CHAPTER IV

RESULT AND DISCUSSION

The 10 kg of dried ground entire plant of Bidens biternata Merr. \& Sherff was marcerated with methanol. The methanol extract was then partitioned with the process that showed in section 3 chapter 3. BB-1 and BB-2 were separated from chloroform crude extract. Compound BB-3 and BB-4 were separated from methanol extract. The structure elucidations of the isolated compounds were discussed as follow.

1. Structure Elucidation of BB-1

BB-1 was obtained as white amorphous compound from F-007 (Table 3)by chromatographic techniques using silica gel column (gradient system of hexane-chloroform-methanol) to yield 200 mg ($2 \times 10^{-3} \%$ based on dry weight of B.biternata).

The infrared absorption spectrum of BB-1 (Figure 5) exhibited O-H stretching at $3400-3200 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{O}$ stretching at $1,062 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{H}$ stretching of methyl and methylene groups at $2,918,2,849 \mathrm{~cm}^{-1}, \mathrm{C}-\mathrm{H}$ bending of methyl and methylene groups at $1,473,1,464 \mathrm{~cm}^{-1}$ and $\mathrm{C}-\mathrm{H}$ rocking of methylene groups $\left(\left(\mathrm{CH}_{2}\right)_{\mathrm{n}}, \mathrm{n}>4\right)$ at $720 \mathrm{~cm}^{-1}$

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of BB-1 (Figure 6) showed the signal of proton attaching to oxygenated carbon at $\delta 3.62 \mathrm{ppm}(\mathrm{t}, J=6 \mathrm{~Hz})$ which coupled to methylene protons with the coupling constant of 6 Hz . The signals at $\delta 1.35$ and 1.23 ppm were the signals of methylene protons. The signal at $\delta 0.85 \mathrm{ppm}(\mathrm{t}, J=6 \mathrm{~Hz})$ is the signal of terminal methyl group that coupled to methylene protons.

The IR and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data suggested that BB-1 was long chain alcohol. The EIMS showed the different spectra (Figure 7). It indicated that BB-1 was the mixture of at least 2 compounds. Both spectra showed characteristic fragmentation pattern of long chain compounds by the clusters of peaks, and the corresponding peaks of each cluster were $14\left(\mathrm{CH}_{2}\right)$ mass units apart because the loss of $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ (Silverstein et al., 1991). The example were $m / e^{-} 139,125,111\left(139-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right), 97$ (125$\left.\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$, $83\left(111-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$ and $69\left(97-\mathrm{CH}_{2}=\mathrm{CH}_{2}\right)$.

The gas chromatography was used to identified this mixture of long chain alcohols by comparing with the authentic long chain alcohols ($\mathrm{C}_{14}, \mathrm{C}_{16}, \mathrm{C}_{18}, \mathrm{C}_{20}, \mathrm{C}_{22}$ and C_{30}). The retention times of compound BB-1 were $11.67,19.20,25.50$ and 32.57 minute. From the linear graph of \log retention times and number of carbons of autentic long chain alcohols (figure 4) indicated that BB-1 was the mixture of $\mathrm{C}_{26}-\mathrm{C}_{30}$ long chain alcohols as follow, the relative amounts were calculated from area under peaks of GC chromatogram.

$\mathrm{C}_{26} \mathrm{H}_{53} \mathrm{OH}$ (hexacosanol)	4.8%
$\mathrm{C}_{28} \mathrm{H}_{57} \mathrm{OH}$ (octacosanol)	68.7%
$\mathrm{C}_{29} \mathrm{H}_{59} \mathrm{OH}$ (nonacosanol)	2.9%
$\mathrm{C}_{30} \mathrm{H}_{61} \mathrm{OH}$ (triacotanol)	23.6%

2. Structure Elucidation of BB-2

BB-2 was obtained as white needles from F-008 (Table 3) using a silica gel column (gradient system of hexane-chloroform-methanol) and was recrystallized in hexane to yeild 70 mg ($7 \times 10^{-4} \%$ based on dry weight of B.biternuia). It gived green color to Libermann-Burchard's test. Thus, it tended to be the steroidal compound.

The IR spectrum of BB-2 (Figure 10) suggested that functional groups of BB-2 were hydroxy group, methyl group, methylene group and alkyl group.

Table 7 The IR spectrum's assignment of BB-2

range of absorption $\left(\mathrm{cm}^{-1}\right)$	intensity	assignment
$3500-3200$	medium	OH stretching of $\mathrm{R}-\mathrm{OH}$
$2960-2860$	high	CH stretching of $\mathrm{CH}_{3}, \mathrm{CH}_{2}$
1640	weak	$\mathrm{C=C}$ stretching of alkene
1460	medium	C-H bending of CH_{3} (asymmetric), CH_{2}
1380,1370	medium	C-H bending of CH_{3} (symmetric)
1060	medium	C-O stretching out-of-plane $\mathrm{C}-\mathrm{H}$ bending of trans-disubstituted $970-960$
weak	alkene out-of-plane $\mathrm{C}-\mathrm{H}$ bending of trisubstituted alkene	

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of BB-2 (Figure 11) showed the signals at $\delta 0.65-1.01$ ppm which were the signals of methyl proton that substituted at $\mathrm{C}-18, \mathrm{C}-19$ and at side chain of the steroidal compounds. The signals at $\delta 1.1-2.3 \mathrm{ppm}$ were the signals of methylene and methine proton of steroids. The signal at $\delta 3.51 \mathrm{ppm}(\mathrm{m})$ was the signal of proton at C-3. The olefinic signals at $\delta 5.14 \mathrm{ppm}(\mathrm{dd}, J=15.1,8.0 \mathrm{~Hz})$ and $\delta 4.98$ ppm (dd, $J=15.1,8.0 \mathrm{~Hz}$) are trans-disubstituted vinyl protons ($\mathrm{H}-22$ and $\mathrm{H}-23$). And the olefinic signal at $\delta 5.33$ ($\mathrm{br} \mathrm{d} J=6.2 \mathrm{~Hz}$) could be assigned as $\mathrm{H}-6$ which was trisubstituted vinyl proton.

The ${ }^{13} \mathrm{C}$ NMR spectrum of BB-2 (Figure 12) showed the signals that were close to the signals from β-sitosterol and stigmasterol (Table 8).

Table 8 The ${ }^{13} \mathrm{C}$ NMR chemical shifts of β-sitosterol, stigmasterol and BB-2

Carbon	Chemical Shift (ppm)		
	β-sitosterol	stigmasterol	BB 2
1	37.1	37.4	37.25
2	31.8	31.7	31.65
3	71.9	71.8	71.78
4	42.4	42.4	42.3
5	140.9	140.0	140.76
6	121.8	121.7	121.69
7	32.0	31.9	$31.87,31.9$
8	32.0	31.9	$31.87,31.9$
9	50.3	50.3	$50.14,50.16$
10	36.6	36.6	36.51
11	21.1	21.1	$21.21,21.07$
12	39.9	39.8	$39.78,39.68$
13	42.4	42.4	$42.3,42.21$
14	56.8	57.0	$56.77,56.86$
15	24.3	24.4	$24.29,24.36$
16	28.2	28.9	$28.23,28.90$
17	56.2	56.0	$56.07,55.96$
18	11.9	12.2	$11.97,12.23$
19	19.4	19.4	19.38

Table 8 (continued)

Carbon	Chemical Shift (ppm)		
	β-sitosterol	stigmasterol	BB2 $_{2}$
20	36.2	40.5	$36.14,40.47$
21	19.1	21.1	$19.03,21.07$
22	34.0	138.4	$33.95,138.30$
23	29.3	129.4	$129.28,29.67$
24	50.3	51.3	51.23
25	26.2	31.9	$26.09,29.69$
26	18.8	19.0	$18.77,18.97$
27	19.8	21.1	$19.8,21.07$
28	23.1	25.4	$23.07,25.4$
29	11.9	12.0	$11.85,12.03$

MS spectrum of BB-2 showed the characteristic fragmentation peak of C_{29} steroid. The molecular ion peak observed at $m / z 414$ indicated that compound BB-2 was consist of β-sitosterol. The peak at $m / z 412$ did not agreed with β-sitosterol. It tended to be the molecular ion peak of stigmasterol. The proposed fragmentation of BB-2 are shown below.

From the spectroscopic data, BB-2 was proposed to be the mixture of steroids.The identification of this compound was done by means of gas chromatography. By comparing the retention times with the authentic steroids, BB-2 was identified as the mixture of $25.8 \% \beta$-sitosterol (21) and 74.2% stigmasterol (22).

(21) β-sitosterol

3. Stucture Elucidation of $\mathrm{BB}-3$

Compound BB-3 was obtained as golden-yellow needle crystals from F-028 (Table 6) by repeated chromatographic techniques using sephadex LH-20 with 10% methanol in chloroform and 5% methanol in chloroform as eluents to yield 8 mg (8 x $10^{-5} \%$ based on dry weight of B.biternata).

The APCI spectrum of compound BB-3 (figure 32) exhibited the $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 533(22 \%)$ and established the proposed molecular formula of $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{13}$. The UV adsorption bands at $\lambda \max 250 \mathrm{~nm}(\log \varepsilon 4.03)$ and $408 \mathrm{~nm}(\log \varepsilon 4.39)$ (Figure 16) showed the characteristic of an aurone chromophore. The bathochromic shift (50 nm) of the band II in the UV spectrum with the presence of AlCl_{3} (Figure 17) was effected
from the acid-labile AlCl_{3} complex with B ring ortho-dihydroxy groups which disappeared when added hydrochloric acid (Markham, 1982).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 18) showed signal of 19 protons, of which six were aromatic or olefinic and thirteen were aliphatic. The singlets at $\delta 2.01$ and 2.03 ppm with the intensity of three protons indicated that there were two acetyl groups. The signal at $\delta 5.69 \mathrm{ppm}(\mathrm{d}, J=7.9 \mathrm{~Hz})$ (Figure 20) showed the characteristic coupling constant of the anomeric proton $\mathrm{H}-1^{\prime \prime}$ of a β-glucose. The six signals of protons attached to oxygenated carbon at $\delta 4.1-5.52 \mathrm{ppm}$ could be assigned as signals of glucose moiety's protons. The proton $\mathrm{H}-2^{\prime \prime}$ at $\delta 4.12 \mathrm{ppm}(\mathrm{dd}, J=8.6,8.0 \mathrm{~Hz}), \mathrm{H}-3^{\prime \prime}$ at $\delta 4.37 \mathrm{ppm}(\mathrm{dd}, J=9.1,9.2 \mathrm{~Hz}), \mathrm{H}-4 "$ at $\delta 5.52 \mathrm{ppm}(\mathrm{t}, J=9.8 \mathrm{~Hz})$ showed the large coupling constants indicated trans relationship with their adjacent protons. The sugar proton assignment was confirmed by ${ }^{1} \mathrm{H}^{1} \mathrm{H} \operatorname{COSY}$ (Figure 22) that showed correlation between the $2-3$ bonds neighbouring protons. The acetyl groups were supposed to be located at C-4" and C-6" because the typical downfields of C-4" methine proton and C-6" methylene protons were observed.

The expansion of ${ }^{1} \mathrm{H}$ NMR spectrum (7.1-8.2 ppm) (Figure 19) showed signals indicative of the presence of 2,5,6-related aromatic protons, ortho-related protons, and one olefinic proton. By comparison of the recorded data with literature values, 1 H - signal at $\delta 7.6 \mathrm{ppm}(\mathrm{dd}, J=8.2,2 \mathrm{~Hz})$ could be assigned as the signal of H-6' proton of ring B that ortho-coupled with H-5' ($\delta 7.13 \mathrm{ppm}, \mathrm{d}, J=8.2 \mathrm{~Hz}$) and meta-coupled with $\mathrm{H}-2^{\prime}(\delta 8.09 \mathrm{ppm}, \mathrm{d}, J=2 \mathrm{~Hz})$. The singlet at $\delta 7.18 \mathrm{ppm}$ was assigned as the signal of exocyclic olefinic proton (H-10). The two isolated orthorelated proton at $\delta 7.46 \mathrm{ppm}(\mathrm{d}, J=8.3 \mathrm{~Hz})$ and $7.36 \mathrm{ppm}(\mathrm{d}, J=8.3 \mathrm{~Hz})$ were $\mathrm{H}-4$ and $\mathrm{H}-5$ of ring A respectively. The assignment of $\mathrm{H}-4$ and $\mathrm{H}-5$ will be discussed later. The relationship of aromatic protons were confirmed by ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY(Figure 23).

The ${ }^{13}$ C NMR spectrum of BB-3 (Figure 24) indicated twentyfive carbon signals. The two acetyl functional groups were confirmed by the presences of carbonyl ester carbons at $\delta 170.34$ and 170.55 ppm and methyl carbons at $\delta 20.68$ and 20.81 ppm. The signal at $\delta 103.2 \mathrm{ppm}$ was the signal of anomeric carbon C-1". The five signals at $\delta 60-75 \mathrm{ppm}$ were the signals of $s p^{3}$ oxygenated carbons of glucose moiety. The assignment of glucose carbons was achieved by ${ }^{13} \mathrm{C}-{ }^{-1} \mathrm{H}$ COSY experiment. From the expansion spectrum of ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY (Figure 26) the signals at $\delta 74.56,75.30$,
$71.56,73.09$ and 63.04 ppm could be assigned as the signal of C-2", C-3", C-4", C$5^{\prime \prime}$ and C-6", respectively since they showed correlations to their proton signals.

The fifteen $s p^{2}$-carbons were the carbons of aurone moiety. The ketone carbonyl carbon at $\delta 184 \mathrm{ppm}$ was unambiguously assigned as C-3 from its typical chemical shift. The methine $s p^{2}$-carbon at $\delta 113.60,113.84,114.40,116.95,119.35$ and 125.62 ppm was assigned by the 1 -bond $\mathrm{C}-\mathrm{H}$ correlation from ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ COSY (figure 26) to be C-5, C-10, C-4, C-5', C-2' and C-6' respectively. The remaining six oxygenated quarternary $s p^{2}$-carbon ($\delta 135-160 \mathrm{ppm}$) and two non-oxygenated quarternary carbon ($\delta 119.14$ and 124.67 ppm) were assigned by the aid of ${ }^{1} \mathrm{H}$ detected multiple bond heteronuclear multiple quantum coherent (HMBC) experiment.

From the HMBC operated at $J=5 \mathrm{~Hz}$ spectrum (Figure 27) exhibited the C-H long range (2-3 bonds) correlation of BB-3. The correlations of carbonyl ester carbons of acetyl groups at 170.34 and 170.55 ppm to $\mathrm{H}-4^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$ of sugar moiety respectively confirmed that the acetyl groups attached to 4 " and 6 "hydroxyl position of glucose. The C-H correlations from HMBC spectrum (Figure 28) of sugar moiety (23) are shown below.

(23)

The carbon signals of the aurone moiety were unequivocally assigned by the HMBC operated at $J=5 \mathrm{~Hz}$ and 8 Hz . The expansion of HMBC operated at 5 Hz spectrum (Figure 29) exhibited the correlation of methine aromatic proton at $\delta 7.46$ $\operatorname{ppm}(\mathrm{d}, J=8.3 \mathrm{~Hz})$ to the ketone carbon $\mathrm{C}-3$, thus this methine proton was assigned as H-4 proton that coupled to $\mathrm{H}-5$ proton at $\delta 7.13 \mathrm{ppm}(\mathrm{d}, J=8.3 \mathrm{~Hz})$. H-4 and H-5 protons also showed the correlation to oxygenated quarternary carbon at 153.06 ppm thus this carbon was assigned as C-6 carbon. The oxygenated quarternary carbon at δ 135 ppm could be assigned as $\mathrm{C}-7$ from its correlation to $\mathrm{H}-5$. This $\mathrm{C}-7$ assignment was supported by the fact that the chemical shift of this carbon was relatively upfield
from any oxygenated carbon because of mesomeric effect of electron donating group at C-6 and C-8. The oxygenated quarternary sp carbon at $\delta 147.49 \mathrm{ppm}$ was assigned as $\mathrm{C}-2$ since there was the correlation between this carbon and $\mathrm{H}-10$. The $\mathrm{C}-\mathrm{H}$ longrange correlations from HMBC operated at 5 Hz of aurone moiety (24) are shown below.

By the HMBC operated at 8 Hz spectrum (Figure 31), the two oxygenated carbons, C-3' and C-4' could be assigned from the fact that C-4' ($\delta 149.62 \mathrm{ppm}$) showed the correlation to $\mathrm{H}-6^{\prime}$. The $\mathrm{C}-3^{\prime}$ was the carbon signal at $\delta 146.83 \mathrm{ppm}$, thus the rest oxygenated quarternary $s p^{2}$ carbon ($\delta 156.22 \mathrm{ppm}$) was assigned as $\mathrm{C}-8$ which correlated only $\mathrm{H}-4$ proton. The assignments of $\mathrm{C}-1$ ' and $\mathrm{C}-9$ unoxygenated carbon were clear from the correlation between $\mathrm{H}-5^{\prime}$ to $\mathrm{C}-1^{\prime}(\delta 124.67 \mathrm{ppm})$ and $\mathrm{H}-5$ to $\mathrm{C}-9$ ($\delta 119.14 \mathrm{ppm}$). The relationship of carbons and neighbouring proton of aurone moiety from HMBC operated at $8 \mathrm{~Hz}(25)$ are shown below.

(25)

Both HMBC at 5 Hz and 8 Hz spectra showed the correlation of $1 " \beta$-anomeric proton of glucose to $\mathrm{C}-6$. It indicated that sugar moiety attached to the 6 -hydroxyl position of aurone. Consequently, the structure of compound BB-3 is, then, identified as (Z) -6-O-(4,6-O-diacetyl- β-D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone which is a new member of aurones. The proposed configuration is Z-isomer because in the E isomer protons $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$ are deshielded by the carbonyl group and have a chemical shift of $\delta 8.15$ (Brady et al, 1973). This geometric isomer is confirmed by the chemical shift of C-10 (113.84 ppm).According to Pelter and Ward (1979), the exocyclic olefinic carbon atom of E-isomer locates at more greater down field than this (about 120 ppm). The structure of $\mathrm{BB}-3$ is shown below.

(Z) -6-O-(4,6-O-diacetyl- β-D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone (26)

The summary of carbon and proton assignments including correlations between protons and carbons by HMBC spectrum are shown in Table 9.

Table 9 Carbon and proton assignments of BB-3 and long-range correlations between protons and carbons in HMBC spectra
\(\left.$$
\begin{array}{|c|c|l|l|l|}\hline \text { Positiond } & \delta \mathrm{C}(\mathrm{ppm}) & \begin{array}{l}\delta \mathrm{H}(\mathrm{ppm}) \\
\text { (multiplicity, }, \\
J \mathrm{~Hz})\end{array} & \begin{array}{l}\text { long-range correlation } \\
\text { from H to C in } \\
\mathrm{HMBC} \text { spectrum } \\
(J=5 \mathrm{~Hz})\end{array} & \begin{array}{l}\text { long-range correlation } \\
\text { from H to C in } \\
\mathrm{HMBC} \text { spectum } \\
(J=8 \mathrm{~Hz})\end{array}
$$

\hline 2 \& 147.49 \& \& \&

3 \& 184 \& \& \& C-3, C-6, C-8

4 \& 114.40 \& 7.46(\mathrm{~d}, 8.6) \& \mathrm{C}-3, \mathrm{C}-6 \& \mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-9\end{array}\right]\)| $\mathrm{C}-7, \mathrm{C}-9$ |
| :--- |
| 5 |

Table 9 (Continued)

Positiond	§C(ppm)	$\delta \mathrm{H}(\mathrm{ppm})$ (multiplicity, $J \mathrm{~Hz}$)	long-range correlation from H to C in HMBC spectrum $(J=5 \mathrm{~Hz})$	long-range correlation from H to C in HMBC spectum $(J=8 \mathrm{~Hz})$
7	135.54			
8	156.22			
9	119.14			
10	113.84	7.18(s)	C-6',C-2, C-3	C-6', C-2, C-3
$1{ }^{\prime}$	124.67			
$2 '$	119.35	8.09(d,2)	C-3', C-4', C-6', C-10	$\begin{aligned} & C-3 ', C-4 ', C-6 ', \\ & C-10 \end{aligned}$
3^{\prime}	146.83			
4^{\prime}	149.62			
$5{ }^{\prime}$	116.95	7.13 (d, 8.2)	C-3', C-4'	C-1', C-3', C-4'
$6{ }^{\prime}$	125.62	7.6 (dd, $8.2,2$	C-2', C-10	C-2', C-4', C-10
$1 "$	103.2	$5.69(\mathrm{~d}, 7.93)$	C-6	C-6
$2 "$	74.56	$\begin{aligned} & 4.12(\mathrm{dd}, 8.8, \\ & 8.2) \end{aligned}$	C-3"	C-1", C-3"
$3 "$	75.30	$\begin{aligned} & 4.37 \\ & (\mathrm{dd}, 9.1,9.2) \end{aligned}$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-4^{\prime \prime}$	C- ${ }^{\prime \prime}$ ", C-4"
$4 "$	71.56	5.52(t,9.8)	$\begin{aligned} & \text { C-3", C-5", C-6", } \\ & \text { 4"-O-carbonyl } \end{aligned}$	$\begin{aligned} & \text { C-3", C-5", C-6", } \\ & \text { 4"-O-carbonyl } \end{aligned}$
5"	73.09	4.24(m)	N UNIVERSITY	
$6 "$	63.04	a)4.46 (dd,12.2,5.6) b) 4.42 (dd,12.2,2.4)	C-5", 6"-O-carbonyl	6"-O-carbonyl
$\begin{gathered} 4^{\prime \prime}-\mathrm{O} \\ \text { carbonyl } \end{gathered}$	170.34			
6"-O carbonyl CH_{3} of	170.55			
CH_{3} of acetyl grqu	$\begin{aligned} & 20.68,20.812 \\ & \text { up } \end{aligned}$	2.01(s),2.03(s)	C-carbonyl of acetyl group	C-carbonyl of acetyl group

This proposed structures of compound BB-3 was finally supported by mass fragmentation (Scheme 4) from EIMS (Figure 33). The loss of sugar moiety caused the fragment at $\mathrm{m} / \mathrm{z} 286(2 \%)$. The retro Diels-Alder cleavage of the aurone provided the fragment at $\mathrm{m} / \mathrm{z} 152(3 \%)$ and $134(2 \%)$. The fragment of $116(8 \%)$ was caused by the loss of $\mathrm{H}_{2} \mathrm{O}$ of fragment at $\mathrm{m} / \mathrm{z} 134$.

Scheme 4 proposed mass fragmentations of compound BB-3

4. Stucture Elucidation of BB-4

BB-4 was obtained as orange compound from F-028(Table 6) by gel filtration chromatographic techniques using three columns of sephadex LH 20 with eluants of 50% methanol in chloroform, methanol and 5% water in methanol respectively. It yielded $23 \mathrm{mg}\left(2.3 \times 10^{-4} \%\right.$ based on dry weight of B.biternata $)$.

The APCI spectrum of compound BB-4 exhibited the $[\mathrm{M}-\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 489$ and established the proposed molecular formula of $\mathrm{C}_{23} \mathrm{O}_{12} \mathrm{H}_{22}$. The UV absorption bands at a $\lambda \max 244(\log \varepsilon 3.99)$ and $409(\log \varepsilon 4.26)$ exhibited the characteristic of an aurone chromophore. The 43 nm bathochromic shift on UV spectrum in the presences of AlCl_{3} showed the existence of free ortho-hydroxyl group in B-ring. The IR spectrum also exhibited the band at $y 3400$ (broad), $1649 \mathrm{~cm}^{-1}$ indicated the presences of hydroxyl and α, β unsaturated ketone groups.

BB-4 could be assigned as a known aurone glycoside, (Z) -6-O-(6-acetyl- $\beta-\mathrm{D}-$ glucopyranosyl)-6,7,3', 4'-tetrahydroxyaurone by analyses of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR spectrum of BB-4 (Figure 34) showed the signals of 6 olefinic or aromatic protons, 7 oxygenated aliphatic protons and 1 acetyl group. The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 25) suggested the presences of 1 carbonyl carbon, 1 carbonyl ester carbon, $14 s p^{2}$ carbons, 6 oxygenated $s p^{3}$ carbons and 1 methyl carbon.

Spectral data of BB-4 was closely related to that of BB-3 except for the absence of one acetyl group at 4" hydroxyl position of glucose informed by the fact that signal of H-4" appeared at higher field than that of BB-3. The acetyl group was substitued at $6^{\prime \prime}$ hydroxyl position of glucose because a typical downfield of H-6". The signal at δ 5.15 ppm ($\mathrm{d}, J=7.4 \mathrm{~Hz}$) showed the characteristic coupling constant of the anomeric proton $\mathrm{H}-1$ " of a β-glucose. The signal of $\mathrm{C}-1$ " was located at $\delta 103.18 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR spectrum.

The $3^{\prime}, 4^{\prime}, 6,7$ tetrahydroxyaurone moiety of BB-4 could be observed by the presence of 2,5,6-related aromatic protons, ortho-related protons and one olefinic proton. The signal of H-6' of ring B ($\delta 7.38 \mathrm{ppm}$) showed the ortho coupling and meta coupling to $\mathrm{H}-5^{\prime}(\mathrm{d} 6.98 \mathrm{ppm})$ and $\mathrm{H}-2^{\prime}(\mathrm{d} 7.67 \mathrm{ppm})$ with coupling constants of 8 and 1.8 Hz respectively. The signal at $\delta 7.30 \mathrm{ppm}$ coupled with the signal at $\delta 7.16$ ppm with coupling constant 8.5 Hz that could be assigned as the signal of $\mathrm{H}-4$ and $\mathrm{H}-5$ of rong B respectively. The signal of $\mathrm{H}-5$ located at further upfield than that of $\mathrm{H}-4$
because of resonance effect of electron donating group at C-6. The singlet at d 6.81 ppm could be assigned as an exocyclic olefinic proton $\mathrm{H}-10$.

The assignments of proton and carbon were confirmed by comparison of the recorded data with literature value. Thus, BB-4 was determined as (Z)-6-O-(6-acetyl-β-D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone, which has been isolated previously from B. pilosa Linn. by Sashida et al (1991). The structure of BB-4 is shown below. The proton and carbon assignments of BB-4 are summerized in Table 10.

(Z) -6-O-(6-acetyl- β-D-glucopyranosyl)-6,7,3',4'-tetrahydroxyaurone (27)

Table 10 Proton and carbon assignments of BB-4

Position	$\delta \mathrm{C}$ (ppm)	$\begin{gathered} \delta \mathrm{H}(\mathrm{ppm}) \\ \text { (multiplicity, } J \mathrm{~Hz} \text {) } \end{gathered}$
2	147.39	
3	185.07	
4	115.53	7.30 (d, 8.6)
5	113.61	7.16 (d, 8.3)
6	153.54	
7	134.64	
8	156.21	
9	119.44	
10	115.32	6.81 (s)
1^{\prime}	- 125.36	
2^{\prime}	119.23	7.67 (d, 1.8)
$3 '$	147.02	
$4 '$	149.54	
$5 '$	116.89	6.93 (d, 8)
6^{\prime}	126.65	7.38 (dd, 8, 1.8)
$1 "$	- 103.18	5.15 (d, 7.4)
$2{ }^{\prime \prime}$	74.81	3.73-3.75
$3 "$	าลงกร 77.58 าวทย์	(overlapping)
$4 "$	LALONG 71.55 UNIVE	3.58 (dd, 8.9, 9.1)
5"	75.80	3.85 (ddd, 9.6, 6.7, 2.1)
$6 "$	64.65	4.56 (dd, 11.9, 1.9)
		4.38 (dd, 11.9, 6.4)
Carbonyl ester	172.17	
Methyl	20.80	

This structure was confirmed by the analyses of mass fragmentations (Scheme 5) from EIMS (Figure 42). The fragment of an aglycone was observed at m / z 286. The other fragments were provided by the retro Diels-Alder cleavage like those of BB-3 that were discussed before.

Scheme 5 Proposed mass fragmentations of compound BB-4

