CHAPTER II
DIVISION SEMINEAR-RINGS

Definition 2.1 A division seminear-ring is a seminear-ring (Dy+ye)
such that (Dy.) is a group. If D is also left distributive then D is

called a division semirgg‘.

Definition 2.2. Let (S,+y.) be a seminear-ring and TC€S. T is said
to be a subseminear-ring of S iff (T,+,.) is a seminear-ring. A
subseminear-ring of a seminear-ring is said to be a division

subseminear-ring iff it is a division seminear-ring.

Remark. A near-field is never a division seminear-ring since the

additive identity has no multiplicative inverse.

Examgle 2e 20
(1) @ and R* with the usual addition and multiplication are

division seminear-rings. Also, if we define x + y = min{x, y}or
X +y = max { X, y‘ and use the usual multiplication we get division
seminear-rings.

(2) Let D ={ 1}s Then D is @ division seminear-ring.

(3) Let (Dy.) be a group. Define + on D by x + y = y for all
Xy ¥ in Do Then (Dy+,.) is a division seminear-ring which is in fact
a division semiringe.

(4) Let (D,.) be a group. ' Define # on D by x # ¥ = x'for all
Xy ¥ in Do Then (Dy+,.) is a division seminear-ring which is in fact
a division semiringe

(5) 1£D 4 8nd D, ere division seminear-rings then D1 x D
2
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with the usual product structure is a division seminear-ring.

Note that Examples (1), (2), (3).and (4) are division semirings.
We shall now prove a theorem which gives us a way to construct a whole

family of examples of division seminear-rings which are not division

semirings.

Theorem 2.4. Let (Dy.) be a group such that D = D, * D, for some

subgroups D1, D2 of De Then there exists a unique binary operation +

on D such that
(1) (Dy+s+) is a division seminear-ring,

(3) y+¥=yforeally, y in D, <: //»'\j

@) 2,2 - Y e
oy

(5) D=D, + D, iy

(Therefore, from (2) and (3) we see that D, and D, are division
subseminear-rings of D.). Furthermore,

(6) (D’*’) s (D1s+) p S (Dzﬁ‘)"‘

(7) (p,+) is a rectangular band and

(8) The left distributive law holds iff D = D, x D, as mul-
tiplicative groups (i.e. Dy D, ¢ D).

Proof. To define + on D, let d, d €D. By Lemma 1.13(2), there

/ / / s

exist unique d1, .d1 in D1, dz, d.2 in Dzsuch that d = d2d1 and d = d1d2.

By Lemma 1.13(3), there exist unique x in D,s y in D such that ~
- = ! -
xd2 = yd1. Define d + d = xd2 = yd1.

For d1 in D1 and d2 in Dz, d1 = 1d1 and d2 = 1d2. By lemma

1¢13(3), there exist unique X in D,y y in D,such that §d2 = §d1.

Thus d1 + d2 = xcl2 = yd1.
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Claim that for all d in D there exist unique d1 in D1’ d2 in D2

such that d = d1 + d2. To prove existence, let d €Ds By lemma 1.13(2),

there exist unique Cqs d1 in D1, Cos d2 in D2 such that d = 02d1 = c1d2.

Thus d = d, + d_. Hence (5) holds. To prove uniqueness, suppose that

x,€D s y,€D, are such that d = x, + y, Then there exist unique X €Dy

y €D2 such that d = X4+t ¥y = xy1 = yXge Thus ch1 = yxy= xy1=‘f:1d2,
so by Lemma 1.13(2), x, = d; and y, = d,.

/

&
For d1, d1€ D1 and dz, d2€ DZ’ we have that
s ’ - = - -
(4, +d,) + (4] + ) = §d, + xd?f for unique X €D, § € D,
yd,l = ::d2 for unique X € D1, Yy € D2.
/
d1 + d2.

'
To show (Dy+,.) is & division seminear-ring, let d, d, d € D.

[0 '
Then there exist unique x, x, x € D1, Ve Ys ¥ € D2 such that d = x + y,

7 ¢ ¥ " ¥ "
d=x+y-and d=x+ y. Then

d+ (d+ d”‘) =(x+y) +[(xl+ v )+ (x + y”)]
=(x+y)+ (xl+y”)=x+)’” and
:(d ¥ dl) + dll =[x + y) + _(xl+ yl )] + (x'+ y”)

]
(x+yl)+(x”+y”)=x+y.

/ u / /
Thus d+ (d+d)=(d+d )+ d, so (D,+) is a semigroup.

Let x, ¥ 5 z €D. Then there exist unique X9 :?1, Yy s ilé I)1 ’ % i'z,

) 3-r2€D2 such that x = x1x2= :_‘c?;c:l and y = y1y2 = 5;2)-(1. Since XZ
and yz €D, there exist unique S 92€ D1 ’ b1 ’ b2€ D2 such that
Xz = a + hl and yz = 8, + tb‘ Then there exist unique 33, 26 D1&
b b, € L, such that g + b = asb) =Dbsa, end a, + b, = g,b, = b aje
Thus xz = bza, and yz = g b,s Then z = x-"‘:IJBa.1 = y-g.hbz. Then
g
(x4 )-‘1’331 (v972) 3,5

— -1 =1
: = Yo V&b,

%

Ny

N

-
I
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x_-21“’3‘3‘1 = 3-‘13’-2'}2341’2‘
Since §1y£1: D, there exist unique c,€ D,, c,€ D, such that §1y; = c,Cye
Then §;1b3a1 = c2c1y;211+b2
c;1§£1b3a1 = c1y;34b2.

-1 e -1

i € = o =
Since c1y1ah€ D1 and c, X, b3 D2, a, + b2 c,lsr,1ahb2 From x X%,
= x2x1 and y = Y¥p = Yp¥qs we bave that x = X, + X, and y = Yq* Yoo

Then there exist unique x €D1, y €D2 such that Xy + Yo = XY, = YXye

Thus §1y;1= ?gi-so X = c,e Then we have that
-1
XZ + yz = (8.1 + b1) + (a2 ¥ b2) =a, + b, = c,y,a,b, and
- - -1
(x + y)z = [(x1 + xz) + (y,l + yz)] Y &b,

- 1
(% + ¥,) (547, 8,b,

XYY via b L X e b, =c,ya,b

XYV Y48, Pp = X485 = ©4¥48,05e

Therefore (x + y)z = xz + yz for all x, y, z€De. Hence (Dy+,.) is a
division seminear-ring. Thus (1) holds.

Claim that x + 1 =:x for all x in D1. To show this, let x€D1.

Then there exist unique X € D, y €D, such that x1 = yx. Thus

2
1x = x1 = §x, S0 X = x. Therefore x + 1 = x1 = x1 = X So we have the

L I
claim. Let x, X€D,. Thus xx 2 D1, SO XX * + 1= xx’-1. Thus

1
x+x= (0 +D)x= (o )x=x(x) = x1 = x. Thus (2) holds.

Claim that 1+ y = y for all y in D To show this, let yeD

2° 2°

Then there exist unique X €D,, Y€D, such that Xy = y1. Thus

: 2
19 = y1 = Xy, s0 ¥ = y» Therefore 1+ y = y1 = y1 = yo So we have the

claim. Let y, y’éDZ. Thus y‘y-l D,y 501 + y’y-1 = y,y-1. Thus
yey=0+y Dy=Gy Dy=vE"y) =1 =y Thus (3) holds.
Note that 1 + 1= 1 since 1€D1. Let x€D1, yeDZ. Then
vrx=(1+y)+E+1)=1+1=1. HenceD2+D1={1}.

Thus (4) holds.
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To show the uniqueness of +, suppose +is a binary operation
on D such that (1) = (5) are true. Claim that 1+ d + 1 = 1 for all
d€D. To show this, let d €D. Since (5) is truey there exist d1€ D1,

/ / / / / /
dzeDzsuchthatd=d1+d2. Then1+d+1=1+(d1+d2)+1=

/ / /
(1 + d1) + (d2 +1) =1+ 1 =1 since (1) - (5) are true. Thus
1 +I d +I1 = 1 for 211 d€D. Thus we have the claim. Next we shall

show that x + y = x + y for all x€D,y y€Dye To show this, let x€D,,

/ o .
yEDZ. Thus x + y €De Then there exist unique d1, 316 D1, d2, 326 D2

7/ / -— -
such that x + y = d1d2 = 3231 = 31 + dz. From x + y = d2d1, we have
- _1/ / _1 / z _1/
thatdédx +1=(x+y)x"'+1=1+yx '+ 1=1. Then
gl 77/ BN
d = e = ="%d .
s P 77/ e NNl o

Since d2€ Dz,xd1€D and (4) is true, d, + xd; = 1. Thus xd, = 1, so

1=

= . / -1 N
x =d. Fromx+y=dd, we have that 1 + d,dy =1+ (x+y)y

1 172
2 + 1 v= 1« Then
-1/ 4 -o~1 _ -1

yd2+d1.-(1+d1d2yA)yd2 = 1yd, . )

Similarly, we have that y = d,. Therefore x Fy=d +dy=x+y.

Therefore x + y=x+Yy for all x€D1, y€D2. Now let d, d,ED. Then
/

there exist Xq9 xze D1’ Yqr yze D2 such that d = Xq+ ¥ =%+,

4 /
andd=x2+y2=x2+y2. Thus

¢ ! / / / / /
d+ d=(x,+y) + (xp+¥) =3+ (y7 + x5) + ¥,
/ 7/ / : /
x1+1+y2=x1+y2=x1+y2=d+d.
/ /
Therefore d+’d= d + dl for all dy d€D. Hence+’=+.

To show (6), define f: D, x D_—» D by f(d1,d2) =d, +d, for

1 2
all d1€ D 1? d2€ D2. f is well-defined, one-~to-one and onto since for
all d €D there exist unique d1€ D1, d2€ D2 such that d = d1 + d2.

To show £ is @ homomorphism, let dy, d:|€D1, doy d;_EDg. Then
£((d04,) + (dysdy)) = £(dy + €)s0p + &p) = 2(cgydp) = o4 + & end

7 / Vi 4 i
f(d1,d2) + f(d1,d2) = (d1+ dz') + (d1 + d2) = d, + dye Thus
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f((d1,d2) * (dl,‘,dlz)) = f(d,,,dz) + f(d;,dlz). Therefore f is a homomor—
phism. Hence (D,+) & (D1,+) X (D2,+). Thus (6) holds.

To show (7), let d€D. Since 1+ 1 =1, d+d=(1+ 1)d=1d
=de Thus d + d = d for all d€D. Let d, d’eD. Since 1 + d&j1+ 4 =
4, d+ d+d=(1+di "+ 1)d=1d=d Thusd+ d+d=d for all
d, d€D. Hence (Dy+) is a rectangular bande Thus (7) holds.

To show (8), assume that the left distributive law holcs.
Claim that D, ={x€D |x+1==x} and D, = {x€D | x+ 1 =1}

From (2) and (3), D1g{x€D | x+ 1 =x}and ng{xeD lx+1=17%
Now let x€D be such that x + 1 = x« Since x €D, there exist unique

+y)+1=

X€D,, y€D,_ such that x = X 4+ y. Thus x = x + 1

e 2
x+ (F+1)=x+1

Xy-80 X = ;cED,‘. Therefore

D1={x€D | x+ 1 =x}Jo Let x€D be such that x + 1 = 1. Since

x €D, there exist uﬁique §€D1, yé D2 such that x = X + y. Thus

1=x+1=(x+y)+1=x+(y+1) =x+1=%, sox=1. Thus

b

+

i

X = 145 =y€D,e Thus D, ={x&D | x+ 1 =1}, Thus ve

«|
]

have the claim. To show that D4y D,4 D, let d,€ D,y d,€D, and d€D.

1

Then dd,d” '+ 1 = dd1d'1+ ad = d(ay + 1)c1"1 = dd,d and dd2d_1+ 1=

1
=] -’ -1 - X ..'k
dd,d '+ dd = d(d2 +1)d =d1d = 1. By the claim, dd,d €D, and
dd,d & D,. Thus Dy, D,¢ D. Hence D= D, x D,.

Conversely, assume that D = D1 p D?_' Claim that d,]d2 = d2d1

for all d16 D1, d2€ D2. To prove this, let d,]e D1 and d2€ DZ' Then
-1 =1 . -1 =1
d,d,d,'d, €DND, = {1}, since Dy» DZQ D. Thus d,d,d, d, =1, so

butive law holds, let x, ¥y, z €D. Then there exist unique X49 Yo 24

Thus we have the claim. To show that the left distri-

in D1 and X5y Yo Z, in D2 such that X = XX, = XX, = X, + Xo

y = Y1Y2 = YZy1 = y1+ yz and z = 2122 = 2221 = 21 + Zzo Thus
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et b Wl b I e * H54%R% T %%
X %,¥,% and x(y+z) = x((y; +3,) + (2 + 3)) = x(y; + z,)

XY,Z, = X4X,¥1%ye Thus x(y + z) = xy + xz. Therefore the left distri-

butive law holds. Thus (8) holds.

So we see that every Zappa-Sze'p product of a group which is not

a direct product gives us an example of a division seminear-ring which

is not a division semiring.

’
Definition 2¢5. Let G and G be groups and suppose that G = G1 * Gz,
/

’ / P ' L4
G =G, # G, for some subgroups G1, G2 of G and G1, G2 of Go Let

1 2
f: GG be an isomorphisme. Then f is said to preserve the Zagga—Sze’p

s
e

products iff £(G,) = G;and £(6,) =G,

/
Theorem 2.6 Let G and G be groups such that G = G1 * (}2 and
4 /

/ /
for some subgroups G,‘, G2 of G and G1’ G2 of Ge Let

’ / %

G = (}1 G2
’

f: G-G be a mape Then f is a division seminear-ring isomorphism

with respect to the addition given in Theorem 2.4 iff f is a group

isomorphism preserving the Zappa—Szép productse.

Proof. By Theorem 2.4 and its proof, there exist unigue ¥ and
/ ’ 3
+ on G and G respectively such that G, ={xéG |x+1= x},

/ ! ¢ 7/ 4
G,={x€G|x+1=1}, G ={x€C | x+1=x]en ,
(4 ’ / ’

G’2 = [x€G | x £1=1 where 1 and 1 are the identities of G and G
respectivelye.

Assume that f is a division seminear-ring isomorphisme Then

/ /
f is a group isomorphism from (G,.) to (Gy«)e To show that f(G1)CG1
and £(G,)€G,, let g€Gand g£G,s Then
/ / /.
f(g1) +1= f(g1) + £(1) = :t‘(g,l +1) = f(g1) and

£(g,) + 1= £(g,) + £(1) = £(g, + 1) = £(1 ) = 1.

010001
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Thus f(g1)EG and f(gz)eG y 80 f(G )gc and £(G )gc « To show that
G1Cf(G1) and GZEf(GZ), let g1 € G1, gze G2. Since f is onto, there

exist x€G , y€G such that f(x) = g.'] and f(y) = gé. Then

£(x + 1) = £(x) £ £(1) = g1+1 g,,
f(y+1)=f(y)+f(1)=g2+1=1 = £(1).

Since f is one-to-oney, x + 1 =xand y + 1 = 1. Thus x€G1 and yéGZ.

f(x) and

Thus g,;ef(G,l) and gée f(Gz). So G, Cf(G1) and G Cf( ) Therefore
f(G1) = G; and f(Ga) = G’Z. Hence f is a group isomorphism preserving
the Zappa-Sze'p products.

Conversely, assume that f is a group isomorphism preserving
the Zappa=-Szep products. We must show that £(g + h) = £(g) + £(h) ‘
for all g, h€Gs To prove this, let g, h€G. Then there exist g1s bys
21’ E1€G1, 851 22’ hz, Bzé G2 such that g = 818y = EZE‘I and
h = hh, hzh Let x,€G,, x2€G be such that 21 + hy = x4hy = "ZE1
From x,h, = 2g1 we have that f(x )f(hz) = f(x1h2) = f(x2g1) =
f(xz)f(g1) - f(g1) i f(hz). Bimilarly, we have that
£(g) = £(g,) + £(g,) and £(n) = £(R,) + £(n,)s Therefore

£(g + h) = £(g, + h,) = £(x,h,) and

£(g) £ £(n) = (£(8,) ¥ (g,)) + (£(B,) £ £(h,))
£(g,) + £(b,) = £(x,)£(h,) = £(x,h,).

7/
Thus f(g + h) = £(g) + £f(h) for all g, h€G. Therefore f is division

seminear-ring isomorphism.

e shall now show that in the finite case the family of divi-
sion seminear-rings constructed in Theorem 2.4 is the only type of

example that exists.
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Lemma 2,7, If (D,+,.) is a finite division seminear-ring, then (D,+)

is a band.

Proof. Let (Dy+,.) be a finite division seminear-ringe Then
(Dy+) is a finite semigroupe By Theorem 1+15, there exists a d in D
such that d + d = de Let x€De Then x + x = (d + d)d’1x = dd'x = x.

Thus x + x = x for all x€Ds Therefore (D,+) is a band.#

Theorem 2.8+ Let D be a finite division seminear-ringe Then there
exist unique division subseminear-rings 1?1 0 D2 € D such that

(1) x+ y=x for all x, V€D,

(2) x+y =y for all x, Yy €D,s

(3) (@1e) = (05) % (030 (= (Dp2) * (D))o
Furthermore,

(&) (Dy#) 2 (Dyy) x (Dyy4)

(5) b, + 01, = {1},

(6) (Dy+) is a rectangular band,

(7) D is left distributive iff D, D,¢D as multiplicative

2
groupse.

Proof. LetD1={xeD |x+1=x} andD2={x€D lx+1=1}
By Lemma 2.7y 1+ 1 =1. Thus 1€D,ND,, soD1;£¢andD2,é¢.

To show that D, is a division subseminear-ring of D and (1) holds,

let x, y€Dje Thenxy+ 1= (x+ Ny+1=xy+ (y+1) =xy+y=
(x+1)y=xyand (x+y)+1=x+ (y+ 1) =x + y,s0 xy, X+ y€D,.

Since (Dy.) is a finite group, there exists an n€ Z* such that i = Te

So x.1= xn-1€D1. Hence D1 is a division subseminear-ring of D. Since
1 1 : 1

xy-1€D1, xy +1=xye Thusx+y= (xy-1+ 1)y =xy ¥ = Xe

To show that D, is a division subseminear-ring of D and (2)
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holds, let xy y€D e Thenxy+ 1=xy+y+1=(x+1)y+1=1+ 1

x
=y+1=1and (x+y)+1=x+(y+1)=x+1=1 soxy, x+y
are in DZ' Similarly, x-l DZ' Thus D2 is a division subseminear-ring
of De Since xy"1€D2, -xy-1 +1=1. Thus x+ y = (xy-1+ 1)y = 1y = Yo
To show (3), we show that (D,.) = (D?_,.) * (D1,.). Let d€D,
and d(d + 1)~ €D

Then d + 1€D since (d+ 1) +1=d+ (1+1) =

1
d+ 1andd(d+ 1) 1

2
a(a+ )% (@+ D@+ 1)1

(d+ (a+ 1))d+ 1)

= ((d+a)+1)@+ 1)

(a+ 1)(a+ 1) (By Lemma 2.7, d + d = d)
=1,

Thus d

d(a +1)'1(d +1) €D Therefore D = D,D;o Let x€D,N D,.

2Dqe 2
Then x = x + 1 = 1. Hence D,AD, = {1}. Thus (Dy.) = (Dz,-) * (D1,.).
By Iemma 1.13(1), (D,.) = (Dgse) ® (Dyye)e

Claim that

(a) 4+ d + duca—te=—=rr d, deD. (Hence (Dy+) is a
rectangular bande Thus (6) holds.)

(b) For all d €D there exist unique d1 € D1, d2€ D2 such that
d = d1 + d2.

To show (a), let d, d'€Ds Since dd '+ 1 and 1 €n,,

/- / -
1+(dd1+ 1) = 1. Thus d + d+d=(1+d’d1+1)d 1d = d.

To show (b),let d€D. By (a)y (1 +d) +1 =1, so 1+ d€D,.
Again by (a)y d=d+1+d=d+ (1+1)+d=(d+1)+ (1+4q)

which is in D, + D,, so we get the existence part of (b)e To show

1

uniqueness, let d1€ D1, d2€ D2 be such that d = d1 + d2. Then

dy=d +1=d + (4, +1)=(d,+d)+1=d+1andd,=1+d,=

(1+ d1) +d, =1+ (d1 4+ dz) = 1+ dy so we get the uniqueness part.

Hence we get (b).
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To show (4), define f: D, x D, D by f(d1,d2) = dy + d, for

all d,€D,, d,eDye By (b),f is a bijection. To show f is a homomor—

/ /
phism, let d,, d, €D, d2, d,€D e Then

f((d1,d ) + (d1,d )) = f(d + d1,d2 + d;_,)

( d, +d. and
fd1,d2)- 4 +d, an

(4, +d)+(d'+d')

£(d,d,) + £(d;,d,)

d, +(1+d)+(d +1) +d

d, +(1+(d +d)+1)+

=d1+1+d2=d1+d2

/ / / / <
Therefore f((d1,d2) + (d,',dz)) = f(d1,d2) + f(d1,d2). Thus f is a
homomorphisme Hence (Dy+) & (D,,+) x (D2,+).' Thus (4) holds.
To show (5), let d,€ Dys d,€Dye Then

d2+d1=(1+d2)+(d1+1)=1+(d2+d1)+1=1.

Therefore D, + D, = {1}e Thus (5) holds.
To show (7), assume that D is left distributive. Let d,€ D,

d.ZED2 and d €D. Then

add's 1 = dd1d'1+ ad'= a(d, + 1)d7'= ad,d™" ena
ddd™ 1 = add™ ad™= a(a, + 1)d7= a1a~ = 1.
1

-1 - ¥
d”€D, and dd,d €D,y 50 D,¢ D and D,< D.

1

Thus dd1

The converse can be proved as in Theorem 2.4.

/ /
1 and D2, suppose that D1 ’ D2 are

/ /
division subseminear-rings of D such that (1) = (3) hold. Let d 1€ Dy

/ / / 4 /
d € D, Since (1) and (2) hold, d1 +1=4d, and d2 +1=1 Thus

/ / 7 4 ’
D ¢c . €D . Si
d1E D1 and d2€ D2, S0 1 D1 and D C_:DZ Let d1€ D1, d2 D2 ince

/ /
1€ Dqp 95 c2 € DZ« such that

c <
D1 and d2€ D2 D2, so

To show the uniqueness of D

(3) is true, there exist unique d1, c €D

7/
d1 = d1d2 and d2 = c2c1. Now 4. €D

d 1= d,]d‘2 in D D2 Thus d1 = d € D1. Similarly, d2€ D2. Thus

/
c ® =
D1 D1 and D (;D Hence D1 D1 and D2 D2°#

-\\

~
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Remark. Since properties (1) = (5) are true, the given addition in a
finite division seminear-ring must be the same as the addition which

comes from Theorem 2.4.

Theorem 2.9, Let D and D’ be finite division seminear-rings. Then
D= D, as division seminear-rings iff there exists a multiplicative
group isomorphism f: D -)D’ preserving the Zappa-Sze'p products of the
division subseminear-rings given in Theorem 2.8.

/
Proofe Since D and D are finite division seminear-rings,

/ /
there exist unique division subseminear-rings D1, DZQ D, DI1, D,€D

/ / '
- * o ™
such that D = D1 D2 and D = D,1 D2

/
as inTheorem 2.8. Let 1 and 1
be the identities of D and D respectively. .

Assume that f: D-)DI is a division seminear-ring isomorphism.
Then f is a group isomorphism. Claim that f preserves the Zappa-Sze’p
/ /
products. We must prove that f(D1) = D, and f(DZ) = Dye Let d €D,

d,€D,. Then £(d,) ¥ = £(d,) + £(1) = £(a, + 1) = £(4,) end

’ 7 ’
£(a,) + 1= £(d,) ¥ £(1) = £(a, + 1) = £(1) = 1", s0 £(d,) €D} and
( € / ( c ! ( ’ ’ ’ ’ /
f d2) D, Thus f D1) CD, and f DZ)GDZ. Now let d,€ D, and d,€D,.

Since f is onto, there exist x, y €D such that f(x) = d; and f(y) = d;.
¢ [
Then £(x + 1) = £(x)  £(1) = &} + 1= d) = £{x) and £(y + 1) =

/ /0 /7 /
f(y) + £(1) =d_ + 1 =1 = £(1). Since f is one-to-one, x + 1 = x

&

' / ’
and y + 1 =1, Thus x€D, and y€D,, so d1€:£‘(D1) and d, € f(DZ).

1
/ . /’ / /
Thus D1€f(D1) and DZG:{‘(DZ). Therefore f(D1) =D, and i‘(Dz) = D,
/
Conversely, assume that f: DD is a group isomorphism

preserving the Zappa-Sze'p productse. We must show that

flc + d) = £(c).+ £(d) foralle, d€D. Let ¢, d€D. Then there exist
unique Cqs Cys dy a1en1, Cps Cpe doy 32€D2 such that ¢ = c.c, = €2,

and d = d d, = 5231. There exist wnique X €D 4 yen?_ such that
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’ - /
= 3751 o« There exist unique Xe€ D1 ’ yeD2 such that

0
+

’\P.
|
»

'\P..
I

£(3.) i f(dz) = :=:f(d2) = frf(81). Claim that x = £(x). Note that

f(x)é€ D; and f(y)ED; for all x €D, and y€D, since f preserves the

Zappa=Szep products. From :-cd‘2 = y'_c.], f(;)f(dz) = £f(y)f (;1). Thus

£(a,)2(z,)""

£(a,)£(3,)"
fle+d) =£(C,+cy+ dy+dy) =1fcy+dy) = £(xdy) end
£(c) « £(a) = £(c,)£(c,) + £(d,)(d,)

x£(d,) = £(x)£(d,) = £(xdy).

Thus f(c + d) = f(c)--{ £(d) for all ¢, déDs Therefore f is a divie

‘f(:?)-1f(§). From ;-'-Ef(dz) = ?f(s,]), we have that

==

X 'Ys Thus f(X) = X« Therefore

sion seminear-ring isomorphism. 4

In Example 2.3(2), the binary operations of + and . are equale
This can only happen when the order is one as the following theorem

shows.

Theorem 2.10. fiet (D,+,.) be a division seminear-ring such that + and

. are equal. Then D]l = 1.

Proof. Suppose ||[D|l >1. Let xe€D~{1}. Then
e k= (1 + 1)ex = (1e1)ex = 1ex = xo

Thus x2 = x, S0 x = 1, a contradiction. Hence DI = 1.,
w

Definition 2,11. Let (S,+y+) be a seminear-ring and a €S. Then a is

an additive zero iff a+x=Xx+a=aforall x€S and a multipli-

cative zéro iff a.x = x.a = a for all x ES.

Clearly, a division seminear-ring can have a multiplicative

-1

zero g iff it has order one since 1 = aa =a so for all x€D



In a division seminear-ring of order one, we see that 1 is
both an additive zero and an additive identity but in a division
seminear-ring of order » 1. we cannot have this as the following

theorems showe

Theorem 2.12 Let D be a division seminear-ring of order ) 1¢ Then D

cannot contain any additive identity.

Proof. Suppose D has an additive identity e« Thus e + x =
X+ e =x for all x€D, so 1 + Wy /Pl +1=2xe for all x €D

Let C {xe-1| x €DY. Since (D,.) is a group, C = D. Therefore

1+z2=2+1=2 for all z€D, soe=1+e =1. Let xeD~{1}).
Then 1 + x = x, so x.1 + 1= 1. Since x-1+ 1= x-1, so X 1= 1.

Thus x = 1, a contradiction. 4

Theorem 2.13 Let D be a di\iision seminear-ring of order » 1. Then

D cannot contain any additive zero.

Proof. Suppose D contains an additive zero ae. Then
a+x=x+a=a for all x€D, so1+xa-1=xa-1+1=1forall
x€D. Let C ={xa"1| x €D}, Since (Dy.) is a group, C = De Thus
1+d=d+1=1for all déDy soa=a+ 1=1. Let xeD~ {1\,

-1 1

‘Thus1+x=1, sox-1+1=x . Sincex-1.+1=1, 80 x =1,

Hence x = 1, a contradiction. 4

Definition 2.14s Let D be a division seminear-ring with 1 as its

multiplicative identity. Then the prime division seminear-ring of D

is the smallest division seminear-ring contained in D i.e. the prime

division seminear-ring of D is the intersection of all division

subseminear-rings of D. Note that this intersection cannot be empty
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since every division subseminear-ring of D must contain 1 (because 1

is the only idempotent in (D,.) ).

Proposition 2,15 Let D be a finite division seminear-ring (with
multiplicative identity 1 )e Then the prime division seminear-ring of

D is {1).

Proof. Since (D,+) is a finite semigroup, by lemma 2.7 we get

that 1 + 1 = 1. So {1} is close with respect to + and . hence it is

a division subseminear-ring of De. 4

Definition 2.16. Let S be a seminear-ring and x €S. Then x is said

to be left additively cancellative iff for all y, z€S x+y=x+ 2

‘implies y = z. Right additive cancellativity is similarly defined.

x is said to be additively cancellative iff it ig left and right

additively cancellativee.

Example 217. If S has an additive idemtity O, then O is additively

cancellative.

Definition 2.18. Let S be a seminear-ring and x€S. Then x is said

to be left multiplicatively cancellative iff for all y, z€S xy = xz

implies y = zo Right multiplicative cancellativity is similarly
definede x is said to be multiplicatively cancellative iff it is
left and right multiplicatively cancellative.

Example 2+19.. If S has a multiplicative identity 1, then 1 is

multiplicatively cancellative.

Remark. If D is a finite division seminear-ring of order » 1, then D

cannot be additively-sancellative by Theorem 2.8. So D can never be
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.embedded in a nesx=field.

Theorem 2.20. Let (Dy+,+) be a division seminear-ring. Then

(1) If one element of D is left additively cancellative,
then every element of D is left additively cancellativee.

(2) If one element of D is right additively cancellative,
then every element of D is right additively cancellative.
(Hence if one element of D is additively cancellative, then every

element of D is additively cancellative.)

Proof. (1) Let d€D be left additively cancellative. Let
x€D and y, z€D be such that x + y = x + z. Then
d+ yx 1= (x4 y)x_1d =(x + z)x-1d -d+zx de
Since d is lef't‘ additively cancellative, yx-1d = z::-1d. Thus y = z
since (D,.) is a group.
. (2) Let deD be right additively cancellative. Let

x€¢D and yy z€D be such that y + x = z + x« Then

1 1

yx d+d=(y+ x)x-1d= (z+x)x-1d= zx d + de
Since d is right additively cancellative, yx-1d = zx-1d. Thus y = z

since (Dy.) is a groups,

Proposition 2.21. Let S be a finite seminear-ring which is multipli-

catively cancellative. Then S is a division seminear-ring.

Proof. Since (S,.) is a finite cancellative semigroup, by

theorem 1.18, (S,.) is a group. Hence S is a division seminear-ring.

i
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