CHAPTER IV

RESULT AND DISCUSSION

The 10 kg of dried ground entire plant of *Bidens biternata* Merr. & Sherff was marcerated with methanol. The methanol extract was then partitioned with the process that showed in section 3 chapter 3. BB-1 and BB-2 were separated from chloroform crude extract. Compound BB-3 and BB-4 were separated from methanol extract. The structure elucidations of the isolated compounds were discussed as follow.

1. Structure Elucidation of BB-1

BB-1 was obtained as white amorphous compound from F-007 (Table 3)by chromatographic techniques using silica gel column (gradient system of hexanechloroform-methanol) to yield 200 mg (2×10^{-3} % based on dry weight of *B.biternata*).

The infrared absorption spectrum of BB-1 (Figure 5) exhibited O-H stretching at 3400-3200 cm⁻¹, C-O stretching at 1,062 cm⁻¹, C-H stretching of methyl and methylene groups at 2,918, 2,849 cm⁻¹, C-H bending of methyl and methylene groups at 1,473, 1,464 cm⁻¹ and C-H rocking of methylene groups ((CH₂)_n, n>4) at 720 cm⁻¹

The ¹H-NMR spectrum of BB-1 (Figure 6) showed the signal of proton attaching to oxygenated carbon at δ 3.62 ppm (t, J = 6 Hz) which coupled to methylene protons with the coupling constant of 6 Hz. The signals at δ 1.35 and 1.23 ppm were the signals of methylene protons. The signal at δ 0.85 ppm (t, J = 6 Hz) is the signal of terminal methyl group that coupled to methylene protons.

The IR and ¹H-NMR data suggested that BB-1 was long chain alcohol. The EIMS showed the different spectra (Figure 7). It indicated that BB-1 was the mixture of at least 2 compounds. Both spectra showed characteristic fragmentation pattern of long chain compounds by the clusters of peaks, and the corresponding peaks of each cluster were 14 (CH₂) mass units apart because the loss of CH₂=CH₂ (Silverstein *et al.*, 1991). The example were m/e^- 139, 125, 111 (139 - CH₂=CH₂), 97 (125 - CH₂=CH₂), 83 (111 - CH₂=CH₂) and 69 (97 - CH₂=CH₂).

The gas chromatography was used to identified this mixture of long chain alcohols by comparing with the authentic long chain alcohols (C_{14} , C_{16} , C_{18} , C_{20} , C_{22} and C_{30}). The retention times of compound BB-1 were 11.67, 19.20, 25.50 and 32.57 minute. From the linear graph of log retention times and number of carbons of autentic long chain alcohols (figure 4) indicated that BB-1 was the mixture of C_{26} - C_{30} long chain alcohols as follow, the relative amounts were calculated from area under peaks of GC chromatogram.

C ₂₆ H ₅₃ OH (hexacosanol)	4.8%
C ₂₈ H ₅₇ OH (octacosanol)	68.7%
C ₂₉ H ₅₉ OH (nonacosanol)	2.9%
C ₃₀ H ₆₁ OH (triacotanol)	23.6%

2. Structure Elucidation of BB-2

BB-2 was obtained as white needles from F-008 (Table 3) using a silica gel column (gradient system of hexane-chloroform-methanol) and was recrystallized in hexane to yeild 70 mg (7 x 10^{-4} % based on dry weight of *B.biternula*). It gived green color to Libermann-Burchard's test. Thus, it tended to be the steroidal compound.

The IR spectrum of BB-2 (Figure 10) suggested that functional groups of BB-2 were hydroxy group, methyl group, methylene group and alkyl group.

Table 7The IR spectrum's assignment of BB-2

range of absorption (cm ⁻¹)	intensity	assignment
3500-3200	medium	OH stretching of R-OH
2960-2860	high	CH stretching of CH ₃ , CH ₂
1640	weak	C=C stretching of alkene
1460	medium	C-H bending of CH ₃ (asymmetric), CH ₂
1380,1370	medium	C-H bending of CH ₃ (symmetric)
1060	medium	C-O stretching
970-960	weak	out-of-plane C-H bending of trans-disubstituted
		alkene
840,800	weak	out-of-plane C-H bending of trisubstituted alkene

The ¹H-NMR spectrum of BB-2 (Figure 11) showed the signals at δ 0.65-1.01 ppm which were the signals of methyl proton that substituted at C-18, C-19 and at side chain of the steroidal compounds. The signals at δ 1.1-2.3 ppm were the signals of methylene and methine proton of steroids. The signal at δ 3.51 ppm (m) was the signal of proton at C-3. The olefinic signals at δ 5.14 ppm (dd, J = 15.1, 8.0 Hz) and δ 4.98 ppm (dd, J = 15.1, 8.0 Hz) are *trans*-disubstituted vinyl protons (H-22 and H-23). And the olefinic signal at δ 5.33 (br d J=6.2 Hz) could be assigned as H-6 which was trisubstituted vinyl proton.

The ¹³C NMR spectrum of BB-2 (Figure 12) showed the signals that were close to the signals from β -sitosterol and stigmasterol (Table 8).

Carbon	Print Part Star	Chemical S	hift (ppm)
	β-sitosterol	stigmasterol	BB ₂
1	37.1	37.4	37.25
2	31.8	31.7	31.65
3	71.9	71.8	71.78
• 4	42.4	42.4	42.3
5	140.9	140.0	140.76
6	121.8	121.7	121.69
7	32.0	31.9	31.87, 31.9
8	32.0	31.9	31.87, 31.9
9	50.3	50.3	50.14, 50.16
10	36.6	36.6	36.51
11	21.1	21.1	21.21, 21.07
12	39.9	39.8	39.78, 39.68
13	42.4	42.4	42.3, 42.21
14	56.8	57.0	56.77, 56.86
15	24.3	24.4	24.29, 24.36
16	28.2	28.9	28.23, 28.90
17	56.2	56.0	56.07, 55.96
18	11.9	12.2	11.97, 12.23
19	19.4	19.4	19.38

Table 8 The ¹³C NMR chemical shifts of β -sitosterol, stigmasterol and BB-2

Carbon		Chemical	Shift (ppm)
ан — А. Б. ^А . К	β-sitosterol	stigmasterol	BB ₂
20	36.2	40.5	36.14, 40.47
21	19.1	21.1	19.03, 21.07
22	34.0	138.4	33.95, 138.30
. 23	29.3	129.4	129.28, 29.67
24	50.3	51.3	51.23
25	26.2	31.9	26.09, 29.69
26	18.8	19.0	18.77, 18.97
27	19.8	21.1	19.8, 21.07
28	23.1	25.4	23.07, 25.4
29	11.9	12.0	11.85, 12.03

Table 8(continued)

MS spectrum of BB-2 showed the characteristic fragmentation peak of C₂₉ steroid. The molecular ion peak observed at m/z 414 indicated that compound BB-2 was consist of β -sitosterol. The peak at m/z 412 did not agreed with β -sitosterol. It tended to be the molecular ion peak of stigmasterol. The proposed fragmentation of BB-2 are shown below.

From the spectroscopic data, BB-2 was proposed to be the mixture of steroids. The identification of this compound was done by means of gas chromatography. By comparing the retention times with the authentic steroids, BB-2 was identified as the mixture of 25.8% β -sitosterol (21) and 74.2% stigmasterol (22).

3. Stucture Elucidation of BB-3

Compound BB-3 was obtained as golden-yellow needle crystals from F-028 (Table 6) by repeated chromatographic techniques using sephadex LH-20 with 10% methanol in chloroform and 5% methanol in chloroform as eluents to yield 8 mg (8 x 10^{-5} % based on dry weight of *B.biternata*).

The APCI spectrum of compound BB-3 (figure 32) exhibited the $[M+H]^+$ at m/z 533(22%) and established the proposed molecular formula of C₂₅H₂₄O₁₃. The UV adsorption bands at λ max 250 nm (log ε 4.03) and 408 nm (log ε 4.39) (Figure 16) showed the characteristic of an aurone chromophore. The bathochromic shift (50 nm) of the band II in the UV spectrum with the presence of AlCl₃ (Figure 17) was effected

from the acid-labile AlCl₃ complex with B ring *ortho*-dihydroxy groups which disappeared when added hydrochloric acid (Markham, 1982).

The ¹H NMR spectrum (Figure 18) showed signal of 19 protons, of which six were aromatic or olefinic and thirteen were aliphatic. The singlets at δ 2.01 and 2.03 ppm with the intensity of three protons indicated that there were two acetyl groups. The signal at δ 5.69 ppm (d, J = 7.9 Hz) (Figure 20) showed the characteristic coupling constant of the anomeric proton H-1" of a β -glucose. The six signals of protons attached to oxygenated carbon at δ 4.1-5.52 ppm could be assigned as signals of glucose moiety's protons. The proton H-2" at δ 4.12 ppm (dd, J = 8.6, 8.0 Hz), H-3" at δ 4.37 ppm (dd, J = 9.1, 9.2 Hz), H-4" at δ 5.52 ppm (t, J = 9.8 Hz) showed the large coupling constants indicated *trans* relationship with their adjacent protons. The sugar proton assignment was confirmed by ¹H¹H COSY (Figure 22) that showed correlation between the 2-3 bonds neighbouring protons. The acetyl groups were supposed to be located at C-4" and C-6" because the typical downfields of C-4" methine proton and C-6" methylene protons were observed.

The expansion of ¹H NMR spectrum (7.1-8.2 ppm) (Figure 19) showed signals indicative of the presence of 2,5,6-related aromatic protons, *ortho*-related protons, and one olefinic proton. By comparison of the recorded data with literature values, 1H- signal at δ 7.6 ppm (dd, J = 8.2, 2 Hz) could be assigned as the signal of H-6' proton of ring B that *ortho*-coupled with H-5' (δ 7.13 ppm, d, J = 8.2 Hz) and *meta*-coupled with H-2'(δ 8.09 ppm, d, J = 2 Hz). The singlet at δ 7.18 ppm was assigned as the signal of exocyclic olefinic proton (H-10). The two isolated *ortho*related proton at δ 7.46 ppm (d, J = 8.3 Hz) and 7.36 ppm (d, J = 8.3 Hz) were H-4 and H-5 of ring A respectively. The assignment of H-4 and H-5 will be discussed later. The relationship of aromatic protons were confirmed by ¹H-¹H COSY(Figure 23).

The ¹³C NMR spectrum of BB-3 (Figure 24) indicated twentyfive carbon signals. The two acetyl functional groups were confirmed by the presences of carbonyl ester carbons at δ 170.34 and 170.55 ppm and methyl carbons at δ 20.68 and 20.81 ppm. The signal at δ 103.2 ppm was the signal of anomeric carbon C-1". The five signals at δ 60-75 ppm were the signals of *sp*³ oxygenated carbons of glucose moiety. The assignment of glucose carbons was achieved by ¹³C-¹H COSY experiment. From the expansion spectrum of ¹³C-¹H COSY (Figure 26) the signals at δ 74.56, 75.30, 71.56, 73.09 and 63.04 ppm could be assigned as the signal of C-2", C-3", C-4", C-5" and C-6", respectively since they showed correlations to their proton signals.

The fifteen sp^2 -carbons were the carbons of aurone moiety. The ketone carbonyl carbon at δ 184 ppm was unambiguously assigned as C-3 from its typical chemical shift. The methine sp^2 -carbon at δ 113.60, 113.84, 114.40, 116.95, 119.35 and 125.62 ppm was assigned by the 1-bond C-H correlation from ${}^{13}C^{-1}H$ COSY (figure 26) to be C-5, C-10, C-4, C-5', C-2' and C-6' respectively. The remaining six oxygenated quarternary sp^2 -carbon (δ 135-160 ppm) and two non-oxygenated quarternary carbon (δ 119.14 and 124.67 ppm) were assigned by the aid of ${}^{1}H^{-1}$ detected multiple bond heteronuclear multiple quantum coherent (HMBC) experiment.

From the HMBC operated at J = 5 Hz spectrum (Figure 27) exhibited the C-H long range (2-3 bonds) correlation of BB-3. The correlations of carbonyl ester carbons of acetyl groups at 170.34 and 170.55 ppm to H-4" and H-6" of sugar moiety respectively confirmed that the acetyl groups attached to 4" and 6"hydroxyl position of glucose. The C-H correlations from HMBC spectrum (Figure 28) of sugar moiety (23) are shown below.

The carbon signals of the aurone moiety were unequivocally assigned by the HMBC operated at J = 5 Hz and 8 Hz. The expansion of HMBC operated at 5 Hz spectrum (Figure 29) exhibited the correlation of methine aromatic proton at δ 7.46 ppm (d, J = 8.3 Hz) to the ketone carbon C-3, thus this methine proton was assigned as H-4 proton that coupled to H-5 proton at δ 7.13 ppm (d, J = 8.3 Hz). H-4 and H-5 protons also showed the correlation to oxygenated quarternary carbon at 153.06 ppm thus this carbon was assigned as C-6 carbon. The oxygenated quarternary carbon at δ 135 ppm could be assigned as C-7 from its correlation to H-5. This C-7 assignment was supported by the fact that the chemical shift of this carbon was relatively upfield

from any oxygenated carbon because of mesomeric effect of electron donating group at C-6 and C-8. The oxygenated quarternary sp^2 carbon at δ 147.49 ppm was assigned as C-2 since there was the correlation between this carbon and H-10. The C-H long-range correlations from HMBC operated at 5 Hz of aurone moiety (24) are shown below.

By the HMBC operated at 8 Hz spectrum (Figure 31), the two oxygenated carbons, C-3' and C-4' could be assigned from the fact that C-4' (δ 149.62 ppm) showed the correlation to H-6'. The C-3' was the carbon signal at δ 146.83 ppm, thus the rest oxygenated quarternary *sp*² carbon (δ 156.22 ppm) was assigned as C-8 which correlated only H-4 proton. The assignments of C-1' and C-9 unoxygenated carbon were clear from the correlation between H-5' to C-1' (δ 124.67 ppm) and H-5 to C-9 (δ 119.14 ppm). The relationship of carbons and neighbouring proton of aurone moiety from HMBC operated at 8 Hz (25) are shown below.

46

Both HMBC at 5 Hz and 8 Hz spectra showed the correlation of 1" β -anomeric proton of glucose to C-6. It indicated that sugar moiety attached to the 6-hydroxyl position of aurone. Consequently, the structure of compound BB-3 is, then, identified as (Z) -6-O-(4,6-O-diacetyl- β -D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone which is a new member of aurones. The proposed configuration is Z-isomer because in the *E*isomer protons H-2' and H-6' are deshielded by the carbonyl group and have a chemical shift of δ 8.15 (Brady et al, 1973). This geometric isomer is confirmed by the chemical shift of C-10 (113.84 ppm). According to Pelter and Ward (1979), the exocyclic olefinic carbon atom of *E*-isomer locates at more greater down field than this (about 120 ppm). The structure of BB-3 is shown below.

(Z) -6-O-(4,6-O-diacetyl- β -D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone (26)

The summary of carbon and proton assignments including correlations between protons and carbons by HMBC spectrum are shown in Table 9.

Positiond	δC(ppm)	δ H(ppm) (multiplicity,	long-range correlation from H to C in	long-range correlation from H to C in
		J Hz)	HMBC spectrum	HMBC spectum
			(J = 5 Hz)	(J = 8 Hz)
2	147.49			
3	184			
4	114.40	7.46(d,8.6)	C-3, C-6	C-3, C-6, C-8
5	113.60	7.36(d,8.6)	C-4, C-6, C-7, C-9	C-7, C-9
6	153.06			선생님이 모양 관람

 Table 9
 Carbon and proton assignments of BB-3 and long-range correlations

 between protons and carbons in HMBC spectra

Position	δC(ppm)	δ H(ppm)	long-range correlation	long-range correlation
		(multiplicity,	from H to C in	from H to C in
		J Hz)	HMBC spectrum	HMBC spectum
	1		(J = 5 Hz)	(J = 8 Hz)
7	135.54			
8	156.22			
9	119.14			1. 이상 여자 1. 1.
10	113.84	7.18(s)	C-6',C-2, C-3	C-6', C-2, C-3
1'	124.67			
2'	119.35	8.09(d,2)	C-3', C-4', C-6', C-10	C-3', C-4', C-6',
				C-10
3'	146.83			한 김 상태가 관광하
4'	149.62			
5'	116.95	7.13(d,8.2)	C-3', C-4'	C-1', C-3', C-4'
6'	125.62	7.6(dd,8.2,2	C-2', C-10	C-2', C-4', C-10
1"	103.2	5.69(d,7.93)	C-6	C-6
2"	74.56	4.12(dd,8.8,	C-3"	C-1", C-3"
		8.2)		5. 영화 영화 영화
3"	75.30	4.37	C-2", C-4"	C- 2", C-4"
		(dd,9.1,9.2)		
4"	71.56	5.52(t,9.8)	C-3", C-5", C-6",	C-3", C-5", C-6",
	다 아이들이 같		4"-O-carbonyl	4"-O-carbonyl
5"	73.09	4.24(m)		
6"	63.04	a)4.46	C-5", 6"-O-carbonyl	6"-O-carbonyl
		(dd,12.2,5.6)		동안 같이 다 같이 많이 것
		b)4.42		김 혼란 동물 중 관람들을
		(dd,12.2,2.4)		상태 영상 중 전쟁이다.
4"-O	170.34		성수는 이 것은 가 바람을 것을 수 있다. 1999년 - 1999년 - 1999년 1999년 - 1999년 -	
carbonyl		한 것이 사망했다.	. C. 영상, 영상, 영	
6"-0	170.55			
carbonyl	a antina La constante da constante La constante da constante da constante da constante da constante da constante da const			
CH ₃ of	20.68,20.81	2.01(s),2.03(s)	C-carbonyl of	C-carbonyl of
acetyl gro	up		acetyl group	acetyl group

Table 9 (Continued)

This proposed structures of compound BB-3 was finally supported by mass fragmentation (Scheme 4) from EIMS (Figure 33). The loss of sugar moiety caused the fragment at m/z 286 (2%). The retro Diels-Alder cleavage of the aurone provided the fragment at m/z 152 (3%) and 134 (2%). The fragment of 116 (8%) was caused by the loss of H₂O of fragment at m/z 134.

4. Stucture Elucidation of BB-4

BB-4 was obtained as orange compound from F-028(Table 6) by gel filtration chromatographic techniques using three columns of sephadex LH 20 with eluants of 50% methanol in chloroform, methanol and 5% water in methanol respectively. It yielded 23 mg (2.3 x 10^{-4} % based on dry weight of *B.biternata*).

The APCI spectrum of compound BB-4 exhibited the [M-H]⁺ at m/z 489 and established the proposed molecular formula of C₂₃O₁₂H₂₂. The UV absorption bands at a λ max 244 (log ε 3.99) and 409 (log ε 4.26) exhibited the characteristic of an aurone chromophore. The 43 nm bathochromic shift on UV spectrum in the presences of AlCl₃ showed the existence of free *ortho*-hydroxyl group in B-ring. The IR spectrum also exhibited the band at v 3400(broad), 1649 cm⁻¹ indicated the presences of hydroxyl and α , β unsaturated ketone groups.

BB-4 could be assigned as a known aurone glycoside, (Z) -6-O-(6-acetyl- β -D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone by analyses of its ¹H and ¹³C NMR spectra. The ¹H NMR spectrum of BB-4 (Figure 34) showed the signals of 6 olefinic or aromatic protons, 7 oxygenated aliphatic protons and 1 acetyl group. The ¹³C NMR spectrum (Figure 25) suggested the presences of 1 carbonyl carbon, 1 carbonyl ester carbon, 14 sp² carbons, 6 oxygenated sp³ carbons and 1 methyl carbon.

Spectral data of BB-4 was closely related to that of BB-3 except for the absence of one acetyl group at 4" hydroxyl position of glucose informed by the fact that signal of H-4" appeared at higher field than that of BB-3. The acetyl group was substitued at 6" hydroxyl position of glucose because a typical downfield of H-6". The signal at δ 5.15 ppm (d, J = 7.4 Hz) showed the characteristic coupling constant of the anomeric proton H-1" of a β -glucose. The signal of C-1" was located at δ 103.18 ppm in ¹³C-NMR spectrum.

The 3',4',6,7 tetrahydroxyaurone moiety of BB-4 could be observed by the presence of 2,5,6-related aromatic protons, *ortho*-related protons and one olefinic proton. The signal of H-6' of ring B (δ 7.38 ppm) showed the *ortho* coupling and *meta* coupling to H-5' (d 6.98 ppm) and H-2' (d 7.67 ppm) with coupling constants of 8 and 1.8 Hz respectively. The signal at δ 7.30 ppm coupled with the signal at δ 7.16 ppm with coupling constant 8.5 Hz that could be assigned as the signal of H-4 and H-5 of rong B respectively. The signal of H-5 located at further upfield than that of H-4

because of resonance effect of electron donating group at C-6. The singlet at d 6.81 ppm could be assigned as an exocyclic olefinic proton H-10.

The assignments of proton and carbon were confirmed by comparison of the recorded data with literature value. Thus, BB-4 was determined as (Z)-6-O-(6-acetyl- β -D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone, which has been isolated previously from *B. pilosa* Linn. by Sashida *et al* (1991). The structure of BB-4 is shown below. The proton and carbon assignments of BB-4 are summerized in Table 10.

(Z) -6-O-(6-acetyl- β -D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone (27)

Position	δC (ppm)	δH (ppm)
		(multiplicity, J Hz)
and the second second		
2	147.39	
3	185.07	
4	115.53	7.30 (d, 8.6)
5	113.61	7.16 (d, 8.3)
6	153.54	
7	134.64	
8	156.21	
9	119.44	
10	115.32	6.81 (s)
1'	125.36	2012년 1월 201
2'	119.23	7.67 (d, 1.8)
3'	147.02	
4'	149.54	1 - 그렇게, 그는 이 가서
5'	116.89	6.93 (d, 8)
6'	126.65	7.38 (dd, 8, 1.8)
1"	103.18	5.15 (d, 7.4)
2"	74.81	3.73-3.75
3"	77.58	(overlapping)
4"	71.55	3.58 (dd, 8.9, 9.1)
5"	75.80	3.85 (ddd, 9.6, 6.7, 2.1)
6"	64.65	4.56 (dd, 11.9, 1.9)
		4.38 (dd, 11.9, 6.4)
Carbonyl ester	172.17	
Methyl	20.80	

Table 10 Proton and carbon assignments of BB-4

This structure was confirmed by the analyses of mass fragmentations (Scheme 5) from EIMS (Figure 42). The fragment of an aglycone was observed at m/z 286. The other fragments were provided by the retro Diels-Alder cleavage like those of BB-3 that were discussed before.

