ผลของสเตอรอยด์ฮอร์โมนต่อการเจริญของรังไข่และการลอกคราบ ของกุ้งกุลาดา (*Penaeus monodon* Fabricius)

นางสาว ขวัญเรือน ศรีภิรมย์

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
ภาควิชาวิทยาศาสตร์ทางทะเล
บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2534

ISBN 974-579-335-3 สิบสิทธิ์บองบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

EFFECTS OF STEROID HORMONES ON OVARIAN DEVELOPMENT AND MOULTING IN GIANT TIGER PRAWN (Penaeus monodon Fabricius)

Miss Kwanrearn Sripirom

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

Department of Marine Science

Graduate School

Chulalongkorn University

1991

ISBN 974-579-335-3

Thesis Title

Effects of Steroid Hormones on Ovarian Development

and Moulting in Giant Tiger Prawn (Penaeus monodon

Fabricius)

By

Miss Kwanrearn Sripirom

Department

Marine science

Thesis Advisor Professor Piamsak Menasveta, Ph.D.

Assistant Professor Somkiat Piyatiratitivorakul,

Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Riquirements for the Master's Degree.

Theren Vojiashaya Dean of Graduate School

(Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

Twenty hyahansh Chairman

(Professor Twesukdi Piyakarnchana, Ph.D.)

The MuseThesis Advisor

(Professor Piamsak Menasveta, Ph.D.)

Sombiat Piyatimitih vorabul Thesis Co-advisor

(Assistant Professor Somkiat Piyatiratitivorakul, Ph.D.)

(Associate Professor Sanha Panichjayakul, Ph.D.)

ขวัญเรือน ศิรีภิรมย์ : ผลของส์เตอรอยด์ฮอร์โมนต่อการเจริญของรังไข่และการลอกคราบ ของกุ้งกุลาดำ (Penaeus monodon Fabricius) (EFFECTS OF STEROID HORMONES ON OVARIAN DEVELOPMENT AND MOULTING IN GIANT TIGER PRAWN (Penaeus monodon Fabricius) อ.ที่ปรึกษา : คำส์ตราจารย์ ตร.เปียมคักดั้ เมนะเค๋วต และ ผู้ช่วยคำส์ตราจารย์ ตร.สมเกียรติ ปียะธีรธิติวรกุล, 86 หน้า. ISBN 974-578-335-3

การศึกษาผลของการฉีดฮอร์โมน progesterone และ B-estradioll7 ในกุ้งกุลาดำ เพศเมียวัยเจริญพันธุ์ เปรียบเทียบกับกลุ่มควบคุม (ไม่ฉีดฮอร์โมน) และกลุ่ม sham (ฉีดด้วยตัวทำลายของ ฮอร์โมน) พบว่า หลังจากฉีด 7 - 14 วัน กุ้งจิ๋ะมีการพัฒนารังไข่สู่งกว่ากลุ่มควบคุมและกลุ่ม sham ในทุกความเข้มขันคือ 0.01, 0.1, 0.2 และ 0.4 ไมโครกรัมฮอร์โมนต่อกรัมน้ำหนักตัว แต่หลังจาก 21 วัน พบว่ากุ้งในกลุ่มควบคุมสามารถปรับตัวให้เข้ากับสภาพในบ่อทดลองได้ และมีการพัฒนาของรังไข่ จนเข้าสู่ stage 3 ส่วนในกลุ่ม sham และกลุ่มทดลองทุกความเข้มขัน จะมีค่า gonad index ใก้ลัเคียง กับในช่วง 7 - 14 วัน อย่างไรก็ดีผลการวิเคราะห์ทางสถิติ ไม่พบความแตกต่างของค่า gonad index ระหว่างกลุ่มควบคุม กลุ่ม sham และกลุ่มทดลอง อย่างไรก็ดีการทดลองในกุ้งจากสมุทรส่งคราม สมุทรสำคร และชลบุรี พบว่าแหล่งของกุ้งมีความแตกต่างทางสถิติอย่างมีนัยสำคัญต่อการพัฒนารังไข่

การศึกษาวงจรในการลอกคราบของกุ้งกุลาดำขนาดน้ำหนักเฉลี่ย 35 กรัม พบว่าใช้เวลาใน การลอกคราบเฉลี่ย 18 วัน โดยจะเข้าลู่ระยะหลังการลอกคราบ ในวันที่ 3 ของวัฏจักรการลอกคราบ เข้าลู่ระยะพักการลอกคราบในวันที่ 6 และเข้าลู่ระยะก่อนการลอกคราบในวันที่ 10 ทำการทดลองฉีด ฮอร์โมน 2-deoxyecdysone (SIGMA) และ B-ecdysone บริสุทธิ์ที่สำกัดจากเปลือกตันไข่เน่า (Vitex glabrata) ในความเข้มขัน 0.01, 0.1, 0.2 และ 0.4 ไมโครกรัมฮอร์โมนต่อน้ำหนักตัว (กรัม) พบว่าในระยะหลังการลอกคราบ กุ้งจะลอกคราบเร็วขึ้นกว่ากลุ่มควบคุมประมาณ 5.5 วัน ระยะ พักการลอกคราบ เร็วขึ้นประมาณ 4.9 วัน และระยะก่อนการลอกคราบเร็วขึ้นประมาณ 4.2 วัน ส่วนในกลุ่ม sham ซึ่งเป็นกลุ่มทดลองที่ฉีดตัวทำละลายฮอร์โมน พบว่ามีการลอกคราบเร็วขึ้นกว่ากลุ่ม-ควบคุม หลังจากการฉีดในระยะหลังการลอกคราบ 1 วัน ระยะพักการลอกคราบ 2 วัน และระยะก่อน การลอกคราบ 2 วัน ผลการวิเคราะห์ทางสิถิติ พบว่ามีความแตกต่างอย่างมีนัยสำคัญระหว่างช่วงระยะ เวลาการลอกคราบของกลุ่มทดลองและกลุ่มควบคุม แต่ไม่มีความแตกต่างกันในชนิดฮอร์โมน

ภาควิชาวิ	ทยาคำล่ตร์ทางทะเล	ลายมือชื่อนิสิต ขรัญเรือน ศรีกิรมย์
สาขาวิชาขึ	0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ปีการศึกษา	2533	ลายมือชื่ออาจารย์ที่ปรึกษา
		Quel difforth

KWANREARN SRIPIROM: EFFECTS OF STEROID HORMONES ON OVARIAN DEVELOPMENT AND MOULTING IN GIANT TIGER PRAWN (Penaeus monodon Fabricius). THESIS ADVISOR: PROF. PIAMSAK MENASVETA, Ph.D. AND ASST. PROF. SOMKIAT PIYATIRATITIVORAKUL, Ph.D., 86 PP. ISBN 974-579-335-3

The study on the effects of progesterone and B-estradiol17 on ovarian development of Penaeus monodon was carried out by injection technique. A comparative study of 7, 14 and 21 days durations was undertaken by injecting progesterone of B-estradiol17 at the doses of 0.01, 0.1, 0.2 and 0.4 µg-hormone/g dody weight. Solvent without hormone injection (sham) dose of 0.1 µl-solvent/g body weight and non treated prawn (control) were used for controls. The result showed that all treatments with hormone injection had a positive response on ovarian development. Gonad index of the groups injected by the double dose hormones seemed to be higher than the controls and the shams. However, there was no statistical significance among those hormonal treatments, sham and control, and between sources of hormones on ovarian development.

Moulting duration cycle of Penaeus monodon averaged body weight 35 g was approximately 18 days. Moulting stage B (3 days after moulting), stage C (6 days after moulting) and stage D₁" (10 days after moulting) were designed for hormones, 2-deoxyecdysone (SIGMA) and pure β-ecdysone (extracted from Vitex glabrata) treatment. Concentration of 0.01, 0.1, 0.2 and 0.4 μg-hormone/g body weight were singly injected into abdominal muscular tissues. Moult duration of stage B, stage C and stage D₁" in the hormone treated group decreased approximately 5.5 days, 4.9 days and 4.2 days comparing the control. While moult duration of sham group on stage B, stage C and stage D₁" were decreased 1 day, 2 days and 2 days comparing to the control. There was no statistical significance between sources of moulting hormones on moulting duration cycle.

ภาควิชา	วิทยาศาสตร์ทางทะเล	
สาขาวิชา	ขึ่ววิทยาทา งทะ เล	
ปีการศึกษา.	2533	

ลายมือชื่อนิสิต	ขวัญเรื่อน	ศรีส์เรมย์	
ลาย์นี้อชื่ออาจารเ	ย์ช่าเรื่องจ์	ture 2	Und_
CIONODOCIALIO	איים ווגעווט.	Q194/	181

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to Professor Dr. Piamsak Menasveta; my teacher and advisor, for his invaluable criticisms and suggestions in the preparation of work and menuscript.

My sincere thankfulness is also expressed to Assistant Professor Dr. Somkiat Piyatiratitivorakul for his support and suggestion throughout my time.

This work was supported by STDB and party supported by the Graduated School, Chulalongkorn University, which I also acknowledge gratefully.

And lastly, but not least, to my parents who always serve as my inspiration.

TABLE OF CONTENTS

	page
Thai Abstract	iv
English Abstract	V
Acknowledgements	vi
List of Tables	
List of Figures	
list Of rightes	
Chapters	
1. Introduction	1
2. Materials and Methods	22
3. Results	36
4. Discussion	56
5. Conclusion and Recommendation	68
References	70
Appendix	79
	86
Biodata	86

LIST OF TABLES

			page
Table	1.	Showing the experimental design on study of effect	
		of progesterone (P) and B-estradiol17 (ES) on	1
		ovarian development	. 30
Table	2.	Showing the experimental design on study of effect	
		of 2-deoxyecdysone (Ec) and β -ecdysone (BEc) on	
		moulting	. 34
Table	3.	Effect of sources of broodstocks on ovarian	
		development in P. monodon	38
Table	4.	Effect of Progesterone on gonad index of P. monodon	
		from Khlong Cone	39
v			
Table	5.	Effect of Progesterone on gonad index of P. monodon	
		from Samut Sakorn	39
Table	6.	Effect of Progesterone on gonad index of P. monodon	
		from Chon Buri	40
Table	7.	Effect of B-Estradiol17 on gonad index of P. monodon	
		from Khlong Cone	46

1 3		pag	е
Table	8.	Effect of B -Estradiol17 on gonad index of P . monodon	
		from Samut Sakorn4	6
Table	9.	Effect of B-Estradiol17 on gonad index of P. monodon	
		from Chon Buri 4	7
Table	10.	Effects of 2-deoxyecdysone and B-ecdysone on	
		moulting duration of <i>Penaeus monodon</i> 5	5
Table	11.	Effects of progesterone and B-estradiol on	
		induction ovarian development of giant tiger prawn,	
		Ponsous monodon Fabricius from Khlong Cone 5	8

LIST OF FIGURES

		pa	ge
Figure	1.	Adult female of the giant tiger prawn, Penaeus	
		monodon Fabricius (Source: Motoh, 1981)	3
Figure	2.	Diagramatic representation of oocyte development	
		in P. monodon. 1, Undeveloped or spent stage;	
		2, developing stage; 3, nearly ripe stage and	
		4, ripe stage. Scale represent 20 mm (Source: Motoh,	
		1981; Khoo, 1988)	5
Figure	3.	Diagram of hormonal control of vitellogenesis in	
		Decapod Crustacean;	
		> demostrated evidence	
		+ stimulatory	
		- inhibitory	
		GIH Gonad inhibiting hormone	
		GSH Gonad stimulating hormone	
		VSOH Vitellogen stimulating ovarian hormone	8
Figure	4.	Diagram of neurosecretory system of decapod	
		crustaceans (Source: Highnam and Hill, 1978)	2

Figure	5.	a) The formula for cholesterol. The carbon atoms	
		are numbered in the standard manner (Source:	
		Highnam and Hill, 1978). b) The formular of	
		estradiol-17B and c) The formular of progesterone.	11
Figure	6.	Semi-diagrammatic representations of sections of	
		abdominal cuticle and epidermis. A_1 , B , C , D_1 ", D_2	
		,D3 moult stages. Ec, epicuticle; Ex, exocuticle;	
		End, endocuticle; Epi, epidermis; CT, connective	
		tissue; SC, storage cells (Source: Smith and Dall,	
		1985)	14
Figure	7.	The line drawing of the uropod edge are tracings	
		of the photographs. B, C, D_0 , D_1 , D_3 moult stage.	
		S, setal shafts; SL, setal lumen; SB, setal base;	
		SC, setal cone; CE, clear cuticular edge of uropod;	
		EL, epidermal line; OC, old cuticle; NC, new	
		cuticle; SI, setal invagination which everts to	
		form seta ecdysis; PP, area visible as pinpoints of	
		light in this stage (Source: Smith and Dall, 1985)	16
Figure	8.	The formula for 20-hydroxyecdysone. Note the	
		additional -OH group on carbon atom 20 (Source:	
		Highnam and Hill, 1978)	18

Figure 9.	Moulting hormones from crustaceans, additional to	
	crustecdysone. (a) 2-deoxycrustecdysone from	
	Jasus lalendei, possibly a deactivation product	
	of crustecdysone. (b) callinecdysone A, and (c)	
	callinecdysone B, both from Callinectes sapidus.	
	(Source: Highnam and Hill, 1978)	1
Figure 10.	Moulting in Crustacea is under a second-order	
	neuroendocrine mechanism with a neurosecretory	
	moult inhibiting hormone (MIH) and moulting hormones	
	(MH) (Source: Tombes, 1970)	20
Figure 11.	Lateral view of adult giant tiger prawn, Penaeus	
	monodon showing site of injection	2
Figure 12.	Uropods showing a sample area (SA) used for	
	moulting stage observation and fringing setae (FS)	
	(Source: Smith and Dall, 1985)	33
Figure 13.	Comparison between 3 sources of P. monodon on gonad	
	index by injected progesterone 0.1 ug/g body weight.	37
Figure 14.	Comparison between 3 sources of P. monodon on gonad	
	index by injected β-estradiol17 0.1 ug/g body weight 3	37

Figure 15.	Comparison of gonad index (%) of P. monodon from
	Khlong Cone in each dose of progesterone injection
	compare with control (non injected) and sham
	(injected with solvent of hormone).
	(A) Progesterone 0.01 jug/g body weight.
4.	(B) Progesterone 0.1 /ug/g body weight.
	(C) Progesterone 0.2 /ug/g body weight.
	(D) Progesterone 0.4 /ug/g body weight 42
Figure 16.	Comparison of gonad index (%) of P. monodon from
	Khlong Cone between 1st and 2nd progesterone
	injection (0.1 ug/g body weight) with control and
	and 1 st and 2 nd injection sham
Figure 17.	Comparison of gonad index (%) of P. monodon from
	Samut Sakorn between 1 st and 2 nd progesterone
	injection (0.1/ug/g body weight) with control and
	sham
Figure 18.	Comparison of gonad index (%) of P. monodon from
	Khlong Cone in each dose of B-estradiol17 injection
	compare with control (non injected) and sham
	(injected with solvent of hormone).
	(A) B-estradiol17 0.01 ug/g body weight.
	(B) B-estradiol17 0.1 /ug/g body weight.
	(C) B-estradiol17 0.2 /ug/g body weight.
	(D) B-estradiol17 0.4 /ug/g body weight 48

Figure 19.	Comparison of gonad index (%) of P. monodon from	
,	Khlong Cone between 1st and 2nd B-estradiol17	
	injection (0.1/ug/g body weight) with control and	
	1 st and 2 nd injection sham	49
Figure 20.	Comparison of gonad index (%) of P. monodon from	
	Samut Sakorn between 1st and 2nd B-estradiol17	
	injection (0.1 µg/g body weight) with control and	
	sham	51
Figure 21.	The duration of moult cycle of P. monodon 20-40 g.	
	are 18 days. The duration from stage B, C and $\mathrm{D_1}^{"}$	
	to ecdysis are 15, 12, and 8 days respectively	52
Figure 22.	Comparative result of 2-Deoxyecdysone and	
	B-Ecdysone on moulting duration of P. monodon with	
	control (non injected) and sham (injected with	
	non hormonal solvent); (A) Stage B (postmoult),	- /
,	(B) Stage C (intermoult), (C) Stage D1" (premoult)	54
Figure 23.	Concentrations of unconjugated (X) and conjugated	
	(.), estrone (——), 17B-estradiol (——) and	
	progesterone () in the ovary of P. monodon	
	during ovarian development (source: Fairs, Quinlan	
	and Goad, 1990)	61

- Figure 24. Whole ecdysteriod levels during the moult cycle in the Kuruma prawn. The number of animals assayed is given in parentheses. Ecdysteroid was calculated as 20-hydroxyecdysone equivalents. The data for the postmoult stage ecdysteroid levels are shown twice (Source: Okumura et al., 1989)......
- Figure 25. Changes in total ecdysteriod levels, and in the levels of five HPLC-separated ecdysteroid groups from the hemolymph of the kuruma prawn during the moult cycle. The number of animals assayed is given in parentheses. Ecdysteroid was calculated as 20-hydroxyecdysone equivalents. The data for the postmoult stage ecdysteroid levels are shown twice. 20E, 20-hydroxyecdysone; E, ecdysone; PA, ponasterone A; HPP, high polarity products; LPP, low polarity products (Source: Okumura et al., 1989).... 6
- Figure 26. Immunoreactive ecdysteroids detected by RIA in fractions of kuruma prawn hemolymph separated by HPLC on methanol-water solvent system. Results are expressed as both the percent of the total ecdysteroid present in the hemolymph, and concentration (ng/ml) (Source: Okumura et al., 1989) 66