.#

Theorem 3.13 indicates that there are four types of seminear-
fields.

(1) a+x=x+a=x for all x. In this case, a behaves as
an additive identity (which is usually denoted by 0) we call this type
a seminear-field of zero type or a O-seminear-field. ile shall denote
the zero element 61‘ this type by O.

Note that Example 3.2 and example 3.6 are O-seminear-fields.

(2) a+x=x+a=a for all x. In this case, we call a
seminear-field of infinity type or w-seminear-field and denote the -

zero element of this type by .
Note that Example 3.5(2) is en co-seminear-field.



36

(3) a+x=xandx+ a=a for all x. Then for all x, y

x+y=x+(a+y)=(x+a)+y=a+y=y.
Thus (K,+) is a right zero semigroup, so we call this type a right
zero seminear-field.

Note that Example 3.&(2) is a right zero seminear-field.

(4) a+x=aandx +a=x for all x. Then for all x, y

x+y=(x+a)+y=x+(a+y)=x+as=x
Thus (K,+) is a left zero semigroup, so we call this type a left zero

seminear=field.

Note that Example 3.4(1) is a left zero seminear-field.

Remark. Note that right zero and left zero seminear-fields are also
left distributive and they all come from division seminear-rings by

adjoining a multiplicative zero.

Theorem 3.14e Let K be a O-seminear-field. Then either every nonzero
element of K has an additive inverse (in which case K is a near-field)

Or no nonzero element of K has an additive inverse.

Proof. Suppose that there exists an x €K - {0} such that x

has an additive inverse y. Thus x + Yy=y+x =0+ Let z€ K. Then

-1 -1 -1 -1
Z4+YyX z2=XX Z+4+yX z z
1

yx-1z + 2= yx-1z + 1z (y + x)x-1z =0x z=0.

(x + y)x-1z = Ox 0 and

Thus z has an additive inverse. Hence we have the theorem. 4

Definition 3.15. Let S be a seminear-ring with o, Let y€Ses Then

z€S is said to be a right complement of y iff y 4+ z =ose A left
complement of y is similarly defined. A complement of y is an element

of S which is both a right and a left complement of y.
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Definition 3.16. Let S be a seminear-ring with @, Let Yy €Ss. Then

Yy is said to be right limited iff the only right complement of y is w.
Left limited is similarly defined. y is limited iff it is both right
end left limited. If every noninfinity element of S is right limited
then S is right limited. Left limited and limited seminear-rings are

similarly defined.

Definition 3.17. Let K be an o~seminear-field and let x¢ K. The
left core of x, denoted by LCor(x), = { yeK |y + x = ). The right
core of x, denoted by RCor(x), = {ye Kix+y= oo}. The core of x,

denoted by Cor(x), = LCor(x)NRCor(x).

Theorem 3.18. Let K be an w-seminear-field. Then

(1) oeCor(x) for all xeK.

(2) For all xeK ( y€LCor(x) and z €K imply that z + y is
in LCor(x)) and ( y € RCor(x) and z €K imply that y + z € RCor(x)).

(3) For all x, y €K~{q>'§( y€ LCor(x) iff yx-1eLCor(1) and
xy_1 €RCor(1)) and ( y eRCor(x) iff yx-1 €RCor(1) and xy-1 €LCor(1)).
( Therefore ye Cor(x) iff yx-1 € Cor(1) and xy"1 € Cor(1).)

(4) For all x, y€K ( x ¢LCor(y) iff y e RCor(x) )

( Therefore for all x, ye K x €Cor(y) iff y e Cor(x). )

(5) For all x¢ K~{oo} LCor(x) = LCor(1).x, RCor(x) = RCor(1).x
and Cor(x) = Cor(1).x.

(6) For alJ. x€X ( x €LCor(y) implies xz €LCor(yz) for all z
in K ) and ( x€RCor(y) implies xz ¢ RCor(yz) for all z in K Ys
( Hence for all x¢K ( x ¢ Cor(y) implies xz € Cor(yz) for all z€K.)
The converse is true for z €K -{ool

(7) For all x, y, z€K ( x¢ LCor(y + z) iff x + ye€LCor(z))

and ( x¢€ RCor(y + z) iff z + x ¢ RCor(y)).
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Proof. (1) Since x +w = w+ x =@ for all x €K, o €Cor(x)

for all :xe€ K.

(2) Let xeK. Let yeLCor(x) end z €K. Then
y+x=weandso (z+y)+x=2z+ (y+x) =2z +® =m. Hence
z + y € LCor(x)s Thus for all x¢K y€LCor(x) and z€K imply that
z + y € LCor(x)s Similarly, we can prove that for all x€ K y € RCor(x)
and z €K imply that y + z € RCor(x)e

(3) Let x, y€eK-{o}s Assume that ye LCor(x). Thus

¥y + Xx =wes Then yx-1+ 1= yx-1+ xx-1= (v + x)x-1= oox-1= ©: and

14+ XY-1= yy-1+ xy-1= (y + x)y-1= ooy-1= ®e¢ Thus yx-1e LCor(1) and
xy-1€ RCor(1).
Conversely, assume that yx-1€ Leor(1) and xy-1eRCor(1). Then

Y 1 a0, THE v+x=(1+ xy'1)y =Wy =m, S0

1+ xy-1= yx-
¥ € LCor(x).
Therefore y € LCor(x) iff yx-1e LCor(1) and xy-1e RCor(1).
By similarly proof, we have that y € RCor(x) iff yx-1e RCor(1)
and xy-1eLCor'(1).
| ‘ (4) Let x, y¢Ke Thus xeLCor(y) ¢ x+ y = ¢=>
¥ € RCor(x).
(5) Let xe K~{w}. To show LCor(x) < LCor(1).x, let
y¢ LCor(x). By (3), yx-1€LCor(1). Thus y = (yx-1)x € LCor(1) «x.
Conversely, let z€LCor(1). Thus z + 1 =c. Then zx + x = (z + 1)x
=X =M, SO zxei.Cor(x). Hence LCor(x) = LCor(1).x.
By similarly proof, RCor(x) = RCor(1).x and Cor(x) = Cor(1).x.
(6) Let xeKe Let yeK be such that x € LCor(y) and
let z€K. Thus x + y =, 50 x2 + yz = (x + y)z = 0z = @, Thus

xz € LCor(yz). By similarly proof, x €¢RCor(y) and z€ K imply
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xz € RCor(yz). |

Conversely, assume that x, y €K, z¢ K*{w} and xz € LCor(yz).
Thus xz + yz =®, S0 x + y = (x + y)zz'-1 = (xz + yz)z-1=tnz-1= ©e
Thus x € LCor(y). By similarly proof, for all x, y€¢K, z¢ K~{eo}
xz € RCor(yz) implies x € RCor(y).

(7) Let x, y, z€Ke xeLCor(y + z) ¢<=> x + (y + z) =

= (x+y)+z=m (=) x+ yeLCor(z).

x€RCor(y + z) & (y+z)+x=0 =) y+ (2 + x) =0 <=

z + x€ RCor(y).#

Theorem 3+19. Let K be an c-seminear-field and let x, y€ K~{o}. Then
(1) The cardinality of LCor(x) equals the cardinality of

LCor(y) and each one is a right multiplicative translate of the other.
(2) The cardinality of RCor(x) equals the cardinality of

RCor(y) and each one is a right miltiplicative translate of the other.
(3) The cardinality of Cor(x) equals the cardinality of Cor(y)

and éach one is a right multiplicative translate of the other.

Proofe (1) For zeLCor(x), by Theorem 3.18(5), £here is a
ue LCor(1) such that z = ux. Define fi LCor(x) = LCor(y) by £(z) = uy.

By Theorem 3.18(5), uy€LCor(y)s To show that f is well-defined, let

z z, € LCor(x). Let Uy u,€ LCor(1) be such that z, = Wx and

1
Z

o = UXe Thus ux = ux. Since x #om, so u; = w,e Thus uy = u,y.

To show f is one-to-one, let Zg9 226 LCor(x) be such that f(z1> = f(zz)_.

Let Uy, u2€ LCor(1) be such that Z, = ux and Z, = UyXe Thus u,ly = UYe
Since y #w, so u; = uye Thus z;, = z,. To show that f is onto, let
weLCor(y)e Let veLCor(1) be such that w = vy. Then vx ¢ LCor(x).
Thus f(vx) = vy = w. Therefore f is one-to-one and onto. To show

LCor(x) is a right multiplicative translate of LCor(y), let z € LCor(x).
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By Theorem 3.18(3), zx~ '€ LCor(1)e By Theorem 3.18(5), zx'1ye LCor(y).
Thus z = (zx-1y)y-1x€LCor(y).y-1x, so LCor(x) ¢ LCor(y).y.1x. Now let
we LCor(y). By Theorem 3.18(3), wy €LCor(1)e By Theorem 3.18(5),
wy-1xe LCor(x)e Thus LCor(y).y-1x € LCor(x)e Therefore

LCor(x) = LCor(y).y-1x.

By similarly proof, we have (2) and (3).#

Corollarye. If one noninfinity element of an co-seminear-field is left
limited ( right limited, limited ), then all noninfinity elements are

left limited ( right limited, limited ).

Proofs. Follows from an argument similar to the one given in

Theorem 30 190#

?

Definition 3.20. Let K be a seminear-field and a the zero of (Kye)e
Define A, ={x€K | x + y = a for all yek},
AR‘={xeK | y+ x = a for all yeK} and A=ALHAR.

Theorem 3.21. Let K be a seminear-field. Then

(1) If K is a O-seminear-field, then A = A=A = g.

(2) If K is an co-seminear-field, then A ={w}or A = K, A ={o}
orAL=KandA.R={cn}orAR=.K. '

(3) If K is a right zero seminear-field, then A = A =@ end

AR ={a}l.

(4) 1If K is a left zero seminear-field, then A = A R= @ and
AL = {a} .

Proof.

(1) Let K be a O-seminear-fielde Thus x + O = 0 4+ x = x for

all x¢ K. Suppose that A # f+ Thus there exists an x €K such that
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X+ y=0for all yeK. Hence x =x+ 0 =0, Thus O+ y = O for all

Y€Ky so y=0+ y =0 for all ye K. Hence K ={O} s a contradiction.

Therefore A = #. Similarly, we can show that A = #o Thus A = g,
(2) Let K be an w-seminear-field. Thus x + @ =0+ X =© for

all x€ K. Thus A # §, A.L;!¢andAR;4¢. Assume that A, # {w}.

Thus there exists an x € K~{w}such that x + y =@ for all y€K, Thus

1 L w7l (x + y)x-1=mx-1=m for all y€K. Let z¢€K~{w),

1

14 yx = xx

Let wéKe Then 1+ wz =1 + (wz-1x)x-1=oo. Thus z + w = (1 + wz-1)z
=0z =o. Thus z€ A . Hence A = K. Therefore A ={o} or A =K
By similarly proof, A, = {oo} or Ap = K. Hence A ={w}or A = K.

(3) Let K be a right zero seminear-field. Thus x + y =y for
all x, y€ Ks Suppose AL # #. Thus there exists an X € K such that
X+y=aforall yé€K. Theny=x+ y = a for all yEK, Thus X ={al,
a contradiction. Hence A = g.

Since x + a = a for all xé¢K, aeAR. Let xEAR. Thus
Y+ x=a for all ye K. Thenx =y + x=2a, so x = a. HenceAR={a}.
Therefore A = § , |

(4) Let K be a left zero seminear-field. Thus x + ¥y = x for
all x, y €K. Suppose Ay # #. Thus there exists an x ¢ K such that
Y+ x=aforall yeK. Thus y =y + x = a for all y€K. Thus K ={a},
& contradiction. Hence Ay = f,

Since a + x = a for all x €K, A # @. Let xeAL. Thus
X+ y=a for all'yGK. Then x = x+ y = a, so x = a. Hence AL ={a}.

Therefore A = @, #

Theorem 3.22. Let K be a O-seminear-field. If there exists an ag in
K~{0} such that for all x, y€¢k ( x + 8y =¥ + a, implies x = y ),

thenforallzeKwegetthat(x+z=y+zimpliesx=y).
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Proofs Let z€Ke Let x, y€K be such that x + z = y + z.
If z = 0, then x = yo Assume z # O. Then
-1 - - -
Xz a0+ao-(x+z)z ao-(y-t-z)z 8y =¥z ay+ age
By assumption, xz-1a0 = yz-1a0. Since 2-13510 #0, x =y "

In a O-seminear-field of order 2 such that 1 + 1 = 1, we have

that 1+ 0=1, 0+ 1=1and 1+ 1 =1 Thus 1 is an additive zero

and 1 # O This cannot occur in a seminear-field of order > 2.

Theorem 3.23. Let K be a seminear-field of order »2. Let a be the

zero of Ke If K has an additive zerc e, then e = a.

Proof. Suppose e # as Since x + e =e + x = e for all x¢K,
xe W 1=1+xe =1 for all x€K. Let C ={xe '| x€ K} Thus C = K.
Then 1 is also an additive zero. Hence e = e+ 1 =1. Let xek~{0, 1}.

Thus x + 1 =1, so 1+ - - AP 1y x !

1¢ Thus x = 1,

a contradiction. Hence e = ae 4

In an w-seminear-field of order 2 such that 1 + 1 = 1, we have
that 1 is an additive identity and 1 #®. This cannot occur in a

seminear-field of order ) 2.

Theorem 3.24. Let K be a seminear-field of order > 2. Let a be the

zero of K. If K has an additive identity e, then e = a.

Proof. Suppose e # a« Since x + e = e + x = x for all x € K,

1 1

xe '+ 1 =14+ xe '= xe 'for all xeK. Let C ={xe"'| xekx}. Thus

C =K. Then 1 is also an additive identity. Hence e =e + 1 = 1.

Let xe¢ K~{0, 1}. Thus x+ 1=2x, so 1+ x '= 1. Since 1+ x'= x~,

x'= 1. Thus x = 1y a contradiction. Hence e = 8oy
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Theorem 3.25. If K is a seminear-field such that + and « are equal,

then IK | = 2.

Proof. Suppose |K[>2. Let x€K~{0, 1j+ Thus ey
?
x+x=(1+1)x=(11)x=1x=% Thus x =1 or O,a contradiction,

Hence |K || = 2. y

If a seminear-ring S of order > 1 contains an additive infinity
( x +o0= 0+ x = for all xe S ), then @ is not left and right addi-

tively cancellative. However, wé can give the following definition.

Definition 3.26. Let S be a seminear-ring with additive infinity .

Then S is said to be infinity left additively cancellative (d)-L.A.C.)
iff for all Xy yy. 2€S (x+y=2x+ z and x £oo imply that y = z).

Infinity right additive cancellativity(w=R.A.C.) and infinity

additive cancellativity(w-A;C..) dare similarly defined,

If a seminear-ring S of order) 1 contains a multiplicative
zero O, then O is not left and right multiplicatively cancellative.

However, we can give the following definition.

Definition 3.27. Let S be a seminear-ring with multiplicative zero O.

Then S is said to be zero left multiplicatively cancellative (O-L.M.C.)
iff for all x, y, 2€S ( xy = xz and x # 0 imply y = z ). Zero right

multiplicative cancellativity(06=R.M.C.) "and zéTo multiplicative

cancellativity(O-M.C.) are similarly defined,

Definition 3.28. Let S be a seminear-ring. Define
BL ={xES l x is L-AoCo}, BR ={XES l X is R.A.C.}’ B = BLn BR’
M o={x€S | x is L.M.C.}, M ={x¢S | x is R.M.C.} and M = M M.



Theorem 3.29. Let S be a seminear-ringe. Then
(1) B = g or B, is an additive subsemigroup of S.
(2) By = g or By is an additive subsemigroup of S.
( Therefore B = @ or B is an additive subsemigroup of S.)
(3) M = g or M is a multiplicative subsemigroup of S.
(4) M = ¢ or Mp is a multiplicative subsemigroup of S.

( Therefore M = @ or M is a multiplicative subsemigroup of S.)

Proofe

(1) Assume that B, # @ Let x, ye B, and z4y z,€ S be such

that (x + y) +2,=(x%y)+ Zye Then X + (v + z1) x+ (y+ zz).
Thus y + 24 =¥ + 2, because x€B;. Since y¢B, z, = z,. Thus
X+ Y€ BL' Hence BL is an additive subsemigroup of S. Therefore
B, #§ or B, is an additive subsemigroup of S.

(2) By similarly proof as (1).

(5) Assume that M, # . Let x, yel and z €S be such

1 %2
that (xy)z1 = (xy)zz. Then x(yz1) = x(yzz). Thus yz, = yz, because
xEML. Since y ¢ ML, 2y = Zye Thus xyEML. Hence ML is a multiplica-
tive subsemigroup of S. Therefore ML = ¢ or ML is a multiplicative
subsemigroup of S.

(4) By similarly proof as (3).#

Theorem 3.30. Let K be a O-seminear-field. Then BL’ BR and B are

right idels of (Ky.).

Proof. Since 0€B = BLﬂ Bps B # 0 B # @ and By # @ To

show that B, is a right ideal of (Kye)y let x€K and z€B . Let

Zgs zzeKbesuchthatzx-t»z =2x+ 2., If x =0, thenz1=z.

1 2 o

Assume that x £ 0. Thus z + z,‘x-1 = (zx + z1)x"1= (zx + zz)x"1=
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z + zzx—1. Since z€ B, z1x-1= zzx-1. Thus z, = z,, S0 zx€B + Thus
B K €SB . Therefore B is a right ideal of (Kyo)e
Similarly, we can show that By is a right ideal of (Kye)e

Since B = B N By, B is a right ideal of (x,.).#

Theorem 3.31. Let K be an c-seminear-field. Then
(1) 1f xeBL and yéK-{oo}, then xyEBL.
(2) If xeB; and y €K~{oo), then xy € Bpe

( Therefore if x € B and y € K~{o}, then xy € B.)

Proof.

(1) Let x€B; and y¢ K~{o}. Let 2,5 2,€K be such that
| , =1 -1 -1
XY+ 2, =%y + 20 Thenx+zy = (xy + z1)y = (xy + z2,)y =
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X + zzy'1. Since xEBL, Z2 = zzy-;l Thus 24 =25 SO xyeBL.

(2) By similarly proof as (1). 4

Theorem 3.32. A seminear-field can be left additively cancellative only
if it is a O=seminear-field or a right zero seminear-field. Furthermore,

a right zero seminear-field must be left additively cancellative.

Proof. Let K be an w-seminear-field. Then o is not left
additively cancellative. Hence K cannot be left additively cancella-
tive.

Let K be a left zero seminear-field and a the zero of K. Then
1 is not left additively cancellative since 1+ 1 =1 =1 + & but
1# a

Let K be a right zero seminear-fields Let xe¢ K and Yy 2€K
be such that x + y = x + z. Thus y =X+ y=Xx+ 2z = 2, so x is left

additively cancellative. Hence K is left additively cancellative. #
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Theorem 3.33. A seminear-field can be right additively cancellative only

if it is a O-seminear-field or a left zero seminear-field. Furthermore,

a left zero seminear-field must be right additively cancellative.
Proof. The proof is similar to Theorem 3.32. 4#

Corollary. A seminear-field can be additively cancellative only if

it is a O-seminear-field.
Proof. Follows directly from Theorem 3.32 and Theorem 3.33. #

Theorem 3.34. Let K be an o-seminear-field. Then
(1) If K is o=L.A:C., then K is right limited.
(2) If K is ®@-ReA.C.y then K is left limited.

( Therefore if K is a=A.C., then K is limited.)

Proof.

(1) Let xeK~{oyand y be a right complement of x. Thus
X+ y=m Then x+ y =x +®, s0o y = since K is @-L.A.C. Hence
X is right limited. Thus K is right limited.

(2) The proof is similar to (1). &

Theorem 3.35. Let K be a seminear-fields Then

(1) If one nonzero element of K is left additively cancella-
tive, then all nonzero elements are left additively cancellative.

(2) If one nonzero element of K is right additively cancella-
tive, then all nonzero elements are right additively cancellative,.
( Therefore if one nonzero of K is additively cancellative, then all

nonzero elements are additively cancellative.)

Proof. Let a be the zero of K.
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(1) Let xe K~{a} be left additively cancellative. Let y be
an element in K~ {a} and z, z, €K be such that y + z, = y + Z,e
Then 1 + z1y-1 = (y+ z1)y-1 = (y+ @)ym1 =1+ zzy-1, 850
X + z1y-1x =X+ zzy-1x. Since x is left additively cancellative,
z1y-1x = zzy-1 Xe Thus 2 = 2y SO Y is left additively cancellative.
Therefore all nonzero elements are left additively cancellative.

(2) The proof is simlar to (1)e 4

Remark. (1) Let K be a O-seminear-field which is not a near-field.
By theorem 3.15,x + y # 0 if x, ye K~{0}. Thus (K~{0Yy+,+) is a

division seminear-ring.

(2) Let K be a limted weseminearfielde Then x + y # @ if

X, y €K~{co}e So again (Kx{ooVy+,.) is a division seminear-ring.

Theorem 3.36. If S is a finite seminear-ring with multiplicative zero

0 which is 0-M.C., then S must be a seminear-field.

Proofe Since S is 0-M.C., (S~{0},.) is a finite cancellative
semigroups Thus (S~{0Y,.) is a group by Theorem 1.18. Since 0 is a
multiplicative zero of S, (Sye) is a grouwp with zero. Hence S is

a -seminear-field, #

/{
Theorem 3.37. Let K be a right zero seminear-field and K the prime

!
seminear-field of K, Then K ¥ {0,1} with the structure

o 011 + |0 |1
oO|0|oO 0O (0 |1
110 |1 1 0|1

Proof. Since K is a right zero seminear-field, x + y = y for



all x, y¢Ke Thus 04+ 0=0, 0+1=1, 1+1=1and 1+ 0 = 0.
where 0 is the zero of K and 1 is the identity of (K~{0},.). Thus

we have the theoreme 4

/
Theorem 3,38 Let K be a left zero seminear-field and K the prime

!
seminear-field of K« Then K & {0, 1} with the structure

« | 01 #1011
0|0 |oO 0]0]0
2 0e T1% |1

Proof. Since K is a left zero seminear-field, x + Yy = x for
all x, y€Ke Thus 0+0=0,0+1=0, 1+0=1and 1+ 1=1
where O is the zero of K and 1 is the identity of (X~{0},.). Thus

we have the theorem. 4

/
Theorem 3.39. Let K be a finite O-seminear-field and K the prime

: ] o=
seminear-field of K. Then K ¥ %, , p a prine or K = {0, 1} with the

structure
s 38R + {0 |1
00 |oO | PERSITIY 1
1 10°]% O

Proof. By Theorem 3.14, K is a near-field or no nonzero of K

has an additive inverse.

Case. No nonzero of K has an additive inverses Thus (K~{0},+) is a

finite semigroup, so there exists an x¢€ K~{O} such that x + x = x%.

/
Thus 1+ 1 = 1, Thus K 2 {0, 1} with the structure

« |0 |1 %+ 10|11

- —

oo |oO 0|0} 1
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Case K is a near-fields Define f: Z —K by
1+ eee + 1 (n times) i£ny 0,
f(n) = <0 if n = 0,
(=1) + oos + (=1) (In! times) if n ¢ 0.
Claim that f£(m) = £(m)f(n) and £(m + n) = £(m) + £(n) for all m, n € 2.

Casem 0, nd 0. Thusm >0 andm+ n » O Then

0 U om0 Mol

n times n times
= 1(1 + oee +1) + oee + 1(1 ¥ oee + 1) (m 't:I.mes)

= (1 i’fmei 1) + v+ (1 3 timei 1) (m times)
=1+ eeso +1 (mn times)
= f(mn)
fm +1n) =1+ eee +1  (m +n times)
m times n times
=(1+eee +1) +(1 4 000 +1)
= f(m) + £(n)
Casem > 0, n < 0o Thus mn € 0 and |n| = =n.
(1) = [n]e 2(n) + 2(0) = (15 con g 1) + ((=1) L5250y
=0 = £(0) = f(m + (=|n|)) = £(m + n)
(2) m {|n]. £(m +1n) = £(m - |2l) = (=1) + eee + (=1) ( | o= |n|| times)
n times In| times

f(m) + £(n) = (1 + eee + 1) + ((=1) + .'.. + (=1))

= (=1) + eee + (<1) (|n|-n times)



and'm- In|] = - (m = |n|) = |n|- m.

m times n times
(3) m > [nfe £(m) + £(n) = (1 + eee + 1) + ((=1) + e0e + (=1))

m - |n| times
=1+ o0 + 1
= f(m - |n|) = £(mn + n)
Thus f(m + n) = f(n) + f(n) and
m times n| times
F(@)f) = (14 eoe + 1)((=1) + eoe + (=1))
In| times |n| times
= 10(=1) + eoe # (=1)) + ooe # 1((=1) + oee (=1)) (m times)
|n| times In] times
= ((=1) # eee + (=1)) + eee + ((=1) + 0o + (=1)) (m times)
= (=1) + eee + (1) (m|n| times)
Im| times
fm) = (=1) + cee + (=1)

and |m| = -on = m(-n) = n|n|. Thus f(m) = f(m)f(n).

Casem< 0, n < 0. Thus |n|ln| = (-n)(-n) = m and |m + n| = =(m + n)

= (-m) + (—n) = lml + |n|. Then

f(m + n) = (=1) + ees + (1) (Im + n| times) and
|m| times n| times
£(m) + £(n) = ((=1) % eee + (=1)) + ((=1) + eee + (=1))
= (1) + eee + (=1) (Jm| + |n]| times).
|m| times In| times
+ oee + (=1))((=1) % eee + (=1))
[n] times In| times
+ ooo # (=1)) + cee + (“1)((=1) + ou0 + (=1))
(Im| times)

f(m)f(n) = ((=1)
= (=1)((=1)
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In| ¢

n| times |n| times
= (=((=1) + eee # (=1))) + eoe + (=((=1) + ceu + (=1)))

In| times In| times (Jm| times)
= (1 ¥ eee + 1) Feoeo + (1 + eve + 1) (lm| ‘timeS)
=1+ eeo +1 (|m|[n| times)
=1+ eee + 1 (mn timeS)

= f(mn).

Casem ¢ 0y n> O0s Thus |m| = = mn = [m|n. Then

|m| times n times

f(m)f(n) = ((=1) + ees + (=1))(1 + cee + 1)

n times n times
= (1)1 4 eee #1) # eoe + (=1)(1 + eee + 1) (Iml times)

~ n times n times
= (—(1 + see + 1)) ¥ eoe + (-(1 4+ oece + 1)) ('m' ti!RES)

= (1) % <snd (=00) ¥ sas £0) 5 ooz (=1)) (lm| tines)
= (-1) + eeo + (=1) (ImIn times)
= (=1) # eoe + (=1) (lmnl| times)
= £(mn).
The proof that f(m + n) = f(m) + £(n) is similar to the case that

m)O, n(O.

Casem=n=0. f(m) =£(0) =0 = 0.0 = £f(m)f(n) and

f(m+ n) = £(0) =0 =0+ 0 = £(m) + £(n).

Case m=0, n #£0. f(mn) = £(0) = 0 = 0.£(n) = £(m)f(n) and

f(m + n) = £(n) = 0 + £(n) = £(n) + £(n).
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Case m £ 0, n = 0. f(m) = £(0) = 0 = £f(m)«0 = £f(m)f(n) and

f(m + n) = £f(m) = £(m) + 0 = £(m) + £(n).

Therefore we have the claim, so f is a homomorphisme. Since K
m times n times

is finite, there exist m # n €2’ such that (1 + eee 4 1) = (1 + ee0 + 1)e
Thus f is not one-to-one. Hence Ker f # {O}. Since Ker f is an ideal
of Z which is a P.I.D., Ker f = (n) for some neZ'. Since £(1) = 1 #
Oy 1 £ Ker fo Thus Ker £ # 2, so n # 1. Suppose n is not a prime.
Then there exist 1 { ry s {( ny ry s €Z" such that n = rs. Since
ry s £ Ker £, £f(r)f(s) # 0. Now 0 # £(r)f(s) = £f(rs) = £(n) = 0,
a contradiction. Hence n must be a prime. Therefore

K QImfé’z/Kerfzz/<n>=Zn, n a primee.
Claim that Zn contains no proper subseminear-fielde Let F C Zn be a
subseminear-field of Zn. Thus 1 € Fy 50 14 19 14 1% 1y eee
14 eee + 1 (n tiems) € F. Thus 2 S F, soF=2. Thus we have the
claime Therefore Im f is a subseminear-field of K which contains no
proper subseminear-field. Thus K,= Inm f = Zn, n a prime.

i

/
Theorem 3.40. Let K be a finite w-seminear-field and K the prime

/
seminear-field of K. Then K g{w, 11] with the structure

(1) «|lo|1 +[/@|1 or(2 «|w|[1 +[e]1

|| m| | w| | || o

1]l |1 1|0 ]| 1 1/0(1 1|0 |C@

Proof. For n€Z define n1 =1+ eue + 1 (n times) and define
0.1 =w. Note that (m)1 = (m1)(n1) for all my ne 2. Since K is

+
finite, there exist m, n EZO such that m { n and m1 = n1. Let
/
m = min { mGZB | there is an n € Z*such that n 7 mand ml = n1}

and n’=min{nez*|n) m and m1 = n1}.

.



53

Case b« 1. Claim that m1 #o for all meZ*. Suppose that there
exists an me Z' such that m1 =@, then m1 = 0.1, Thus m’= 0, a contra-
diction. Hence m1 £ for all me Z*. Let C ={m | meZ} . Then
(C,+) is a finite semigroupe Thus there exists an me Z*¥ such that
m1 + m1 = m1.. Since m1 # w and (K~foo},.) is a group, 1 + 1 = 1« Thus
n’= 2. Hence we have that K,is (1) above.
Case m # 1. Suppose m'= 0. Then i # 1 since 1a1 = 1 £00. If m'= 0
end n'= 2, then 14 1 =m. So K is (2) above. Suppose m = O and
n, > 2. It follows from the associativity of addition that for all
k€Z’+ (ky n’ implies k1 =) and it follows from the property of nl
that ( k < n’ implies k1 #®). Since ny 2, o= 21+ 1 > nh Since
n-1>1 n-1e¢Z. Thus (n' = 1)1 £, so

0 # (( = 1))@ = 1) = (0= )= 1)1 = @2 = 20+ 1)1
=0, a contradictions. Therefore this case cannot occur. Suppose
n' > 1. Thus again m1 # oo for all mei't by the same argument as the
first case. Let C ={m1| me% }. Then (C,+) is a finite semigroup.
As in the first case, 1 + 1 = 1. Thus m'= 1y a contradictione

Therefore 1+ 1 =1o0r 1+ 1 = we have the theorem. 4

Now we shall study category II seminear-fields.

Theorem 3.41. Let K be a category II seminear-field with res pect

to a€K. Then (K~{al},+,.) is a division seminear-ring,

Proof. Let x, yEK\{a}. Then xy ¢ K~ {a’]. We must show that
X+ y€K ‘{a}. Suppose note Then x + y = a« Let 1 be the identity
of (K~{a}ye)e Then 1 = 8.1 = (x+¥y) 1 =x1+ye1=x+y=a, a

contradictions Thus x + y € K~{a}. Hence (K~{al,+,.) is &



division seminear-ringe. 4

Remark. This theorem shows that every category II seminear-field

comes from a division seminear-ring by adding an element.

Theorem 3.42. Let K be a category II seminear-field With respect

to ae K and denote the identity of (K~{a},.) by 1.
Then

(1) If a+ a = a, then (K,+) is a band.

(2) If a+ a# a, then ( for all x, yeK~{a}x+x=y+y

iff x=y )anda+a=1+1.

aorilt+a=1+ 1.

(3) 1+ a

() a+1 1o

n
-
+

aora+i1
(5) x+a=aorx+a=1+1:for all x £ a.

(6) a+x=aora+x=1+1forall x £ a.

Proof.

(1) Ifa+a=g thenx+x=ax+ax'=(a+a)=ax=x
for all x€ Ke Thus (K,+) is a band.

(2) Ifa+afa thenx+ x =ax + ax = (a + a)x for all x.
Thus if x + x =y + y, then (a + a)x = (a + a)y. Thus x = y since
a+afa Ifx=1 then1+ 1=a2a+ a.

1+ 1e

(3) If1+afa then1+a=(1+2a) =11+ acl

a.l + 1.1 14+ 1.

(4) Ifa+1#a, thena + 1 = (a + 1)1

(5) Let x€K be such that x # a. Ifx +a f a, then
x+a=(x+a)1=x.1+a.1=x+1.
(6) Let x€K be such that x £ a« If a + x # a, then

a+x=(a+x)1=a.1+x.1=1+x.#
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Corollarye If D is a division seminear-ring, then for all x, y €D

X+x=y+yiff x=y.

Proof. Since D can beembedded in a category II seminear-field
as in Example 3¢5(3), for all x, yeDx + X =y + y iff x = y by

Theorem 3.42(1) and (2). "

v /
Theorem 3.43., Let K be a finite category IT seminear-field and K the

prime seminear-field of Ke Then K {a, 1} with a.1 = 1.a = 1, a” a,

1¢1 = 1 and

1) +|al1 or (2) s+ |al1 or (3) 4+ |a]n1
ala|a a |-a\(\1 a|la|a
1] a1 1(a |1 11111

(4)4'&.1 or (5) +|a |1 or (6) +|al1

Proof. Let n1=1+ «ee + 1 (n times) for all neZ . Since
X is finite, there exist n € 2" such that n1 + n1 = nle Let a€K be
such that a® = a and (K~ {a},.) is a group.
- Case n1 = a. Thus a + a = a. By Theorem 3.42(1), (3) and (4),
1T+1=1 1+a=aor1+a=1a+1=aora+1=1. Thus we
have four cases to consider. They are (1), (2), (3) and (4) above.
It is easy to check that they are all seminear-fields. Thus K = {- (1)
or K ¥ (2) or K (3) or K2 (4).
Case n1 £ a. Thus (n1) exists and so 1 + 1 = 1. By Theorem 3.42,
a+t+a=aora4a=1a+1=aora+1=11+4a=aori1+a=1.

Thus we have eight cases to consider. They are (1) - (6) above and
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(7) + a 1 (8) + | al| 1
al| 1 1 al| 1] a
1 al| 1 1 1 1

It is easy to check that (5) and (6) are seminaex&fields but (7) and
(8) are note Thus K2 (1) or K £ (2) or K (3) or K (4) or K (5)

or K g (6)0#

Definition 3.44. Let D be a division seminear-ring and x€ D. Then x

is said to be right standard iff xy + y = y for all yeD and x is said

to be left standard iff y + xy = y for all y€D.

Theorem 3.45. Let K be a catégory IT seminear-field with res pect

to ae¢ K,

(1) 1r x €K ~{a} has the property that x + a = a then x is.
right standard in the division seminear-ring (K~ {a},+.).

(2) 1If x€K ~{a} has the property that a + x = a then x is

left standard in the division seminear-ring (K ~{a},+,.).

Proof.

(1) Let yeK. Thus xy+ y =xy + ay = (x + a)y =ay = y, so
x is right standard.

(2) The proof is similar to (1). "




57

Footnotee.
%
If |K| ) 2, then there exists a unique a € K such that a2 = a

and (K~{a},+) is a group. Therefore the concept of category is well-
defined in this case. If IK | = 2, then an element a €K such that

a2 = a and (K\{a},.) is a group is not unique. In this case, the
category depends on the element. Hence we must say that K is a cate-
gory I seminear-field - with respect to a certain element a. If it is
a category I seminear-field with respsct to a, then it is a category II
seminear-field with respect to the other element and converselye.
However, if it is a category III seminear-field with respect to one
element, it will be a category III seminear-field with respect to the
other element also. Also, if it is a category IV seminear-field with
respect to one element, it will be a category IV seminear-field with

respect to the other element.
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