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Chapter 1

Introduction

1.1 Polymer

The word “polymer” comes from Greek words, “poly” meaning many and “mer”
meaning unit. Thus, the basis formula of each of polymer consists of a long chain
of the monomeric units which bind together by chemical bonds; for example,
Deoxyribonucleic acid(DNA) is composed of the nucleotides (sugar, base and
phosphate group) with an accurately repeating pattern of nucleotides along the
chain (Sugar-phosphate chain or S-P backbone) (see Fig 1.1). A protein is also a
biopolymer which is composed of about 50 to thousand aminoacids (monomers)
linked together by peptide bonds. The structure of protein in three dimensions is
very important. That is the prediction of protein structure is not only of a pure
theoretical interest in biophysics but also of great importance in drug design and
the design of artificial protein based on genetic engineering.

In nature, polymer may be composed of hundreds or thousands of basic
units. Some of them may have more than one simple unit, that is, it is repeated in
an diatomic polymer (ABABABAB....), triatomic polymer (ABCABCABC.....)
and so on. The size of polymer chain is introduced by the degree of polymerization
(the number of basic unit that it is obtained). Most natural polymer are found in
biopolymers; for example, a cell may contain hundreds of different many nucleic
acids and proteins. We can find polymer everywhere: in our bodies (biopoly-

mers) i.e., DNA, actin filament, microtubule and so on, in organic molecules and
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Figure 1.1: Sketch of double helix. The sugar-phosphate backbone is shown by
ribbons. The bases are shown by short transverse rods(Yakushevich (1998)).

plastics; for example, polyvinyl chloride (PVC), nylon, teflon, etc. Polymers have
three important molecular structural types, i.e. the linear polymer, the branched

polymer and the network polymer (see Fig 1.2).

1.2 The Model

In this thesis, we shall study the statistical properties of the polymers in the
thermal equilibrium state. The simplest model of the flexible polymer is the freely
jointed chain or random walk model (see Fig.1.3). "It consists of N monomers
separated by bond of fixed length by and 'these bonds are free to rotate; i.e.,
the direction of end-to-end distance of each bond should be independent of the
orientation of nearest neighbor bonds (see more details in Doi and Edwards (1986)
and Bueche (1962)).

Since many polymeric molecules have internal stiffness, they are the semi-



B3 —4<

a) Linear polymer b) Branch polymer

c) Network polymer

Figure 1.2: Three kinds of polymers; Linear, Branched and Network polymers

Figure 1.3: Freely jointed chain model.



flexible polymer. Then we cannot model them as freely jointed chains. The
famous model that is successful in describing an inextensible polymer is the
Kratky-Porod or the worm-like chain (WLC) model. In the past decades sev-
eral scientists have tried to understand the elastic properties of the WLC because
they are important in many basic life processes. Many stretching experiments on
the single polymer chain want to find the relation between the external force and
the extension of the chain, see more details in Bustamante et al. (1995), Smith
et al. (1996), Odijk (1993) and Rief et al. (1998). The force-extension relation of
an inextensible worm-like chain has been successful correspondingly with them.
One method for handling the polymer problem is proposed by Marko and Siggia
(1995). The main assumption of their work is that the polymer chain is very
stiff so that the energy associated with the conformational fluctuations may be
modelled by using merely linear elasticity of a thin, uniform rod, i.e., using the
WLC and the self-interactions or the excluded volume effects will be ignored. In
real polymers, long-range interactions such as steric effects, Van der Waals at-
traction and solvent molecules effect must be taken into account. Fortunately for
the long-length interaction due to cancellation of different interactions the detail
of the interaction can be omitted. Therefore the equilibrium features of stretched
semiflexible polymer chain are determined by the interplay of the energies within
the framework of canonical Boltzmann statistical mechanics exp [—E/kgT] (the
probability for the system to have the energy E). Marko and Siggia (1995) used
the variational and the numerical methods to solve the extension. They showed
that for large force limit, the extension is proportional to 1/(f)'/? and for small
force limit, the extension is proportional to f where f is the applied force. In this

thesis, we focus on the properties of the semiflexible polymer chains with exten-



sible bonds (an extensible polymer) when an external force applied to one end of
the chain and the excluded volume effects is ignored. We find that in the small
force limit, the force-extension relation is proportional to f (linear behaviour).
The outline of this thesis is as follows: in chapter 2, we present necessary
basic property of the chain. In chapters 3 and 4, we present the path integration
and the variational method to solve the problem. The conclusion and discussion

are given in the last chapter.



Chapter 2
The Basic Properties
of Polymer Chains

2.1 Some Foundation of Statistical Mechanics

In this section, the thermal equilibrium state at the temperature 7" will be dis-
cussed; for more details see some standard text books: Feynman and Hibbs,
1995; Kleinert, 1995 and so on. In statistical mechanics, the probability of the
system to have the energy E obviously correlates to the Maxwell-Boltzmann fac-

—E/kgT

tor e , which depends on the temperature of the system, where kg is the

Boltzmann constant (1.38054 x 10-2JK™!).

So to speak, the probability of finding the system in the particular state
i of energy E can be written in form

e"‘ﬁEt

D = Z:e—_ﬁE (2-1)

where 8 = ;= and 3, e7?"* is the sum extends over all states that the system

can be. Let > .e PP be denoted by the letter Z (it comes from the German
word “Zustandsumme” ), the partition function. The probability distribution in
Eq. (2.1) is known as the “canonical distribution.”

The representative statistical ensemble of the system can be distributed
over their states with the canonical distribution. For instance, the mean energy

of the system is given by
2 e PPE;

b= > ;e PE

(2.2)



where the summations are over all state of the system and we can write the mean

energy in terms of the partition function, as

-BE;
_ Zi Beaﬁ

> ePF
107

Z 93
oln”z
S (2.3)

E =

Consider the case in the quasi-static process. Let f; be the external

parameters of the system and then the energy of the system in state ¢ is

Bi = Ei(fyiinfn). (2.4)

Hence, the energy will be changed when the values of the external parameters
are changed. If they are changed by small values, f; — f; + df;, then the energy

will change in quantity
N —
I OE;
j 4

The work when the system is in the state ¢ can be written as

N
dw; = —dE; = ) &df; (2.6)

J
where g = —%—’Jf?’ is the mean generalized force conjugate to the external parame-

ter f; in the state i.
In our system, we consider only a single external parameter f. Then the
energy of the system in state ¢ is changed by

_ O

AE; a7

af (2.7)



then the work will be

dw = &df
OF;
- ~ 57 df
> e~ﬁEi(_6_Eidf)
- s o7 (2.8)

Once again we can write the last equation in terms of the partition func-
tion Z, that is

BZ,e‘BEi
dw —% of i
Z
1 07
" Bz of”
_l_Ban
B of

df. (2.9)

Thus, the work can be written in form of the product of a displacement

multiplied by the force,

— 10IlnZ

L e
p of

In addition, the physical quantity of the system in thermal equilibrium at

(2.10)

the temperature T can be derived from the partition function. Assume that, we
are interested in the state of the system which is in a configuration space with a
coordinate  and we want to know the probability of the system at the point z.
Also, we know that the wave function of the system at state ¢ is ¢,(z). We can
write the average over all possible states or the probability of the system at the

point x as

P(z) = 7 Y 4 (@)b(a)e (2.1)



In general, the average value or the expectation value of some function of

z is given by
(f(z)) = Zf(:v)P(:v)
= 33 [ d@f@e@e s (2.12)

We can define a new function, the density matrix,

pla, @)= Z ¢i(z)gi(z)e 5. (2.13)

From the definition of the density matrix, we can rewrite the probability in Eq.
(2.11) as

1%@==%M%w) (2.14)

then the expection value (f(z)) will be

@) = 7 [ Hepla <)da
1

= ETr(fp). (2.15)

The density matrix is an important quantity because we can find the
thermodynamics quantity from it. By the way, the important physical quantity,
the Helmholtz free energy F can written in term of In Z. We recall that the

definition of the partition function is the function of # and coordinate g.
Z = Z(B,q)- (2.16)

For In Z, if there are some small changes in § and ¢, then

olnZ O0lnZz
InZ =
dln a7 ag + 34

= —EdB+ Bdw. (2.17)

dq
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It’s better that we write the first term in r.h.s. of Eq. (2.17) in terms of

the change of E, thus

dlnZ = —d(EB) + BdE + Bdw

dnZ+ EB) = B(dw+ dE)
= BdQ, (2.18)
where () is the heat. From the second law of thermodynamics, the increase in
entropy of the system times temperature is equal to an infinitesimal amount of

heat
TdS = dQ (2.19)
Inserting this relation into Eq. (2.18),
dnZ + EB) = PBTdS =—
ks(InZ + EB) = S

E
k‘BIIlZ-i-T < /8

TS = kgTlmnZ+E

or

F=E-TS=—kgTlnZ. (2.20)

That is, the Helmholtz free energy F' can be expressed in terms of In Z.

2.2 The Relation between the Propagator and
the Density Matrix

In quantum mechanics, the probability amplitude of having particle at the initial

point z at time ¢ and later at a final point z” at time ¢'is the probability amplitude
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K(z',z), the propagator. It is the sum over all the amplitudes of each path
that the particle can go from point z to point z'. For the case of the particle
starting at the begin point z, going to point z" and then going to the end point
z , the amplitude of this event is the product of the amplitude of going from
z to 2" and the amplitude of going from z” to z'or K(z',z) = [, K(z',z") -
K (a:,,,a:)da:”. Consider the system which is described by the amplitude wave
function ¥(z,t), Let the initial and the final state of the system be ¥(z,t) and

U(z',t') respectively. We can write the relation of the initial and the final states

as

U(z,t) = /K(a:,,t,;a:,t)\ll(a:,t)da:. (2.21)

From the Schrodinger equation,

U(x,t /
iUt gy g (2.22)
ot
where the Hamiltonian H' = —%VQ + V(z,t). Let consider in the particular

case, the time-independent Schrodinger equation (the potential does not depend

on time) and then we can write the solution in form

U(z,t) = f(t)9(a)- (2.23)

[nserting the solution into the Schrodinger equation, we will obtain two equations.

The first equation is

2L _ g (2.24)
ot
or we can write in another form as f(t) = Cexp[—£]. The second one is
He(z) = E¢(z) (2.25)

where the time-independent hamiltonian H = —%VQ + V(z).
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As we know, the general solution of the the time-dependent Schrodinger

equation can be written in terms of the energy eigenfunctions as
U(z,t) =Y Cr(t)ga(2). (2.26)
n

C. (t) are the expansion coefficients that depend on time and we can find them by
multiplying with the quantity ¢ (z) and integrating Eq. (2.26) over all z. Then

we will get

/ b @)z s = 3 Co(t) / 2(2)8,(2)da

£ o), (2.27)

In the case of the time-independent Schrodinger equation, we can find
the expansion coefficients C,(t) from the general solution of time-dependent

Schrodinger equation, that is

L oV(z,t)
zfll 5 = HY(z,t)
2 G003 g4y, @)

= ) Cut)H¢,()

From the eigenvalue equation of time-independent Schrodinger equation

H¢,(z) = E,¢,(z). We will obtain

g 32 08 (5) = 3 OO0 (2.29

after that, multiply by ¢;,(z) and integrate over all =

z‘h%;c;a) [ n@snters - > C0E, [ #rni@1s(a)as

Ld
ih=Coalt) = Cln(t)Enm.
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We will get
C..(t) = Cn(to) exp[—1E,(t — to)/hl. (2.29)

Putting this equation into Eq. (2.26), we obtain the general solution of

the time-independent Schrodinger equation

U(2,t) = 3 Colto) expl—i Bunlt — t0)/Hl () (2.30)

we can find the expansion coefficients from

m(to) = /¢ (z', to)dz’ (2.31)

Then Eq. (2.30) can be written in the form of
vot) = X / G0 (@)U, to)dz expl—iBm(t — to) /W) (2)

_ / }:¢ 2) exp[—i En(t — to) /R (2, to)dz’  (2.32)

Comparing this equation with Eq. (2.21), we will get the propagator

K(z',t;z,t) = K(z',o,t —t)=) ¢(2)¢,.(z)exp|=iEn(t —t)/h] (2.33)

In the previous section, we know that the system in thermal equilibrium
at temperature T is described by the canonical density matrix. Let it be denoted
by p(z’, z,B), i.e.,

plz',z,B) = Z ol (z AE: (2.34)

So we can see that, if we replace the time interval t =t 'in Eq. (2.33) by —ihg,
we will get the density matrix. Thus the relation between the density matrix and
the propagator is

p(z,z,B8) = K(z', z, —ihpB). (2.35)
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We can write the propagator in the path integral form

C : z(r) i
K@ ot —t) = K(z,7,7) = / R (2.36)

where the action S is given by

S = /T L(z,x,t)dt (2.37)

and L is the Lagrangian of the system, . = T'—V. Then we can write the density

matrix in form of path integral by replacing 7 by —h[.

, =(—ihB) ;-8
K@z, —ihp) / Dla(t)] expl; /O L(3,, t)df

()

—/I::mD[CE(it:l] exp[%l /Ohﬂ L/(:bl,:c,it)d(it)] (2.38)

1 7 I

i

where L'(z , z,it) = ~2(z )2 = V{(z,it), z = d‘(i;) = 14 and let it denoted by t,
we will get
7 | I(h’B) ! _]. h’B 7 7
K(z ,z,—ihfB) = / Dlz(t )] exp[——h—/ Ld(t)] (2.39)
z(0) 0

where L' =T + V.
Finally, we obtain the density matrix
7 I(h’B) 7 _SI
ple' 2 )= [~ Dlalt)]expl= (2.40)
z(0)
where the action S’ is given by

7

S'l= / L'(z,z,¢)dt (2.41)
0
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2.3 The Persistance Length of WLC

A semiflexible polymer is a polymer which bending costs energy and it has the
bending rigidity x. We parameterize the polymer by arc length s such that
|t(s)| = |0sr(s)] = 1. The tangent vector of the polymer t(s) is equal to 0,r(s);
r(s) is a position vector on the chain. We can explicitly resolve the constraint
|t(s)] = 1 (for an inextensible polymer, there is no fluctuations in the length of
the tangent vector) by introducing a tangent angle ¢(s) (the simplest model is in

two-dimensional plane)
[ cosp(s) \ SN -~
t(s) = ( sitf (5) ) = cos ¢(s)i + sin P(s)j. (2.42)
Now we can calculate the tangent-tangent correlations from

(t(s1) - t(s2)) = (cos@(sy)cosd(sz) + sing(sy)sin ¢(s2))

= (cos(8(s) = 9l52))) = exp(~3 {(8(s1) ~ (52)))

1kgT

81— 8
= exp(——i—ﬁ— '81 ¥~ 82|) = exp(—L—2|

I )- (2.43)

See more details in appendix A. We can introduce the persistance length
L, = ;23%, The persistance length is the correlation length for the tangent-
tangent correlation. This means that the tangent direction become uncorrelated
over distance bigger than L,. Therefore L, can also be intepreted as the length
beyond which the polymer starts to crumple and behaves effectively like a fully
flexible chain or, we can say, it is a quantity which measures the flexibility of
polymers. In general we can write the tangent-tangent correlation functions of
WLC, that is, (t(s;) - t(s2)) ~ exp(—lﬂ%‘:ﬂl). Polymers in nature have very

different persistance length, for instance, L, =~ 50 nm for DNA (Bustamante.,
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1994), L, =~ 17 um for actin (Ott et al.,1993 and Janmey et al.) and L, =~ 5.2
mm for microtubules.
On the other hand, the mean squared end-to-end distance of the polymer

can be used to describe the conformations of the chain, that is
L L
(L) —rOF) = [ dss [ dsa b))
0 0

L s1 _
- 2/ dsl/ dszexp(~|81—sl|)
0 0 Lp

L L
=0L2 1 _ 1 A 2.44
2|5 - 1ol (2.44

One can consider now in two limiting cases:

2L,L ; L>1L,

(R?) = ((r(L) = £(0))?) ~ { % Zr. ew

For L > L,, the semiflexible polymer behaves like a fully flexible chain
with ((r(L) — r(0))?) o« L. For a fully flexible chain consisting of N bonds of
length by ; L = Nby then we find(see Doi and Edwards, 1995)

((r(L) = r(0))%) = NbE = Lby (2.46)

and the semiflexible polymer chain is similar to a flexible chain with an effective
bond length b.sy = 2L, which is also called Kuhn length.

That is the basic relationship for the size of ideal polymers which are de-
scribed by a random walk.” We observe that Eq. (2.46) is the example of a scaling
law. The size of the random walk can be classed in the "scaling equation"(Sa-

yakanit et al. (2000)), i.e.;
1
R = byNY where v = 3 (2.47)

We can define the radius of gyration by considering the configuration

of the polymer because the polymer in nature do not take on a straight line
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structure, rigid rod, since all the joints have some flexible. The radius of gyration
R, is the average distance of the mass in a polymer molecule from the center of

mass and we can write it as the length of the end-to-end vector E; i.e.,

N
R=R,-Ro=) .. (2.48)

n=1
In the case of flexible polymers, monomers are jointed together by per-
fectly flexible joints so that the direction in which a link point is completely
uncorrelated with the direction of the link to which it is directly jointed on either

end. The radius of gyration of the flexible polymer is
R, = [(RY)]? = byV'N. (2.49)

So the flexible polymer has a radius of gyration very large compared to the

unit size by but very small compared to its contour length.



Chapter 3
The Path Integral Approach

We study the stretching of an extensible semiflexible polymer by the
force applied to one end of the polymer. In order to account for the extensibility of
semiflexible polymers we introduced the semiflezible harmonic chain(SHC) model
which incorporates the elastics bonds with non-zero equilibrium bond length as
microscopic degree of freedom into a discrete version of the worm-like chain

model.

3.1 The Semiflexible Harmonic Chain Model

To describe an extensible semiflexible polymer, we will introduce a discrete
chain of N + 1 monomers separated by bonds of length b(n),the integer bond
number n = 1, ..., V. Its direction can be described by the unit tangent vector t(n)
with the local constraint |t(n)| = 1 . Fach bond has an equilibrium length of by.
L = Nby is the contour length of the polymer (see Fig. 3.1). The position vector
r (i) = r(0) + 32 _, bot(n) where i is the integer monomer number; i = 0,..., N
and r(0) is the position of the monomer at the fix end.

The energy of a stretched SHC in discrete model can be expressed in

three terms. The first term is from the incline of nearest bonds costs the bending
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Figure 3.1: The semiflexible harmonic chain model. t(n) are bond directions with
|t(n)] = 1,b(n) are the bond lengths and f is the external force applied to the
one end of the polymer. The other end is fixed.
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where 8(n,n+ 1) is the angle between the unit tangent vector t(n + 1) and t(n),
k is the bending rigidity (the parameter characterizing the bending energy of a
semiflexible polymer). In fact, the bending energy in the SHC model does not
depend on the bond extension or compression but depends on only the angle
6(n,n + 1) between the nearest bonds.

The second term is denoted by the elastic displacement b(n) and charac-
terized by the bond stretch stiffness £(n), which depends on the bond index n

(in general form). Each bond acts as an elastic spring whose stretching costs an
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energy

where the relative bond extension €(n) = (b(n) — bg)/bo.
The last term is the work done by the external tensile force f applied to
one end with the other end fixed (Odijk (1995)), that is,

Ey = =f<(x(N)=r(0))
= ~f:) bn)t(n)
= =) b(n)f-t(n)
= — > bo(l +e(n))f - t(n). (3.3)

The sum of the bending, the siretching and the work done by the external
force gives the Hamiltonian of the extensible semiflexible polymer chain, which
includes a discrete chain configuration of finite length with extensible bonds and

bending energy:

Ht(n),e(n)] = Ey+ E;+ Ey
A Zzibo(t(mul)—t(n))2

+ Z &Tgﬁg(n) — Z bo(1 + e(n))f - t(n).  (3.4)

n=1 n=1
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In the experiments, the position vector at the ends r(0) and r(N) are
always fixed. Then we can consider two kinds of the boundary conditions of
clamped ends; the fixed tangent vector t(1) and t(N) as in Kroy and Frey (1996)
or the free ends where t(1) and t(V) can fluctuate.

From the definition of the partition function, we can write it in terms
of the Hamiltonian which is parameterized by two degrees of freedom, bond ex-
tensions €(n) and bond directions t(n).The partition function of the discrete ex-
tension SHC does not only sum over all tangent configuration t(n) (subject to
the local constraint [t(n)] = 1) but also all possible bond length b(n) or relative
bond extension €(n). For the fixed ends tangent vectors, we can write the bound

partition function as

Z(t(1 H / dt(n)s(|t(n)| — 1) H / de (n)eBIEM.m)/ksT (3 5)

For the free ends, we integrate Eq. (3.5) over the initial tangent t(1) and
the final tangent t(/V) vectors then we obtain the partition function

z - / dt{n)d(jtn)f — 1) Z(t(1); 6 (V)

n=1,N
N
_ H / at(m)s(1tm)| - D] / de(n)e~TEO /T (3 6)
n=1 n=1

We will focus on the free ends boundary condition where all bond direc-
tions fluctuate and Eq. (3.6) is the partition function of the system. In Eq. (3.6),

we can integrate over relation bond extension because it is Gaussian. We define
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a new function as

N
7 - / de(n)e~H1tm)m)) k5T
1

T / de(1) / de(2)... / de(n)

{—k_“#@(1)—k—(‘?—;—ﬁe?(2)—...—M€2(N)+bO€(1)f't(1)+bO€(2)f't(2)+»--boé(N)f't(N)}{éfaﬂ

3

whereas the Hamiltonian of an inextensible diserete SHC is

N—

Hi[t(n)] Z (tm+ 1) —t(n Zbof t(n (3.8)

which is obtained in the limit of large stretching modulus k(n).

Performing all the Gaussian integrations in Eq. (3.7) by using

/_: explaz? + br|dz = \/_Iaexp[—b2/4a] (3.9)

we will obtain

(ft(n))°
e2k(n)kBT

N2

_ - Hilte) J/kBTH
(ft(n))®

—H [t()/ks T+, 2k(n)kBT H (3.10)

) k(n) b3’
Then we will get the new partition function which depends on only the tangent

configuration, the effective partition function

/ o - H[t(n)] Seeen? | g
Zoss(t H/dt b2 2k(n) } )

That means, the Hamiltonian which only depends on the tangent configurations,
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the effective Hamiltonian can be written as

Hof[t(n)] = Hit(n)] - Z(fw:((g)))

N—

_ Z%O(tm 1) —t(n))* = > bof - t(n)

N

(f - t(n))
= TR (3.11)

The last term is the coupling of elastic bonds and the external force. In an

n=1

extensible limit, k(n) is large and this term vanishes.
If the bond length by is small, we can consider the continuous model. We

parameterize the arclength s = nby for the unstretched configuration and write
the contour length r(s) of the extensible chain as r(s) — r(0) = /d’s?(%()—?)t(fe')

0
The fixed end is at s = 0 and the another end is at s = Nby = L. Then the

Hamiltonian given by the bending energy can be written as

Hy[t(s)] = /0 : dsg(ast)z. (3.12)

The stretching energy of semiflexible polymer with stretching stiffness k(s) is

Hile(s)] = /(f dsf%)g?(s). (3.13)

The energy terms related to the external force in the continuous limitting case is

Hy[t(s),e(s)] = —-[) ds(1 + e(s))f - t(s). (3.14)

The sum of the elastic energy of the bending and stretching semiflexible polymer
and the work of the external force gives the Hamiltonian for the extensible SHC

that parameterized in arclength of the unstretched polymer as

HIt(s),e(s)] = /0 ds [g(astf’ ’“(32) b2y (1t e(s)E-4(s)| . (3.15)
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If the stretching modulus k(s) are very large (in the inextensible limit),
the semiflexible polymer do not elongate then the relative bond extensions €(s)
can be omitted. The inextensible worm-like chain Hamiltonian becomes(see more

details in Marko and Siggia (1995))

L .
H; {t(s)} = / ds [g(ast)2 —f. t(s)] : (3.16)

0
Again, we can write the partition function of the continuous SHC not only sum
over all tangent configurations t(s) (subject to the local constraint |t(s)| = 1)

but also all possible bond lengths &(s) or relative bond extensions €(s),

2= [ Dit(s)6(1t(s)| =1), | Dlels)lexal-Hlt(),e(s) /kaT), (317
where [ D[t(s)] and [ D[e(s)] mean a "functional integral" over all configurations
of the tangent vectors t(s) and the fluctuation in bond length €(s), respectively.
In other words, the partition function in Eq. (3.17) is written in form of the
path integral. It is the sum over all possible paths. [ D[t(s)] and [ Dle(s)] are
the identifying notation that are [ D[t(s)] = [Z %ﬁl =, %ﬂ... . %ﬂ and
[ Dle(s)] = [, dails) s EEAAEZ... i 41(0) ' where A is the normalizing factor.

To obtain the effective Hamiltonian we can eliminate the bond extensions

€(s) degree of freedoms in Eq. (3.17) because it is Gaussian path integration
Z = [ Dle(s) expl-Hlt(s),e(s)]/haT)
= /D[e | exp [ / [g(@st)2 + k(s2) boe2(s) — (1 +¢(s))f - t(s)] /kBT]

- exp[ / s[E@er 1) /kBT]

- / Dle(s)] exp [— /0 s [isz)ﬂe?(s)—e(s)f.t(sﬂ /kBT]
— oxp [~ Hi {t(s)} /k5T] _

. / Dle(s)] exp [_ /0 " ds [’C(SQ) % 2(5) — e(s)E - 1(s)] /kBT]. (3.18)
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Since we have to discretize the polymer into monomers, i.e., into molecules
separated by bonds of fixed length [ such that the total length L is the L = NI.
This means we discretize all integrals over the arclength s by using As = [. For

the integral over an arbitrary function z(s) this means:

/L dsz(s Z Asz(nAs) Z lz(nl). (3.19)

In particular, we do this for the bond extensions €(s) and introduce a discrete set
of bond extensions €, = ¢(nl), tangent vectors ¢, = t(nl) and stretching modulus

k, = k(nl). Then the functional integral in Eq. (3.18) can be computed as

Z = exp|~H;{t(s)} /ksT)
-/D[e(nAs)] exp
= exp[—H;{t(s)} /ksT]

N

-/D[e(nl)] exp {— Zl {k—(n—lﬁ—og(nl) — e(nl)f-t(nl)} /ksT

~ Z As li{f_(_@z_{)_b_o 2(nAs) — e(nAs)f - t(nAs)} /kBT}

n=1

=1

= exp(—H;{t(s)} /ksT)

dey dey de,, Y kn by o
— ! —éf-t,| /ksT|,
[ S e SR ]
where the normalizing factor A = -217’:—’23— We choose a range of integration from

e(s) € (—o0, 00) for each bond and perform all the Gaussian integrations in Eq.

/_oo explaz® + bzr)dz = Eexp{-b2/4a]. (3.21)

(3.20) by using

(3.20)
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The result should be

Z = expl-H{i(s) /kBTﬁ(/ Too gy | e u )

N o) ()
= exp [——Hi {t(S)} /kBT] ]___[ exp (k_z)_ kn b

kT 2

= exp|—H; {t(s)} /ksT] ﬁ[( [ﬁ]) (3.22)

Inserting Eq. (3.22) into Eq. (3.17), the partition function will be

7 = /D[t(s)]Z

_ / Dlt(s)) exp [<H; {6(s)} /kBT]ﬁ<exp [%D (3.23)

N
Note H e¥i = eZﬁilzi_ We will obtain

=1

Zyy = | D[t<s>1exp{— I s [S(it(e) = £ (5] /kBT}exp{ %,‘;T)T}
Zeyy = / D[t(s)]exp{— /0 ds [E(a,,t(s))tf.t(s) (;k(ts()sm /kBT}. (3.24)

Therefore the effective continuous Hamiltonian becomes

Haps {8 = ds [g@t)?—f-t(s)—%g(%} (3.25)

which is analogous with the effective discrete Hamiltonian in Eq. (3.11) and has

also been derived in Netz (2001).

3.2 Large Force Limit
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For the strong stretchmg, > 1, the extension will approach the total length
and the tangent vector will oscillate only slightly around the force direction.
We choose the x-direction as same as the force direction and the tangent vector
t split into components, t = (t;,t,) and t; = (t,t,;). From the constraint
|t| = 1, the tangent vector fluctuations t, can be write in terms of 3, that is
t, = 1- 24+ 0(t!) or t, = (1—£2)}(Maier B., Seifert U. and Radler J.O. (2002))
and for the large force limit < #§ >< 1. Then we will obtain the effective

Hamiltonian Eq. (3.11) in t, as

Hopftam) = 302 (el v 1) —t bota(m) — 3 L)
erf {ti(n)} = n=1§); 1R ~t.(n))" Z oft(n) = ; 2k(n)
N-1 K 1
= s (1) = ti(n Zbof (1-1t1(n))?
N 1
(f( =13 (n))2)?
_; 2k‘E—n)
N f2 N-1 E
= ~boNf =D iy T 2 gg, (et Dt (m)
n=1 n=1
+ 3 ofertp (3.26)
=1 2 > , '

where the effective increasing force due to the coupling of the external force and

the elastic bond is

f
bok(n)

The first term -byN f or — L f described the potential of the fully stretched chain,

ferr = F(1+ )- (3.27)

the second term is the overall elastic energy of the bonds and f.sy in the last term
denotes the effective force arising from the coupling of the elastic bonds with the

external force.
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In the homogeneous bond case k(n) = k, we can integrate the parti-
tion function by performing the path integral over the degree of freedom t, (n)
(Feynman and Hibbs (1995); Sa-yakanit, Kunsombat and Niamploy (2000)); that
is
N
2) =11 [dtslexs (~Hops{eo}/haT).  @29)
n=1
We can write the partition function in terms of the classical path t° (n) and their

fluctuations 6t (n) as

20 = ew {5+ ggianf L [ amnen { sy
Iﬁl/d[&i(")] exp {—geff{(Sti(n)}/kBT}, (3.29)
where
Lf L

Hepp{t1(n)} = Hepp{t1(n)}

T XaT 2Tk’ (3.50)

and the boundary conditions are t (1) = t,(1), t°(N) = t, (V) and 6t (n) =
t1(n) —t1(n).
Fourier transforms will be needed to calculate things more complicated as

the partition function Eq. (3.28), in particular to calculate correlation function

like

ot )y o J Plec()tr(n) <ty (7) exp{—Heps{t 1 (n)}/ksT}
(b L) T DIt o= Hy o mI/ksT

for the effective Hamiltonian Eq. (3.26). For the discrete set of t, (n) with N

(3.31)

degrees of freedom, we also have N degrees of freedom in Fourier space and the

magnitude [g| < . The allowed wave vector will be

2
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Using the Fourier transform t, (¢) of the discrete version t, (n) is defined as

m=N/2

1 -~ 2mm .2mm
t, (n) = z _ZN/Z tJ_( I ) exp{z I le()}
= % Z t1(q) exp{ignbo}
g.lql<z;
EJ_ (q) = Z b()tJ_ exp{ zqmbo} (333)

Some important relations are

%Zexp{iqs} = 4(s)

1

7 Z exp{ignby} = %5,170
alal<55
L
/ dsexp{—igs} = Ld,p
0
> boexp{—ignbo} = Ligp. (3.34)

The Fluctuation Partition Function
After Fourier transforming (see more details in appendix B) of the last
term of Eq.(3.29) , the fluctuation term, we get the partition function for the

Hamiltonian

I:Iflu—eff {5E¢(Q)} = bgiL Z ((l—cosqb)+ 0feff>

. 2K
lal<55:9>0

( (Re 6%, (g))” + (Im 5El(q))2) , (3.35)

which is the Fourier transform of the discrete Hamiltonian

N-1

Hjpess {61 (n)} =22b (8ti(n+1) -6ty (n +Zb°feff 5t% (n) (3.36)

n=1
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Zpu = / Dét 1 () exp{—Hjiu—css [0t.(q)/k5T]}

N
- ( I1 /dReah(q)dImah(q)

o,lal<55,9>0

exp {—bgLI;BT ; ((1 — cos gbg) + 1)52%’:) ((Re 8t.(q))" + (Imdﬁ(q))2) }

5 K b3 fets :
B - 2fert\ =
= l I (/ dot, (g) exp {_bngBT E ((1 — cos gbg) + P ) tl}) :
olal<55-9>0 q

(3.37)

Here we use the fact that, the exponential factor is completely (this is the

advantage of the Fourier transform) and for the limit L — o0, note that

%Zqzzq%‘l—»f%% with Ag — 0.

N 2
=

2
K ((1 — cos ghp) + ﬂ’%&)

2

nlal<55.9>0
2LkgT
= exp Z In nbgLkp -
%:l9l<559>0 K ((1 — cos gbg) + ALEELL)
"/ d BLkpT
= exp L/ _q_ln ™ 0 kB . (338)
0

2m K ((1 —cos.gby) + %“)

Then we obtain the force-fluctuation partition function Zg,(f) in Eq.(3.38). In

the same way, we can find the fluctuation partition function Zy,,(0), that it is

/b dq wb2LkgT
Z 1 (0) = L 1 0 i )
pul®) e"p{ ) (3.39)
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In chapter 2, the free energy F can be expressed in terms of In Z:
F=—kgTlnz. (3.40)

Then we can find the free energy from the fluctuating free ends which is

Fpy, = F(f)—F(0)=kgTInZ(0) — kgTInZ(f)

Z(0)
= kgTln
()
7/bo d nb2LkpT
exp {L fO ’ Egr In (n((l—cosa;lbo))) }
= kgTln
exp Lfoﬂ/bo 29 1n rhgLkpT

)
n((l—cos qbo)+i£%u)

L ] bo) + bifess
= kpTL / A n <( cos gbo) + o
o 2m

(1 — cos gby)

b 2
= k5TL arcsin b [—0 (M) ] ' (3.41)
bo 2

K

The Classical Path Partition Function
For the clamped end, the classical path partition function t9(z) with

x = nby. For by small, the tangent vector satisfies the equation

1 K
PP = ;it(i(x) = 0, ‘where w*= 39 (3.42)
The solution is approximately
t9 (z) = t5 (1) exp{—2z/w} + t{(N) exp{—(L - z)/w} (3.43)

Inserting this solution into Eq.(3.30), we will get the effective Hamiltonian

gy (80} ~ Y1 (0 1)) + (18, (V))?). (3.44)
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In chapter 2, the free energy F' can be expressed in terms of In Z:
F=—-kgTlnhZ (3.40)

Then we can find the free energy from the fluctuating free ends which is

Fra = F(f) = F(0) = kgTn Z(0) — ksTIn Z(f)

Z(0)
= kgTIln—=
Tz
w/bo d 7rb2QLk T
exp {L fO b -2—7% In (K((l—co:}bo)))}
— kzTh
exp L foﬂ/bo %’%ln b3 LkgT

b2
n((l—cos qb0)+0—2iLL>

m/bo T — ba) + b3fess
= kgTL f dg \ (L~ cosdbo) + =5,
o 2w (1 — cos gbg)

T 3
= kpTL arcsinh Yo (fets . (3.41)
bo 2

K

The Classical Path Partition Function
For the clamped end, the classical path partition function t9(z) with

z = nby. For by small, the tangent vector satisfies the equation

1 K
925 (x) — Ft(’l(z) = 0, where @’ = 25 (3.42)
The solution is approximately
t9 (z) = t] (1) exp{—z/@} + t (N) exp{— (L — z)/w} (3.43)

Inserting this solution into Eq.(3.30), we will get the effective Hamiltonian

Hegs 62 )} = 0L (80 (1)) 4 (2 (V))?). (3.44)
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Again, to obtain the free energy from Z = [],,_, y [ dt} (n) exp { Hs5 {t% (n)} /kBT}
and Fy = F(f) — F(0) = ksTIn 53 Finally we will get,

K

b2,
F.,=kgTLIn [0—”] (3.45)

Therefore the Free Energy of the system for the large stretching forec will be

2
()= FO) = —f = 50=+ Fuu+ Fu

Y R S ATA
— f 2kb0 b arcsin h [7( - )

b2
+kgTIn [—OJ] .

K

(3.46)

From the thermodynamic relation Eq.(2.10), we will obtain the force-extension

relation in the large forec limit as

Ly _  OfF
L L
f o ksT ([ 3 0f fors\ 7 _ksT ([, 2f
= 14—~ 1+=-—] |14+ ——"= ~ 1+—.
b T 2R\ 2kbo - Forr U T
(3.47)
We will discuss it more in the detail in the last chapter.
3.3 Small Force Limit
For the small stretchmg, < 1, we consider the continuous model and the

homogeneous bonds &(s) is constant = k', the free energy can be calculated from

the effective continuous Hamiltonian in Eq.(3.25) and it satisfies the relation

exp {[F(f) — F(0)]/ksT} = (exp {Hy/ksT});_,, (3.48)
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where Hy = — fOL ds [f -t(s) + é{_t_&ﬂ)j] . We expand the energy in the force up to

k(s) bo

the second order by using the cumulant expansion

(exp Uy haTY) g = oxp {1 ) g = 5 (3T = (B k)

(3.49)

and then (see Eq.(2.44) also) we will get,

F

F(f) — F(0)

_/o dSQ_lclb; $))*) =0 2kBT/ ds/o ds'((f - t(s))(f - t(5))) ;0
f2L szp T

~ein " 3L LelD), (3.50)

where E,, = L,/2 and a function

£z) = (1—z+ze’'/?)

l—-z forzk1
3 forz > 1

The average (...) f—o 1s taken in the absence of force by using

()6 1o = 5 030 { =I5 = 81 /L, } 35 (3.51)

From the thermodynamic relation in Eq.(2.10) we will obtain the force-extension

relation in the small force limit as

_f 2fL
= Sk T 3rort e/

N 6N A Tﬁ‘— for L > L,
T 3kbo

e~

BT)?

( 3.52
E‘B&T for L <L, (3:52)

Wi ol

We will discuss in more details in the last chapter.



Chapter 4
The Variational Approach

4.1 The Variational and Transfer matrix
Calculation

In this chapter, we will discuss the study of the semiflexible polymer with ex-
tensible bonds under tension based on the condition that the self-interactions or
the excluded volume effects are negligible. By using the variational methods,
we consider the bound partition function Z(t,to, L) of the extensible SHC and
use the boundary conditions of fixing the first and last unit tangent vectors of
polymer ends: t(0) = t, and t(L) =t. Then we can write

(t;L)
Z(t,to, L) = /( |, DOt = Do (= Huys (o)} /hsT) (41

where the effective Hamiltonian H.s; = fOL ds ['—2‘((5?51;(3))2 —f-t(s) — %)—ZE]
Consider the special case where the initial length differs only by an in-
terval As from the final length. The partition function Z is proportional to the
exponential of energy for the interval 0 to L. For a short interval As = s — ¢/, the
energy is approximately As times the Hamiltonian for this interval.
The probability distribution % for the tangent vector at s is
bt = / " dto (6, to, LYo (t6, ) (4.2)

[ o}
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Using the approximation, we have

<1 As t—ty t+ty s+
. ! = t 3 '
P(t, s’ + As) / 7 eXP [ kBTH( As ' 2 0 3 )} Y(to, 8')dtg

_ /: - exp {_kﬁ%g—(a ¢(s)) ]

28 (f (s AsH%‘%)] W(to,s)dte  (4.3)

ex A
P LT

. . . /L As)—t (s .
where A’ is a normalizing factor, 9t(s) = ﬂs—"L—A@s—is—l = —2—2 and At is small, we

will obtain
N 5 O47] [ as (€ t(5))”
vt '+ As) = /_w P [—ZkBT As e"p[kBT(f ¢+ "2) bo )J
Pt — At, s )dAt (4.4)

After that, we expand the probability distribution 1(t, s’ + As) in a power series

and need only keep terms of order As.

o 2
Y(t,s') + Asd(t,s) = / —l—exp[— 2 (At)]

A 2kgT As
As (f : t(s))z '
(1 + kBT(f t(s) + o) o ) ) w(t — At, s)dAt,
(4.5)
and then we expand ¥(t — At,s’) in a series
(At)

Yt — At, 8') = P(t,8') — Atdyh(t, s') + —-(t, ") (4.6)

Putting it in the previous equation, we calculated the r.h.s. and rewrite it. Finally
we will get the probability distribution 1 which satisfies a linear Schrédinger-like

equation:

i 2
~yptt) = [P p (g EED Ty

—Hypg(t) (4.7)
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where the angular momentum operator L = t x V¢ (Doi (1983); Fixman and
Kovac (1973) and Yamakawa(1976)), H is the Hamiltonian operator that cor-
responding to the quantum problem. We want to find the ground state energy
Ey of the linear Schrédinger-like equation in Eq.(4.7). We introduce the trial

probability distribution function.

ba(t) o< caplS (£ 1) (4.9)

where a is the variational parameter. The variational result of the ground state
energy can be found by minimizing the expectation value of the Hamiltonian

operator H with respect to a,

I RCAV LN
Vi { (¥ala) } )
(WalBa) _ —(Wull5 L2+ (F- ) + GETy,)
(Waltoa) Walba)
WU (4 X Vo) (b X Veltha) — (Wl (- ) — (ul G 4)
(Walta)
B AR (‘Z—Zf"‘ — S (f-t) = %(f-t)) a) (Wl - )9,
- 2 (Walta) (Walta)
(Yol Tiy ¥a)
(Waltha)
_ 2 kBT +( (kT2 o 1L )(¢a|(f-t)2¢a)
- kao (Yalta)
kBT (1, | f t)y
ARG A, )
X kBT (ksT)? f1"(af)
+( kao) I(af)
+( kBT l)f (4.10)

where I(af) = (¥o|t0a)-
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4.1.1 In Two Dimensions

We have I{af) = (¢, |v,) = 2nly(af) where Iy(af) is the Modified Bessel function

(Abramowitz and Stegun (1965)). Then, the variational free energy is
7 2 2 2
<"/)a‘H"/)a> _ Il(af) I:af(kBT) _ f ] _ f (411)

= +
Wb D@ | sx I 2afke| T 265
To find the variational free energy by minimizing the energy with respect to the

parameter a, set the new parameter y = a f then we can write the energy as:

_ L(y) [y(ksT)? - f?
b= Io(y) [ 7, [ & Zykbo] ~ 2kby (4.12)
thus
0E ?_[Il(y) (y(k‘BT)2_f AR
oy Oy |L(w) 8k 2ykby 2kbgy
() - 22 h(y) - BO)\ [y(ksT)? i }
B 2(y) s 2ykbo
(kpT)?
+[ 8k 2y2kb0] ( )
_(,_ 1Ly y)) [ (kBT) 3 f? ]
o = (1320 70) U o,
(ksT)? f? 5i(y)
+[ 8 2y2kb0J (I (y)) (@19
in case of weak stretching y < 1 then —%% ~ - 3{% = 99% — ...that is the Eq.(4.10)
will be ‘
(1 _ly ¥\ [yksT) f? (kT)* __ f* 1y
0~ (1 y2_4)[ P f+2kb0}+[ 8x —2y2kb0}(§)
-~ yksT)?* f f*  AksT)’ LA Ly ykeTE 7
T 16k 2 dykb, 32K 4~ 8kbg 16k 4ykby
L ukT? gy
8k 2 8kby
fo. ((ICBT)2 _
2 Y\ T8k T Bkby

- (ksT)?  f2\7'
y = 4f< p k_bo)
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At the minnimun af is

Afk Kf2 -
~ L 4.14
of = e (1 TaieTF) 1
Insert Eq.(4.14) into Eq.(4.12) to obtain the variational free energy,
Li(af) af(ksT)? f? f?
E - _ _
o) = Tap ™ e L% 2arkbe ] 2k
_ of @fkeTV o
2 8k 2(Ifkb() 2kb0
_ @PRsTY_oft f
N 16k 2 4kby
_ wf? . 7 7 2kf? . Kkf? -
~ (kgT)? kbo(ksT)? (kpT)? kbo(kgT)?
f2
_Z]:k—bo. (4.15)
From the force-extension relation
L IEo(f)
—L-f- = _—80f— (4.16)
then we will get
2k f2 Kf? =3 nfz nf2 -2
Ly f 0 <(k32})2 (1 B kbo(kJ;Tﬁ) ) 0 ((kBTP (1 h kbo(kBTV) )
T T ok of - of

f N 4k f - kf? - 4k%f3 . K f? 2
2kby  (kpT)? ( kbo(kBT)2) 3 kbo(kBT)4( B kbo(kBT)2>

2rf kf2 N7, 8k ff2 N\
~(kpT)? (1 p kbo(kBT)2) + m (1 - W) (4.17)
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Using the asymtotic expansion (1 + z)* = 1 + nx + @xz + ...

Q

Ly f f f? 4K2 f3 2K f2
T 7 %b T (kaTR (1 * k:bo(kBT)2> ~ Fbo(ksT)? ( * kbo(kBT)2)

26 f 2K f? 8k2 f3 3k f?
T (haT) (1 N kbo(kBT)2) ~ bo(kpT) (1 N kbo(kBT)2>

. f N 4k f N APfP AR kS
T 2kby ' (kgT)? ' kbo(kT)*  kbo(ksT)* (kpT)?
83 f° 4K2 f3 8k2f3 N 24K3 f5
(kbo)?(kgT)®  kbo(kgT)* = kbo(ksT)* ~ (kbo)*(ksT)®
2 3 3¢5
~ f N 2sf e 4k f 16x° f (4.18)
2kby  (kgT)? ~ kbo(kgT)* = (kbo)?(kgT)®

The force-extension for the weak stretching is

L 2 4 213 3 £5

o R . | 16~/ (4.19)

L 2kby (kgT)2 = kbo(kgT)* ' (kbo)2(kgT)®

In case of strong stretching y > 1,where I,,(z) ~

\/ﬂZ
and pu = 4v? then I)(y) = \/%{1 Sy} I(y) ~ m{1+§y_} and #%%

2! (8z)2

{1_1u;z+g_w_92
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B Li(y) [y(kBT)2_ f? }_ f?

Io(y) 8k f + 2ykb0 2kb0

(8y—3) [y(kBT)2 iy f? } L f?

8y +1 8k 2ykby 2kby

9E _ & K&/—s) [y(kBTV W, 7 } L }

Ay Jy |\ 8y +1 8k 2ykby 2kbg

(8(8y +1) — 88y - 3)) {y(kBT)z . f_w
(8y +1)2 8K 2ykbyg

L (83 (ksT)® f?
8y +1 8k 2y2kbg
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- (R e

f2
a 2y2ka

3f?

2K Y y?kby K ykbo 8k

- Bl lhy- Lo L

- Bl -2 (1+k—’;5>

y(ksT)*> _ 4f f
. = (1+k—bo)

_ 2\/f_l~’~
y = kBT(1+k—bo)

Nl

At the minimun af is

(ksT)? 4f 2f°  yksT)  4f*  3(ksT)?

2y2kbo

(4.20)

(4.21)



Insert Eq.(4.21) into Eq.(4.12) to obtain the variational free energy,

I(af) {af(kBT)Q_ P ]_ 7

Iy(af) 8K 2a f kb 2kby

(e =3) [elteat ., )
8af +1 8k 2a fkbg 2kbg

Eo(f) =

41

f2

B 3 1\ [af(ksT)? f?
) (I_E)(l_w)[ B _f+2afkbo]—

_ af(ksT)? f? f?
= (1 2af) [ o 2afkb0] kb
_af(ksT)? f f (ksT)*  f*
8k ~f+ﬁ(l+k_bo)— 16k 2kbo

2 kTP \/ZkBT(H;%g)%
K 2

2kb() 16k
From the force-extension relation , then we will get

f kBTa(\/_(1+kbo)%)
" 2R 5F

o keT [ 1
Kby 2V [2\/‘
o f kT L% foa
= i o/ {(1+kb0) kb0(1+kb0) ]

Eo(f) = —F -

Ly
ot A
L ™

VT

1
* b Dk

% - )%+ (14

w7

2kbo

(4.22)

(4.23)

This coresponds to the the result for £ — co with an effective s

K

2
[(1 4 Lypz 4+ L1+ ;%)—1/2]

1 3f
- [“rbo]

< K.

Kefs

(4.24)

We may also find the exact free energy E numerically by diagonalizing H

in a representation by spherical harmonics ¥(¢)

= >"_9,.e™® which the angle
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¢ = arccos(f - t). Finally, we get the matrix eigenvalue equation

m*(ksT)*  f?
Z Ul gy O
f2

" 8kby

- g(ém,m’+1 + 6m+1,m’)

(5m,m’+2 + 5m+2,m’ )] (425)

4.1.2 In Three Dimensions

From the Eq.(4.10) and the Modified Bessel function in three dimension I(af) =

(%a9a) = 35 sinh(af) , the variational free energy is

(YalHva) _ _a2f2<k3T>2+(a2<kBT>2_ 1 )f?f”(af)
(Walha) 8K 8k 2%bo ) I(af)
a(ksT)? Y fI'(af)

+( i ‘1) I(af)

af(ksT)*  _f? 1 f?

To find the variational free energy by minimizing the energy with respect
to the parameter a. Set the new parameter y = af then we can write the energy

as:

<'(/Jal'(/)a> 4K ykbo 2kb0

Differentiate the above equation with respect to y
OF & [(uksT)? - f? N _
— Al th(y) — —
Oy Ay I:( 4k ykbo - ) | coth() v/  2kbg
AU i 1
0= ( o 2k, coth(y) i

y(ksT)> ~ f* 1 1
+ ( 4K + ykby f) (_sinhzy + ?) (4.28)

in case of weak stretching y < 1 then coth(y) =

3
i E+§gﬁ+...and we find that the minimum at af ~ (—"L) (1 Al

CALLA (y(kBT) i f) (Coth(y)_i) S um
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then the variational free energy is

5 - (af(kBT>2+ f° ) <L+g_i)__)i

4k afkbo

_ (afkgT)*  f? af f
B ( 4k +afkbg —f> (?)  2kby
(af)*(ksT)* _ f* af?

12 6kby 3
_ _i( 2k f (1__&)_1
= Gkbg 3 (kBT)Q 15kb0(kBT)2
_ 2% f? ol , 1
~ kb (3(kBT)2) (1 - W) (4.29)

From the force-extension relation

Ly = OB (/)
LF) of

(4.30)

then we will get
Ly _ o ( 4f N[y AP
L 3kby \3(kgT)? 15kbg(k3T
_ 2k f2 AT 4f2 _ 8fsk
3(kgT)? 15kb0 kgT)? Skbg kBT
Fo (4 (%
3kbo 3(kgT)? 15kb0 (kpT)?
162 £3 42 ~2
+ _ 6w /" 1-—- __4k (4.31)
45kby(kgT)* 15kbo(kgT)?
Using the asymtotic expansion (14 z)" = 1 + nx + ﬁg’;—_}lﬁ + -
Lf N f 4 4I€f 14 4f2ls:
L 3kb 3(kpT)? 15kby (kpT)?

16x2 f3 812k
+ (45kb0(kBT)4) (1 * 15kb0(kBT)2)

_ N 4k f N 162 f3 N 16x2 f3 L 128x3 f5

" 3kby  3(kgT)? ' 45kbo(kpT)* = 45kbo(ksT)* = 675(kbo)2(ksT)6
273

- 1 + Arf + 8k f . (4.32)

3kbo  3(kgT)2  45kbo(kpT)*
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Then, the force-extension for the weak stretching is

Ly  f 4k f (1+ 2Kk f2 )

L = 3kby | 3(kpT)? \' | 1okbo(knT)?

(4.33)

In case of strong stretching y > 1,where coth(y) =~ Le™® ~ 1 and

1—e—2y
1/2
sin}112y ~ ey(lfe_zy) ~ e%.a,nd we find that the minimum at a f =~ 2 ((T;T%) (1 +

then the variational free energy is

_ (af(ksT)? 4= 1 f?
E‘( ix *afkbo‘f>(1‘w)‘m

af(ksT)* — f? K f? f

= T4 affhy L T AT T (af )Pkl af  2kby

_ K f? af(ksT)? f? 1

= I WG e okt kT affh (1 - ZJ)

_ s 2 TP kf N £

= /- dksTYE " 2kby & ((kBT)2) (1 + E}) (4:34)

From the force-extension relation , then we will get

L f _kBTa(\/f(ler{;)%)

= = 14+
I ke T VR of
fo_ ksT [ 1 TS et f =z
= 1+ 23— | (14 L )F 4 (]
R A DN A TR T T
» kT e [z
= 14+ -—- 14+ — —(1+ = 4.35
e over |0 we T R (4.35)
This coresponds to the the result for ¥ — oo with an effective x
K
Reff = 2
[+t 1+ )]
3f
< K. (4.36)

We may also find the exact free energy E numerically by diagonalizing H

in a representation by spherical harmonics #(t) = 3, ,Yi(t) where ¢, are the
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expansion coefficients and where we have anticipated that the ground state must
have axial symmetry and thus no m = 0 components. Finally, we get the matrix

eigenvalue equation (see more details in appendix C),

Zwy BTy 41y

f I+ 1) 12
T o2l F D) (@ 3) T @)
f , ’
T D@ e T o U]
! [(ll+1)(ll+2)5zz+2 l(ll_l)&zf 2]}

2kbo((21 +1)(2L +1))2" 21 +3 21 —

(4.37)

The lowest eigenvalue Eg of which is the ground state energy.

The extension versus force curves for Eq. (4.35) and the numerical exact
results are shown in Fig. 4.1, Fig 4.2 and Fig 4.3 by using the mathematica
program (see more details in appendix D). For all of them, the force range is
[10,100], kT = x = 1( They do not real values, just only easy to show the
graphs), k = 100,000 and 10,000, where kg7 has the dimension of energy, « has
the dimension energy times length, k has the dimension energy devided by length

squared and f has the dimension energy per length.
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Figure 4.1: Characteristic shapes of the extension versus force in 3D is plotted
from Eq. (4.35)
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Figure 4.2: Characteristic shapes of the extension versus force in 3D is plotted
from Eq. (4.37)
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Chapter 5

Discussions and Conclusions

We have studied the effects of the external force when it is applied to
the semiflexible chain, the elastic bonds couple directly to the external force. We
introduce an extensible harmonic chain model and consider the problem in two
cases, strong and weak stretching and solved the problems by using the path
integral method and we also solved them by using the variational and numerical
method to obtain the partition function. After that, we find the force-extension
relation from the thermodynamic relation. In this section we summarize the
results, the force-extension relations.

For the strong stretching, %‘1 > 1, we find that the interaction

between bond extension and external force can be described by an effective inex-

tensible SHC model with increased stretching force.

Jess =1 (1 + kibo) : (5.1)

We obtain the force-extension relation,

1
Ly f keT 3 f b fers\ * _ ksT 2f
2 R 140 (1 0t} " BB 2T 5,
A T W ( +2kbo)( T e L i) B2

The bond extension, finite length and discrete structure affect to the semiflexible

polymer.

Inextensible Semiflexible Harmonic Chain
First, the effect from bond extension:

The relative extension in descrete SHC is E{_o If f <« kbg, the chain is an
inextensible polymer. The force-extension relation Eq.(5.2) shows in the inexten-

sible limit k — oo , a rather different f~! saturation of the entropic contribution
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at very high forces as compareed to the characteristic f~!/? saturation of WLC
models that is seen at lower forces.
For fb3/k < 4, the chain will be inextensible continuous SHC due to

the effect from the segment size by. The extension relation will be

Ly . kgT  kgT
L 2vfk  Lf
and for fb2/k > 4, the chain will be inextensible discrete SHC and the extension

(5.3)

relation will be

Ly o ksl kT
™ b, \ \Lf
ksT (1 1

£ LLL° 4 2R8I 4

7 (bﬁL) G4)

The behaviour at large force with the f~! saturation recollection of FJC force-
extensions. This is due to the fact that the correlation length becomes smaller
than the bond length and the force effectively stretched independent discrete
bonds as in a FJC model.
Second, the effect from finite length:

The extension relation of an inextensible continuous SHC is shown in
Eq.(5.3). For the long chain, L large and f > 7%, the bending rigidities are

small, we can neglect the finite size effect the relation will be

Lf i | ) kBT
I =1 N (5.5)

That is the well known result of Marko and Siggia (1995)
For L small and f < 73, the contour length smaller than the correlation
length. There are the finite size effect, the last term dominates. The relation will

be

=== (5.6)
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Therefore, we can write it as 1 — ELL o f~! for strong stretching. It is memory of
extension relation of FJC. That means, the chain conduct as a rigid rod. Then
we can say, the force stretches a single bonds of length L.
Third, the effect from discrete structure:

The extension relation of an inextensible discrete SHC is shown in Eq.(5.4).
For the long chain, f >> 73, the correlation length smaller than the contour length,

we can neglect the finite size effect the relation will be

Ly 4 kgt
7| e (5.7)

Note that, Eq. (5.7) is as same as the extension relation of FJC in strong stretch-
ing limit. The correlation length become smaller than the bond length. That is
the force stretches independent discrete bonds as same as in FJC model.
Extensible Semiflexible Harmonic Chain
The effect from bond extension:
If f > kby, that means the chain is an extensible polymer. The relative
extension in discrete SHC 7&% dominates or ELL o 751{3

For f.ssb3/k > 4, the extension relation will be

Ly 'y, f _ ksT (Hu) (_b_af_)“

L kby  2Vkf 2kby ) \ 4 &
oy L _EsT () 2f FAW
= 1+ e BT (1+ kbo) (1 + kbo> . (5.8)

Therefore, we can write it as 1+ Fb% - %ﬁ o 1. Comparing with the inextensible
case, the behaviour at large force with the f=! saturation recollection of FJC

force-extensions with new prefactor by, where

9\ !
beff = by (1_‘_76—5(;) (1"‘?2;)
= by (1 - %(;) (59)
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This is due to the fact that the correlation length becomes smaller than the bond
length and the force effectively stretches independent discrete bonds as in a FJC
model.

For f.;sb%/k < 4, the chain is continuous extensible SHC. The extension

relation will be (in absence of the finite size effect):

Ly . f  ksT 3 f
T_HF%‘zM(H%bO)' (5.10)

Comparing with the extension relation for worm-like chain by Marko and Siggia
(1995) and Odijk (1995). The second term is the elastic response of chain and

comparing with the inextensible case, the last term gives the reduced bending

NN
e =7 1 TR
Keff I‘L( +2kb0)

rigidity Kesy :

3f
= 1— — A1
“( k%) (5.11)
For the weak stretching, %f’- < 1 we obtain the force-extension relation
Lf f 2 fzp T
— = = 4 - L,/L
1 = Skby 3kprt Lol
_ f ) Smre for L> Ly (5.12)
3kbo Vs for L < L, '

The extension exhibits the typical linear response behaviour at low forces. The
first term is the effect from the elastic bonds and the last term represents the
contribution from entropic elasticity and the bending energy. The last line show
that the semiflexible polymers exhibit very different behaviour at weak stretch-
ing depend on their contour length L which might explain difficulties in fitting
experiment results for actin filaments (Liu and Pollack (2002)), which typically

have contour lengths comparable or smaller than the persistence Lp or L > Lp
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the response is mostly entropic whereas for L <« Lp it is governed by bending
energy. Note that, for the weak stretching the correlation length of bonds is much
larger than the bond length.

For the variational method, the strong stretching fTLTB > 1, in

three dimensions, we obtain the force-extension relation

Ly, f _ k8T g S Sz
T*1+kbo NS (1+kb0) +kb0(1+kbo) . (5.13)

Again, comparing with the extension relation for worm-like chain by Marko and
Siggia (1995) and Odijk (1995). The second term is the elastic response of chain
and comparing with the inextensible case, the last term gives the reduced bending
rigidity Kesy -

K = K l—ﬁ
eff = kbo

< K (5.14)
For the weak stretching, %L% < 1 we obtain the force-extension relation

1s

Ly _J ) (1+ 26/ ) (5.15)

T~ 3kby | 3(kpTE\ | 15kby(knT)?

The relation is linear with theexternal force:
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Appendix A:
The Correlation Function

We calculate the correlation function in real space (¢(s1)¢(sz2)) by Fourier

transforming G(q),

G(s1—s2) : = {(o(s1)é(s2)) =73 Z Z < > ig151—igas2

q1 q2

1 ’
- Z G(q)e'dls17%2) (A.1)

o
olal<g5

Then

{(B(s1) — B(s2))*) = 2(p(s1)¢(51) — d(s1)(52))

Laoo [% d
oS /;_7r %G( )2 (1 — cos (g(s1 — s2)))
% dgT bR
- o 2 2.(1 - -
/;w 27 k.2(1 — cos(gbo)) (1 —cos(g(s1 — 52)))
bo—*O dq T
/ 21 Kg? 72 (1= cos(g(s1 — 52)))
= (Sl © 32) (A2)

K



Appendix B:
Fourier Transform

From the fluctuation effective Hamiltonian

N-1

Hpuoss (0tn)} = 3 o0 (Stu(n-+1) — 6t n)* + Z Wit 53 (m), (B.1)
n=1
where
ot (n+1) Z 6t (q) exp {ig(n + 1)bo}, (B.2)
q lal <55
and
ot (n Z 6t (q) exp {ignbo}, (B.3)
q lgl<3- bo
ot (n+1)—dt (n Z &t (q) exp {ignbo} (exp {ighy} —1). (B.4)

q lal<75
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Then

Hitu_ess {6t (q)} = Z 6t (q) exp {iqnby} (exp {igho} — 1)

%.lql<55

Z 6t (§) exp {ignbo} (exp {igho} — 1)

<
b

+ Z —boéeff% Z 6t . (q) exp {ignby} % Z 8t () exp {ignbo}

n=1 g lal <5 olal<g;
N-
(exp {igbo} — 1) 6t1(q )5ti (@)

+ Z b‘;];‘jgf > ) exp {inbo(q+ )} 6t1(q)5tL(d)

Dlal<55 dlal<g;

b« l

~ x|
2bg

U EMZ

-Qn

exp {inbo(q + §)} (exp {igbo} — 1)

olal=55 4.ldl<gs

K’L(SQ‘HI',O \ ’ .
= SR Z Z exp {inbo(q + §)} (exp {igbo} — 1)

ala<E Gli<E

(exp {Z(jbo} — 1) (SEJ_ (q)(SEJ_((.]')

Lf.
FELLE ST S exp finbolg + 0)} 61,9511 (@)
@lal=55 Tlal<zs
= 2b2L Z (exp {igbo} — 1) (exp {—igbo} — 1)5ti( )5ti( q)
%lal=<55
feff > sti(g)sti(—q)
q|q|<
= sz Z (1 — cos gbg 5tl( )5E¢(—q)
alal <55

+f2‘3£f > ot (g)tL(~q)

@lal<55
B K fers\ <5 i
= Z,, (b%_L(l — cos gbo) + E) ot (g)0t L (—q)
@.lal<55
e () = 5 % (- congh) Bt
flu—eff 10V1\Q b2l g 2K
0 q7|q|<%’q>0

((Re 5t1(g))" + (Im 5El(q))2) . (B.5
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Now we can rewrite every functional integral over the function dt, (n) as an

functional integral over the fourier modes

/ Doty (s)f [6to(s)] : = (]‘[ / détl(n)) f[6tL(n)]

_ ( II /dReéEl(q)dIméfl(q))f[(sEL(CI)]

%lal=<55,9>0

_ / D6k, (q)f [6%.(q)] (B.6)

where f [6t1(q)] = f[0tL(s)] or f [6t.(q)] = f[6t.(n)] is the Fourier transfor-

mation of a functional f,for example f can be the Boltman-weight:

f16t1(n)] = exp{—H[6t1(n)/ksT]} = exp{—~H[6%1(g)/ksT]} = fI5tL(q)]
(B.7)
with the Hamiltonian H[6t, (¢)] from Eq.(B.5). Because we have real and imag-

T We will

inary parts for each 6t (g) but still have N point ¢ for |g| < i

have doubles the number of degrees of freedom. But, for real 6t (n) we have
6t1(q)* = 6ty (—q). We cannot integrate over all real and imaginary parts 6t, (q)
independently. That is the restriction ¢ > 0 to one half of the possible wavevectors

qg.



Appendix C:
The Metrix Equation

From the Hamiltonian in Eq.(4.7)

_ (I‘J'BT)2 2
H = Y, L+ (f-t) +

2
= &J;L)L2+f0030+

(f - t(s))*
2kby

(fcosh)?
2kby '

and the spherical harmonics 9(t) = 5 ¥/ (t) and Yy, = (2[“) P/z);

z = cos 6, then

~Bu(e) = <HU
BY v (2 i;“l) P ==Y u SR o s S 0
[ [

Some important relations are

L%, = —I{({+1)%,,
Y 9
P l g
/_1[ 2(2)] " dz el b ° cos 6,
1
5n1 (n+m)'
Pm Pm d — )
/;1 n(x)l<$)x n+%m(n_m)‘ ?

(n+1) Poyi(z) = (2n+ 1)zP.(z) —nP, (). (C.3)



We will get )

2/+1
EZIP"< 47
l
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Y,

_(k3732[([+-1) (fz)?
—Zwil 2K I kb, 2kbo

(ksT)? (+1)

[ r@ > w——sy

I/ /4 (f$)2] <2l+ 1) Px)dx

A

2i+1\! p
_ Zwi( - ) /_1Pl($)

(ks )% ({4 1) (fz)?
[ > - fz — M]Pi(x)dx

o fu 1\ (kBT)2l'(l'+ 1)
sz( AT ) 2k

| P@pt)~ 1 [ PEerE
L [ R@epEs)

3 (k37ﬁ2[([+-1) 20, ;

l
Zwl<2 :1) % A+1
l+1 P, (z) l'P'_(x)
f/‘}% [ 20 +1) .+(£j4)Jdl
oo (l’+1)
2kb0/ Pz(w){<2[—+1>

| (i+ 2) Piys(c) L U+ DP(a)
(20 +3) (21 +3)
1 Pz 4 (l,_ l)P[—2($):| Ndz,

L I P(z)
(20+1) [(2-1)  (2i-1)
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(eI

@ +1)% (keT? ((+1) s,

(2 [+ 1)
Eyy = ) 4y > [ . e

~f ((21:1)) /_ th(w)P' (z)dz
- (21'[5- 1) /_11 Flz)Ft, (2)dz

B f? (l'+ 1) (l'+ 2)

Pi(x)P; d
2kbg (2[-{- 1) (21+3) /1 (%) Py o (z)da
([ +1)2P(z) 1
- Pi(z)Py(zx)d
2kbg (2[+ 1) (21+3> / \(z) Py(z)dz
f2l’2 1
B B(z)P(z)d
2%kby (2[+1> (2[ 1) /_1 l(x) z(ﬂv) x
fR-1) 1
- Py(z) Py (x)dz]. C.4
2kby (2[+ 1) (21_ 1) /1 ((2) Py_y(z)da] (C.4)
Finally we obtain
EYy = Z¢l l+1)
f2 (I +1)? 12
~ 2kbo(21 + 1)((21 +3) + (2l — 1))]51,1'
f , ,
B (21 4+ 1)(21+ 1))1/2 [+ 1)61041 + U0rp—4]
f2 (ll+ 1)(['—}— 2) ll(l/ )
oo (@F F D@ T DA ar 3 ot g o)

(C.5)



Appendix D:
Mathematica Program

For Figture 4.1 Variational method

ClearAll[f, k, Ext, fer]
(+ k is kbo and fer is $2007 )
T=1;
fer = 1;
Extlk ,f |=1+ f/k- 1/(2) *(fer /f)~(1/2)
(1 + 40)~(1/2) + (A1 + 119~ (1/2);
gvFit = Plot[Ext[10000, ], {f, 10, 100}, PlotStyle -> {RGBColor[0, 0, 1]},
Ext[100000, f], {f, 10, 100}, PlotStyle -> {RGBColor[0, 1, 0]},

AxesLabel->{"force","extension"}|;

For Figture 4.2 Numerical method
ClearAll[g,f,k,a,b,nEmin, T kappa,i,j,d]
k=10000 (x k is kbgx)

T=1;

kappa=1;

Dim=11

nEmin= { };

H={ };

x={};

For[ m=-Dim+1;b={ },m<Dim,m++,

Do|
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gfm_,n_] := Which[n==m H:Append[H (G ) -

2kappa

f~2 m+1
(Zk(2m+l)) (((2m+3 2m 1) )]

m==n-1 ,H=Append[H,(-

) ( (2n+1 (2n111+l))‘(l/2))]’

L _ (-)*(n+1)
m==n+1 ,H=Append[H, mmmy=a7m)»

L o -£~2/(2k))*n(n-1)
m==n-2, H=Append|[H, 211-1)(((2ni(1)()2)m+(1))‘(1/2)]

- (-£~2)*(n+2)(n+1)
m==n+2, H=Append[H, 5~ 2n+3)((2n+1)(2;+1> 1/2>]

True , H=Append[H,0]];
g[m,n];a=H ,{n,-Dim+1,Dim-1}
i
b=Append|b,al;
H={}
]
d=Eigenvalues|-b|;
j=DId,f};
For[f=10, f<101, f+=1, i=Chop|N[Max][j]]]; nEmin=Append[nEmin,{fi}]];

gnEmin5=ListPlot[nEmin,AxesLabel->{"force","extension" }|;
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