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CHAPTER I

INTRODUCTION

An equation in which unknowns are functions is called a “functional equation”. The

best known and most basic functional equation is the Cauchy functional equation

f(x + y) = f(x) + f(y), (C1)

containing two variables x, y and one unknown function f of one variable. The func-

tional equation (C1) was solved by Cauchy in 1821 for f : R → R under a continuity

assumption to have a general solution of the form f(x) = ax, where a = f(1). This

form of solution holds under a number of other assumptions, such as boundedness,

monotonicity and measurability. However, without any additional assumption, the

Cauchy functional equation (C1) may possess arbitrarily wild solutions, the fact es-

tablished by Hamel in 1905 using the notion of a basis of R, which bears his name.

We give an illustration of this fact by constructing uncountably many non-continuous

solutions to (C1) for f : R → R. Recall that a subset H ⊂ R is a Hamel basis for R

if every x ∈ R can be written uniquely in the form

x =
n

∑

i=1

rihi,

for some n ∈ N and ri ∈ Q, hi ∈ H for i = 1, . . . , n. Consider the class of functions
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given by

fg(x) = r1g(h1) + · · · + rng(hn),

where g : H → R. Clearly, each fg is a solution of (C1) over R and since the choice

of g is arbitrary, the desired conclusion follows.

The Cauchy functional equation arises naturally in a good deal of contexts. For

example, it is the homomorphism property of additive groups and so in many situa-

tions it is sometimes referred to as an additivity property; it is one of the two properties

of linearity in the subject of functional analysis.

To solve a functional equation, not only an equation like (C1) needs to be specified,

but the domain and range of the solution functions are also critical. This can be seen

from the following examples.

Example 1. Consider the functional equation

f(xy) = f(x) + f(y).

Let us first find all solution functions f : R → R. Substituting y by 0, we have

f(0) = f(x) + f(0) yielding f(x) = 0, i.e. the zero function is the only solution.

However, if we look for solutions whose domain is the set R r {0}, besides the zero

function, the logarithmic function f(x) = log |x| is another solution showing that

this functional equation has at least two distinct solutions for functions with domain

R r {0}.

In this example, we observe that the set of all solutions in the domain Rr{0} has

more elements than the set of all solutions in the larger domain R. This brings about

another delicate point about solving functional equations. It might seem that, for any

functional equation, the following is true : if D1 and D2 are subsets of real numbers

and D1 ⊂ D2, then the set of solutions of that equation in the domain D2 is not greater
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than the set of all solutions of the same equation in the domain D1. Unfortunately,

this is not true in general as evident from the solutions of f(xy) = f(x) + f(y) in the

domain D = {1}, in which the zero function is the only solution.

The next example demonstrates the effect from the range of the solution functions.

Example 2. Consider the functional equation

1 + f(n)f(n + 1) = 2n2 (f(n + 1) − f(n)) (n ∈ N).

We wish to find all solutions f : N → M with different ranges M = N and M = Q.

This is a problem taken from one of the Romanian Mathematical Olympiads so the

solution is a little involved.

If f(n + 1)f(n) = −1, then the functional equation gives f(n + 1) = f(n) and so

f(n)2 + 1 = 0, which is impossible since M ⊂ R. Thus, the functional equation can

be rewritten as

f(n + 1) − f(n)

1 + f(n)f(n + 1)
=

1

2n2
. (1.1)

Let xn = arctan f(n). The equation (1.1) becomes

tan(xn+1 − xn) =
1

2n2
,

or equivalently,

xn+1 − xn = arctan

(

1

2n2

)

+ pnπ (pn ∈ Z).

By the identity

n−1
∑

k=1

arctan

(

1

2k2

)

=
n−1
∑

k=1

(arctan(2k + 1) − arctan(2k − 1)) = arctan(2n − 1) − π

4
,
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we have

arctan(2n − 1) − π

4
=

n−1
∑

k=1

((xk+1 − xk) − pkπ) = xn − x1 − qπ,

for some q ∈ Z. Thus, xn = arctan(2n − 1) + x1 − π
4

+ qπ, yielding

f(n) = tan(xn) =
2n − 1 + tan

(

x1 − π
4

)

1 − (2n − 1) tan
(

x1 − π
4

) =
(f(1) + 1)n − 1

f(1) − n(f(1) − 1)
,

with a := tan(x1) = f(1) 6∈ { n
n−1

: n ∈ N, n ≥ 2}.

For M = N, if f(1) ≥ 2, then f(3) = 3f(1)+2
3−2f(1)

< 0, which is not in N, showing that

f(1) = 1 and the solution is f(n) = 2n − 1 which is easily checked to be the only

solution. However, for M = Q, the above calculation continues to hold yielding

f(n) =
(a + 1)n − 1

a − n(a − 1)
,

where a := f(1) ∈ Q r { n
n−1

: n ∈ N, n ≥ 2}, which gives infinitely many solutions.

There are certain other functional equations which can be transformed into the

Cauchy functional equation (C1).Three most important such functional equations are

f(xy) = f(x)f(y) (C2)

f(x + y) = f(x)f(y) (C3)

f(xy) = f(x) + f(y). (C4)

These four equations will be referred to as the four versions of the classical

Cauchy functional equation.

To see that these three equations can be transformed to (C1), let us first take
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logarithm in (C3) which gives

log f(x + y) = log f(x) + log f(y).

This is the Cauchy functional equation in log f . In another direction, if we put

f(eu) = g(u) in (C4), we get

g(u + v) = f(eu+v) = f(eu) + f(ev) = g(u) + g(v),

which is the Cauchy functional equation in g. This last substitution also turns (C2)

into

g(u + v) = f(eu+v) = f(eu) f(ev) = g(u)g(v),

which is the Cauchy type (C3).

The three functional equations (C2), (C3) and (C4) also appear naturally and

separately in various scientific contexts. Under suitable assumptions, typical solutions

of (C2), (C3) and (C4) are, respectively,

f(x) = xb, f(x) = ecx, f(x) = d log x,

where b, c, d are arbitrary constants. Owing to such typical forms of solutions, they

are often referred to as the Cauchy power, the Cauchy exponential and the Cauchy

logarithm equations, respectively.

As observed in the case of the Cauchy functional equation (C1), in general, solu-

tions of the equations of Cauchy type are abundant, for example, through appropriate
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change of variables, uncountably many non-continuous solutions of (C3) are e.g.

fG(x) = exp (R1G(h1) + · · · + RnG(hn)) ,

where log x = R1h1 + · · ·+ Rnhn is the unique representation of x ∈ R+ with respect

to the Hamel basis, H, and G : H → R.

In 1988, Jean Dhombres discovered inter-relations among the four forms of the

Cauchy functional equation (C1), (C2), (C3) and (C4). One such relation is the

s-independence defined as follows:

Definition. Let (α), (β) be two distinct equations taken from (C1), (C2), (C3) and

(C4). The pair {(α), (β)} is s-independent over (X,Y ) if the only common solu-

tion functions f : X → Y to (α) and (β) are either the zero function or the identity

function.

In the case X = Y , we simply say {(α), (β)} are s-independent over X.

Dhombres, [5], stated the following results without proof:

• The pairs of equations {(C1),(C3)} and {(C2),(C3)} are s-independent over a

ring.

• The pairs of equations {(C1),(C4)} and {(C2),(C4)} are s-independent over

(R+, R) and they are a fortiori s-independent over R or C.

Another relation considered by Dhombres in the work is:

Definition. Let i, j be two distinct elements of {1, 2, 3, 4}.

1. The functional equations Ci and Cj are alien relative to (X,Y ) if each solution

function f : X → Y of the functional equation Ci + Cj is also a solution of the

system Ci and Cj.
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2. The functional equations Ci and Cj are weakly alien relative to (X,Y ) if

each function f : X → Y which is a non-constant solution of Ci + Cj is also

a solution of the system Ci and Cj.

Dhombres proved the following results directly from solutions of the corresponding

functional equations.

Theorem. Let X be ring divisible by 2 and Y a ring satisfying the following two

properties: for each y ∈ Y ,

1. if y3 = y, then y ∈ {−1, 0, 1} and

2. if y2 = 0, then y = 0.

Then the functional equations C1 and C2 are alien relative to (X,Y ).

Proposition. Let X be ring divisible by 2 and Y a ring. Let f : X → Y be such

that f(0) = 0. Then the functional equations C1 and C2 are alien relative to (X,Y ).

Theorem. Let X be a ring with unit and divisible by 2 and Y a field. The equation

±C1, ± C2 are weakly alien relative to (X,Y ).

Theorem. Let X be a ring with unit and divisible by 2 and Y a skew-field. Let

k, l ∈ Y r {0}.

1. the equation kC1 and lC2 are weakly alien relative to (X,Y )

2. the equation kC1 and lC2 are alien relative to (X,Y ) if and only if k = l.

To treat the remaining solutions of other types of the Cauchy functional equation,

Dhombres resorted to solving the following functional equation

af(xy) + bf(x)f(y) + cf(x + y) + d(f(x) + f(y)) = 0,

which will be termed as a universal Cauchy functional equation. He considered

the solution function f defined over a ring which is divisible by 2 and possesses a
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unit, while the values of f are in a skew-field. The constants a, b, c and d belong to

this skew-field and commute with all elements of the skew-field.

Regarding solutions to the universal Cauchy functional eauation, Dhombres proved:

Theorem. Let X be a ring with unit divisible by 2 and Y a skew-field. Let a, b, c, d

be elements of the center of Y . The following diagram, starting from the values of

these four elements, gives all the solutions f : X → Y of the functional equation:

af(xy) + bf(x)f(y) + cf(x + y) + d {f(x) + f(y)} = 0.

In the diagram,

A denotes any solutions of f(x + y) = f(x) + f(y),

M denotes any solutions of f(xy) = f(x)f(y),
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E denotes any solutions of f(x + y) = f(x)f(y),

N denotes any solutions of f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y).

Finally, B is an element of Y subject only to

(a + bB + c + 2d)B = 0.

Making use of the last theorem, Dhombres established the following dependence

relations.

Proposition. Let X be a ring with unit and divisible by 2, Y a field with charac-

teristic 6= 2. Then the equations C1, C2 and C3 are pairwise alien.

Motivated by the work of Dhombres, we note that his analysis is based heavily on

the fact that 0 belongs to the domain of the solution functions. This rules out the

case of logarithmic function, whose domain of existence does not contain 0. Our first

objective in this direction is to complement the work of Dhombres by re-investigating

all his results mentioned above for solution functions whose domain is the set of

positive real numbers, R+, and whose range is the set of complex numbers,C. This

should recover the missing case of the logarithmic function.

Our second objective deals with another aspect of the Cauchy functional equation.

In 1999 and 2005, Konrad J. Heuvers and Palaniappan Kannappan considered the

three functional equations:

f(x + y) − f(x) − f(y) = f

(

1

x
+

1

y

)

, (1.2)

f(x + y) − f(xy) = f

(

1

x
+

1

y

)

, (1.3)

f(xy) = f(x) + f(y), (1.4)

when f : R+ → R. Heuvers, [7], proved:
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Theorem. The functional equation (1.2) is equivalent to the logarithmic functional

equation (1.4) for f : R+ → R in the sense that a solution of one equation is also a

solution of the other.

In a related work, they later proved:

Theorem. The functional equation (1.3) for f : R+ → R is equivalent to the

logarithmic equation (1.4).

Through our observation, Heuvers’s original proof in [7] is incomplete. We aim to

give a correct proof of this result as well as to solve a functional equation extending

to the equation (1.2).

Unless stated otherwise, throughout the entire thesis our solution functions have

R+ as a domain and C as a range.

We now briefly describe the contents of the thesis. In Chapter II, we investigate

the ZI-independence relation, called s-independence by Dhombres, among the four

types of the Cauchy functional equation.

In Chapter III, we introduce the definitions of alien and weakly alien relations and

solve the universal Cauchy functional equation.

In Chapter IV, we investigate the alien and weakly alien relations among the four

types of the Cauchy functional equation, together with multiples of those equations.

In Chapter V, we solve the functional equation af(x + y) + bf(x) + cf(y) =

df (1/x + 1/y).

Let us end this introduction with remarks about basic references consulted either

implicitly or explicitly during the course of this research.

The book ON FUNCTIONS AND FUNCTIONAL EQUATIONS by Jaroslav Smital

provides an elementary and easy-to-read introduction to the subject of functional
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equations.

The book FUNCTIONAL EQUATIONS: A Problem Solving Approach by B. J.

Venkatachala is also elementary and deals mainly with solving functional equations

appearing in various high-school competitions.

The book LECTURES ON FUNCTIONAL EQUATIONBS AND THEIR APPLI-

CATIONS by J. Aczél is well-known as a classic to the subject whose modern version

is the book FUNCTIONAL EQUATIONS IN SEVERAL VARIABLES by J. Aczél

and J. Dhombres.

The book SOME ASPECTS OF FUNCTIONAL EQUATIONS by J. Dhombres treats

different aspects of the Cauchy functional equation and its applications quite thor-

oughly.

The book A SHORT COURSE ON FUNCTIONAL EQUATIONS by J. Aczél con-

tains interesting applications of the Cauchy functional equation in the social and

behavioral sciences.

The book FUNCTIONAL EQUATIONS AND INEQUALITIES IN SEVERAL VARI-

ABLES by S. Czerwik is more modern and deals mainly with functional equations in

linear spaces.



CHAPTER II

ZI-INDEPENDENCE

We recall the four versions of the classical Cauchy functional equation as the follow-

ings:

f(x + y) = f(x) + f(y) (C1)

f(xy) = f(x)f(y) (C2)

f(x + y) = f(x)f(y) (C3)

f(xy) = f(x) + f(y) (C4)

The following independence notion was first introduced by Dhombres in [5]. There

he used the word s-independence instead of ZI-independence.

Definition 2.0.1. Let (α), (β) be two distinct equations taken from (C1), (C2), (C3)

and (C4). The pair {(α), (β)} are ZI-independent over (X,Y ) if the only common

solution functions f : X → Y to (α) and (β) are either the zero function or the identity

function.

We complement Dhombres’s work here by investigating ZI-independence among

all four versions of the Cauchy functional equation for solution functions sending the

positive real numbers into the complex field.
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2.1 The Results

We first prove some auxiliary lemmas with less restriction on the domain and codomain.

Lemma 2.1.1. Let X be a set, Y an integral domain and f : X → Y . Then f ≡ 0

and f ≡ 2 are the only solutions of the functional equation

f(x) + f(y) = f(x)f(y). (2.1)

Proof. Putting y = x, we obtain

2f(x) = f(x)2.

Thus, for each x ∈ X, either f(x) = 0 or f(x) = 2.

We proceed to show that either f ≡ 0 or f ≡ 2. Suppose that there exists x0 such

that f(x0) = 2. Then,

f(x) + 2 = 2f(x) (x ∈ X),

implying that f ≡ 2.

Lemma 2.1.2. Let Y be a set and f : R+ → Y . If f satisfies

f(xy) = f(x + y), (2.2)

then f is a constant function.

Proof. Putting y = 1 in (2.2), we get

f(x) = f(x + 1).
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Substituting y + 1 for y in (2.2), we obtain,

f(xy + x) = f(x(y + 1)) = f(x + (y + 1)) = f(x + y + 1) = f(x + y) = f(xy).

Let z, w be distinct elements. Then, by above equation,

f(z) = f(w + (z − w))

= f
(

(z − w)(z − w)−1w + (z − w)
)

= f
(

(z − w)(z − w)−1w
)

= f(w).

Our first two main results read:

Theorem 2.1.3. The pairs {(C1), (C3)}, {(C2), (C4)} and {(C1), (C4)} are ZI-independent

over (R+, C) while {(C2), (C3)} is not.

Proof. Observe that both pairs of equation {(C1), (C3)} and {(C2), (C4)} lead to the

equation (2.1). It thus follows from Lemma 2.1.1 that

f ≡ 0 or f ≡ 2.

However, by direct checking, f ≡ 2 is not a solution of any of (C1), (C2), (C3) or

(C4). Hence the pairs (C1,C3), and (C2,C4) are ZI-independent over (R+, C).

Both pairs of equation {(C2),(C3)} and {(C1),(C4)} yield the equation (2.2).

Hence, by Lemma 2.1.2, their solutions must be constant functions. Direct check-

ing shows that

f ≡ 0 or f ≡ 1
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are the only solutions of the pair {(C2),(C3)} and f ≡ 0 is the only solution of the

pair {(C1),(C4)}. Thus, the pair {(C1),(C4)} is ZI-independent over (R+, C) while

{(C2),(C3)} are not.

Theorem 2.1.4. The pair {(C3), (C4)} is ZI-independent over (R+, C).

Proof. As is well-known, see e.g. [1] or [10], the equation (C3) yields

f(q) = f(1)q for all q ∈ Q+.

Replacing x and y by 1 in (C4), we obtain f(1) = f(1)+f(1), which implies f(1) = 0

and so

f(q) = 0 for all q ∈ Q+.

Let ζ be a positive irrational number. If ζ > 1, then, by (C3),

f(ζ) = f(ζ − 1 + 1) = f(ζ − 1)f(1) = 0.

If ζ < 1, then, by (C4),

0 = f(1) = f

(

ζ
1

ζ

)

= f(ζ) + f

(

1

ζ

)

.

Using the above facts, we deduce f(ζ) = −f(1
ζ
) = 0. Therefore, f is the zero function

which implies the ZI-independence of the pair (C3,C4).

It is well-known that for a solution of (C1) over Q, there is a constant c ∈ R such

that

f(x) = cx (x ∈ Q). (2.3)

However, a general form of the solution to (C1) over R is much more complex; see e.g.
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Chapter 2 of [10]. Indeed, assuming the axiom of choice there are uncountably many

non-continuous solution functions to the Cauchy functional equation (C1), a fact

proved in 1905 by Georg Hamel using Hamel bases. Following the work in Chapter 2

of [10], an example of such a class of functions satisfying (C1) is given by

fg(x) = r1g(h1) + · · · + rng(hn),

where H := {hi} is a Hamel basis of R, x = r1h1 + · · · + rnhn (ri ∈ Q) is the unique

representation of x ∈ R with respect to H, and g is any function defined over H. In

the same manner, a particular class of uncountably many non-continuous functions

satisfying (C2) is given by

fG(x) = exp (R1G(h1) + · · · + RnG(hn)) ,

where log x = R1h1 + · · ·+ Rnhn is the unique representation of x ∈ R+ with respect

to the Hamel basis, H, and G is any function defined over H. It seems likely that

there may be a number of common solutions to (C1) and (C2) and to get a meaningful

result about their ZI-independence, some condition(s) may be necessary. To do so,

we first note a simple lemma based on the following fact, Corollary 4 in page 15 of

[3].

Let f : R+ → R be a solution of (C1). If the image of f is not dense in R, then

f(x) = cx for some constant c.

Lemma 2.1.5. Let f : R+ → R be a solution of (C1) and assume the image of f is

not dense in R.

1. If f(1) = 1, then f is the identity function.

2. If f(1) = 0, then f is the zero function.
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Proof. Using the fact just mentioned, we deduce f(x) = cx for some constant c. The

values f(1) = 1, respectively, f(1) = 0 yield c = 1, respectively, c = 0

Our final result reads:

Theorem 2.1.6. The pair of functional equations {(C1), (C2)} is ZI-independent over

(R+, K) where C ⊃ K = Kx + iKy and either Kx or Ky are non-dense subsets in R.

Proof. Let f : R+ → K be a function satisfies (C1) and (C2). Substituting x and y

in (C2) by 1, we obtain

f(1) = 0 or f(1) = 1.

If f(1) = 0, using (C2), f is the zero function. Assume that f(1) = 1. In this case,

we express

f(x) = u(x) + iv(x),

where u and v are real-valued functions on R+. Thus 1 = f(1) = u(1) + iv(1), which

implies

u(1) = 1 and v(1) = 0. (2.4)

Consequently,

u(q) = q and v(q) = 0 for all q ∈ Q+.

Since Kx or Ky are not dense in R, the image of u or the image of v cannot be dense

in R. We consider each case seperately.

Case 1: the image of u is not dense in R.

By Lemma 2.1.5 and (2.4), u is the identity function so f(x) = x + iv(x). By (C2),

xy + iv(xy) = (x + iv(x))(y + iv(y))

= xy − v(x)v(y) + i{xv(y) + yv(x)}.
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Hence v(x)v(y) = 0 for all x, y ∈ R+. Consequently, v ≡ 0, which implies that f is

the identity function.

Case 2: the image of v is not dense in R.

By Lemma 2.1.5 and (2.4), v is the zero function. Hence f is a real-valued function.

By (C2), for each x ∈ R+,

f(x) = f((
√

x)2) = f(
√

x)2 ≥ 0,

and hence the image of f is not dense in R. Using Lemma 2.1.5, we obtain that f is

the identity function. Therefore {(C1),(C2)} are ZI-independent over (R+, K).



CHAPTER III

THE UNIVERSAL CAUCHY FUNCTIONAL EQUATION

In this Chapter, the notions of alien and weakly alien relations among all solutions

of the four versions of the Cauchy functional equation are extended. To do so, we

first solve the functional equation

af(xy) + bf(x)f(y) + cf(x + y) + d(f(x) + f(y)) = 0,

which contains all the four forms of the classical Cauchy functional equation. This

complements an earlier work of Dhombres in 1988 where the same functional equation

was solved for solutions whose domains contain zero, which leaves out the logarithmic

function. Here not only the logarithmic function is recovered but the analysis is

entirely different and is based on solving appropriate difference equations.

3.1 Introduction

Recall that the four versions of the Cauchy functional equation are

f(x + y) = f(x) + f(y) (C1)

f(xy) = f(x)f(y) (C2)

f(x + y) = f(x)f(y) (C3)

f(xy) = f(x) + f(y) (C4)
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The following notions of dependence relations among the above four equations were

first introduced in [5].

Definition 3.1.1. Let i, j be two distinct elements of {1, 2, 3, 4}.

1. The functional equations Ci and Cj are alien relative to (X,Y ) if each solution

function f : X → Y of the functional equation Ci + Cj is also a solution of the

system Ci and Cj.

2. The functional equations Ci and Cj are weakly alien relative to (X,Y ) if

each function f : X → Y which is a non-constant solution of Ci + Cj is also

a solution of the system Ci and Cj.

Such relations will be investigated among all solution functions, sending the set

of positive reals into the complex field, of the four versions of the Cauchy functional

equation. Instead of directly checking all possible solutions from each type of the

above four Cauchy functional equations, we encompass them into one single functional

equation, referred to as a universal Cauchy functional equation,

af(xy) + bf(x)f(y) + cf(x + y) + d {f(x) + f(y)} = 0, (3.1)

where a, b, c, d are four parameters belonging to the range of the solution functions.

The four forms of the classical Cauchy functional equation correspond, respectively,

to:

1. a = b = 0 and c = 1 = −d.

Then (3.1) is the classical Cauchy functional equation in additive form

f(x + y) = f(x) + f(y), (3.2)
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and we denote a general solution of (3.2) by A.

2. a = 1 = −b and c = d = 0.

Then (3.1) is the classical Cauchy functional equation in multiplicative form

f(xy) = f(x)f(y), (3.3)

and we denote a general solution of (3.3) by M .

3. a = 1 = −d and b = c = 0.

Then (3.1) is the classical Cauchy functional equation in the cross multiplicative-

additive form

f(xy) = f(x) + f(y), (3.4)

and we denote a general solution of (3.4) by L which includes the logarithmic

function.

4. c = 1 = −b and a = d = 0.

Then (3.1) is the classical Cauchy functional equation in the cross additive-

multiplicative form

f(x + y) = f(x)f(y), (3.5)

and we denote a general solution of (3.5) by E.

The universal Cauchy functional equation (3.1) was first treated in 1988 by Dhombres,

[5], in his investigation of the inter-relations among the four forms of the classical

Cauchy functional equation. Dhombres solved (3.1) for a solution function defined

over a ring, which is divisible by 2 possessing a unit, and its range is contained in a

skew-field containing the parameters a, b, c, d which also commute with all elements

of the skew-field. The method of Dhombres is elementary in nature but several
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crucial uses are made of the presence of 0 in its domain which inevitably leaves out

the important logarithmic function from a possible solution. In order to recover the

logarithmic function, here we take instead the positive reals, R+, as our domain of

solution functions and by so doing Dhombres’s technique is no longer valid.

Our approach is first to substitute y = 1 into the functional equation (3.1) which

turns it into a first-order difference equation, in the variable x, with constant coeffi-

cients. The case where c = 0 is particularly easy to solve without having to resort to

the method of difference equations and is dealt with in the next section. If c 6= 0, we

split the proof into two parts, called the first sub-case of c 6= 0 and the second sub-

case of c 6= 0. Both parts are solved by strategically treating appropriate segregating

conditions. The first part, corresponding to the condition a+ bf(1)+ d = 0, is solved

by elementary means. The second part, which is hardest among the three modes

of attack, is solved through the technique of difference equations. Since solutions of

such difference equations generally involve periodic functions of period 1, we need to

impose a natural restriction that the solution function is finite-valued over the unit

interval. In the course of the proof, whenever the functional equation is reduced to

any one of the four forms of Cauchy functional equation mentioned above, the solution

will be denoted by the respective symbols A,M,L or E. This is in conformity with

the customary practice because without appropriate restrictions, solutions of these

four forms of Cauchy functional equation are quite numerous, see e.g. pp. 35-38 of

[1] or Section 2.2 of [3]. Our main result is:

Theorem 3.1.2. Let a, b, c, d ∈ C ; A denote a solution of (3.2), M denote a solution

(3.3), L denote a solution of (3.4) and E denote a solution of (3.5). If f : R+ → C

satisfies the universal Cauchy functional equation

af(xy) + bf(x)f(y) + cf(x + y) + d {f(x) + f(y)} = 0, (3.6)
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then all possible solution functions are displayed in Figure 3.1, Figure 3.2 and Figure

3.3, respectively.

3.2 Case c = 0

If c = 0, the equation (3.6) is particularly easy to solve without having to resort to

the method of difference equations and we deal with it first.

Theorem 3.2.1. Let a, b, d ∈ C ; M denote a solution (3.3), and let L denote a

solution of (3.4). If f : R+ → C satisfies the functional equation

af(xy) + bf(x)f(y) + d {f(x) + f(y)} = 0, (3.7)

then all possible solution functions are displayed in Figure 3.1.

Figure 3.1: Case c = 0
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Proof. Putting y = 1 into (3.7), we get

0 = af(x) + bf(x)f(1) + d {f(x) + f(1)}

= {a + bf(1) + d} f(x) + df(1). (3.8)

We distinguish two separate cases corresponding to a + bf(1) + d 6= 0 or otherwise.

Case 1. a + bf(1) + d 6= 0.

Here, (3.8) immediately yields a constant solution, namely,

f(x) =
−df(1)

a + bf(1) + d
= constant.

To distinguish what a constant solution looks like, putting f ≡ constant k into (3.7),

we get

k(a + bk + 2d) = 0.

If b = 0 and a + 2d = 0, then f is arbitrary. If b = 0 but a + 2d 6= 0, then f is the

zero function. If b 6= 0, then f is the zero function or f(x) = −(a+2d)
b

.

Case 2. a + bf(1) + d = 0.

Here, (3.8) yields

df(1) = 0,

and there are two sub-cases.

• Sub-case 2A : d = 0.

If b = 0, then a = 0, and so we have no functional equation.

If b 6= 0 and a 6= 0, then the starting equation (3.7) becomes

af(xy) + bf(x)f(y) = 0,
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equivalently,

− b

a
f(xy) =

{

− b

a
f(x)

}{

− b

a
f(y)

}

.

Referring to (3.3), we infer that f is of the form

f(x) = −a

b
M(x).

If b 6= 0 but a = 0, then the starting equation (3.7) is

bf(x)f(y) = 0

yielding f as the zero function.

• Sub-case 2B: d 6= 0. This gives f(1) = 0 and so a + d = 0.

If b = 0, then the original equation (3.7) becomes

af(xy) − a {f(x) + f(y)} = 0.

Since a = −d 6= 0, we get

f(xy) = f(x) + f(y)

yielding as solution

f ≡ L.

If b 6= 0, the starting equation (3.7) now reads

af(xy) + bf(x)f(y) − a{f(x) + f(y)} = 0,
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which is equivalent to

1 − b

a
f(xy) =

{

1 − b

a
f(x)

} {

1 − b

a
f(y)

}

.

Referring to (3.3), we infer that

f(x) =
a

b
{1 − M(x)} .

The solution functions displayed in Figure 3.1 are confirmed by direct checking.

3.3 The first sub-case of c 6= 0

In this section we solve the first sub-case of c 6= 0.

Theorem 3.3.1. Let a, b, c (6= 0), d ∈ C. Assume that f : R+ → C satisfies the

universal Cauchy functional equation (3.6). If a + bf(1) + d = 0, then all possible

solution functions are displayed in Figure 3.2, where K = −df(1)
c

.

Figure 3.2: Case c 6= 0 and a + bf(1) + d = 0
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Proof. Putting y = 1 into (3.6), we get

0 = {a + bf(1) + d} f(x) + cf(x + 1) + df(1)

= cf(x + 1) + df(1), (3.9)

yielding, for all x ∈ R+,

f(x + 1) = −df(1)

c
=: K, say, (3.10)

with

bf(1) = −(a + d).

To determine the values of f over the unit interval, we divide into two cases corre-

sponding to b = 0 or b 6= 0.

Case 1. b 6= 0. Then

f(1) = −a + d

b
. (3.11)

Putting x ∈ (0, 1) and y = 1
x

in the original equation (3.6), we get

0 = af(1) + bf(x)f

(

1

x

)

+ cf

(

x +
1

x

)

+ d

{

f(x) + f(
1

x
)

}

= af(1) + bf(x)K + cK + d{f(x) + K},

and so

(bK + d) f(x) = −(af(1) + K(c + d)) (x ∈ (0, 1)) . (3.12)

We subdivide further into two sub-cases.

• Sub-case 1.1. bK + d 6= 0.

There are two more possibilities, K = 0 and K 6= 0.
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¯ Possibility 1: K = 0.

This gives d 6= 0 and the definition (3.10) of K shows that

f(x) = 0 (x > 1) .

Using again the definition (3.10) together with d 6= 0, we infer that

f(1) = 0 and so f(x) = 0 for all x ≥ 1.

As for x ∈ (0, 1), referring to (3.12) we have

df(x) = 0.

The solution function is then

f ≡ 0.

¯ Possibility 2: K 6= 0.

Taking x, y > 1 in the original equation (3.6) and using the definition (3.10) of K,

we get

K(a + bK + c + 2d) = 0.

Since K 6= 0 and b 6= 0, we deduce that

K = −a + c + 2d

b
.
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Equating bK + d and using the value of f(1) in (3.11), we get

−(a + c + d) = bK + d (6= 0)

= b(
−df(1)

c
) + d =

d

c
(a + d + c),

i.e.,

c + d = 0. (3.13)

Using this last relation (3.13) and (3.10), we have

f(x) = K =
−df(1)

c
= f(1) (x > 1) . (3.14)

Observe also that (3.13) together with a + c + d = −(bK + d) 6= 0 show that a 6= 0.

Taking x ∈ (0, 1) and y = 1
x

in the original equation (3.6), we have

af(1) + bf(x)f

(

1

x

)

+ cf

(

x +
1

x

)

+ df(x) + df

(

1

x

)

= 0.

Taking (3.14) into account, we get

af(1) + bf(x)f(1) + cf(1) + df(x) + df(1) = 0 (x ∈ (0, 1)) . (3.15)

Putting x ∈ (0, 1) and y = 1 into the original equation (3.6), and also using (3.14),

we have

af(x) + bf(x)f(1) + cf(1) + df(x) + df(1) = 0 (x ∈ (0, 1)) . (3.16)
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Solving (3.15) and (3.16) yields

a(f(1) − f(x)) = 0 (x ∈ (0, 1)) .

Since a 6= 0, this implies

f(x) = f(1) for all x ∈ (0, 1).

The solution function is thus

f(x) = f(1) = −a + d

b
=

c − a

b

(

x ∈ R+
)

.

• Sub-case 1.2. bK + d = 0.

Using the definition (3.10) of K and the value of f(1) in (3.11), we get

0 = bK + d = b

(−df(1)

c

)

+ d = b

(

d

c

)(

a + d

b

)

+ d =
d

c
(a + d + c) .

This last relation entails two possibilities

d = 0 or a + d + c = 0.

¯ Possibility 1: d = 0.

The equation (3.10) thus yields

f(x) = 0 (x > 1) . (3.17)

Taking x > 1, y = 1
x

in the original equation (3.6), using (3.17), d = 0 and the value
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f(1) in (3.11) give

0 = af(1) = a
(

−a

b

)

= −a2

b
, i.e., a = 0.

The original equation (3.6) reduces to

bf(x)f(y) + cf(x + y) = 0,

or equivalently,

−b

c
f(x + y) =

(−b

c
f(x)

)(−b

c
f(y)

)

.

Referring to (3.5), we infer that the solution function is

f(x) =
−c

b
E(x).

Since a = 0 = d, the relation (3.11) tells us that

0 = f(1) =
−c

b
E(1),

i.e.,

E(1) = 0.

Together with (3.17), we deduce that

E(x) = 0 (x ≥ 1) .

We turn our attention now to the open unit interval. For each x ∈ (0, 1), since there

exists n ∈ N such that nx > 1, using the additive-multiplicative equation of E we
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have

0 = E(nx) = E(x)n, (3.18)

i.e.,

E(x) = 0 (x ∈ (0, 1)) .

The solution function is thus

f ≡ 0.

¯ Possibility 2: a + c + d = 0.

We may assume without loss of generality that d 6= 0, for otherwise the analysis in

Possibility 1 applies. The function value in (3.11) is

f(1) = −a + d

b
=

c

b
6= 0, (3.19)

and so (3.10) becomes

f(x) =
−df(1)

c
=

−d

b
(x > 1) . (3.20)

Substituting x ∈ (0, 1), y = 1
x

into the original equation (3.6), we have

af(1) + bf(x)f

(

1

x

)

+ cf

(

x +
1

x

)

+ d

{

f(x) + f

(

1

x

)}

= 0,

i.e.,

f(x)

{

bf

(

1

x

)

+ d

}

= −
{

af(1) + cf

(

x +
1

x

)

+ df

(

1

x

)}

.

Taking (3.19) and (3.20) into account and simplifying, we get

0 = f(x)

{

b

(−d

b

)

+ d

}

=
−ac + cd + d2

b
=

a2

b
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yielding

a = 0 and so c = −d.

The original equation (3.6) reduces to

bf(x)f(y) − df(x + y) + d {f(x) + f(y)} = 0, (3.21)

which is equivalent to

b

d
f(x + y) + 1 =

(

b

d
f(x) + 1

)(

b

d
f(y) + 1

)

.

Referring to the additive-multiplicative form of the Cauchy function equation (3.5),

we deduce that

f(x) =
d

b
(E(x) − 1) .

Using (3.20), we get

−d

b
= f(x) =

d

b
(E(x) − 1) , (x > 1)

which implies that

E(x) = 0 (x > 1) .

Similarly, using (3.19) leads to

E(1) = 0.

By the same arguments as in (3.18), we must have E ≡ 0 and we conclude that the

solution function is

f(x) ≡ −d

b
(x ∈ R+).
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Case 2. b = 0. Then

0 = a + bf(1) + d = a + d (3.22)

and the original equation (3.6) becomes

af(xy) + cf(x + y) − a{f(x) + f(y)} = 0. (3.23)

Substituting y = 1 gives f(x + 1) = af(1)
c

, i.e.,

f(x) =
af(1)

c
(x > 1). (3.24)

Putting x ∈ (0, 1), y = 1
x

> 1, into (3.23) and using (3.24) yield

af(x) = af(1)
(

2 − a

c

)

. (3.25)

Putting y = x > 1 into (3.23) and using (3.24) give

0 =
af(1)

c
(a + c − 2a) =

af(1)

c
(c + d).

This leaves us three possibilities corresponding to

c + d = 0, a = 0 and f(1) = 0.

¯ Possibility 1: c + d = 0.

Then 0 6= c = −d = a and (3.24) yields

f(x) = f(1) (x > 1) .
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However, since a 6= 0 (for otherwise we are in Possibility 2), (3.25) shows that f(x) =

f(1) (x < 1). The solution function is thus

f ≡ arbitrary constant.

¯ Possibility 2: a = 0.

Thus (3.22) yields d = 0 and the original equation (3.6) reduces considerably to

cf(x + y) = 0, showing that the solution function is f ≡ 0.

¯ Possibility 3: f(1) = 0.

The relations (3.24) and (3.25) lead immediately to the solution function f ≡ 0.

The results in Figure 3.2 is confirmed by directly checking all the solution functions

found.

3.4 The second sub-case of c 6= 0

We finally come to the second sub-case of c 6= 0, which is the hardest of the three.

Theorem 3.4.1. Let a, b, c (6= 0), d ∈ C ; let A denote a solution of (3.2), and let E

denote a solution of (3.5). Assume that f : R+ → C is a finite-valued function over

(0, 1] and satisfies the universal Cauchy functional equation (3.6). If a+bf(1)+d 6= 0,

then all possible solution functions are displayed in Figure 3.3, where

ω(1) = − cf(1)(bf(1) + c + 2d)

(bf(1) + d)(bf(1) + c + d)
.
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Figure 3.3: Case c 6= 0 and a + bf(1) + d 6= 0
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Proof. Putting y = 1 into (3.6), we get

{a + bf(1) + d} f(x) + cf(x + 1) = −df(1), (3.26)

We now treat two distinct cases corresponding to a+ bf(1)+d+ c = 0 and otherwise.

Case 1: a + bf(1) + d + c = 0.

Thus a+bf(1)+d = −c, and (3.26) leads to a non-homogeneous first order difference

equation with constant coefficients

cf(x + 1) − cf(x) = −df(1). (3.27)

The general solution of (3.27) is of the form, see e.g. [9],

f(x) = ω(x) − df(1)

c
x, (3.28)

where ω(x) denotes a periodic function of period 1. We sub-divide into two sub-cases

corresponding to df(1) = 0 or otherwise.

• Sub-case 1. df(1) = 0.

Here, f(x) = ω(x) and substituting this shape of f(x) into the original equation (3.6)

yields

aω(xy) + bω(x)ω(y) + cω(x + y) + d{ω(x) + ω(y)} = 0. (3.29)

Replacing x by x + 1 in (3.29) and using the periodicity of ω lead to

0 = aω(xy + y) + bω(x)ω(y) + cω(x + y) + d{ω(x) + ω(y)}. (3.30)
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Comparing (3.29) and (3.30) yields

a{ω(xy + y) − ω(xy)} = 0.

If a 6= 0, then

ω(xy + y) = ω(xy).

Since x and y are arbitrary, we deduce that

ω(z + y) = ω(z) for all z, y ∈ R+

and this forces ω(x) to be constant and so is f(x). To determine this constant, putting

f ≡ k into (3.29), we get

k(a + bk + c + 2d) = 0.

For b = 0, from the defining relation of Case 1, i.e., a + bf(1) + d + c = 0, we get

a + d + c = 0

This together with the relation just found, we deduce

kd = 0.

If d = 0, then f is an arbitrary constant. If d 6= 0, then f is the zero function.

For b 6= 0, from a + bf(1) + d + c = 0, we deduce that

f(1) =
−(a + c + d)

b
.
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If a = 0, from df(1) = 0, there are two possibilities

d = 0 or d 6= 0.

¯ Possibility 1: d = 0.

The equation (3.29) becomes

bω(x)ω(y) + cω(x + y) = 0.

Note that b 6= 0 by the relation defining Case 1. Thus,

−b

c
ω(x + y) =

(

−b

c
ω(x)

)(

−b

c
ω(y)

)

.

Appealing to (3.5), the solution function is

f(x) = ω(x) = −c

b
E(x), (3.31)

where here E(x) must also be periodic of period 1.

¯ Possibility 2: d 6= 0. Thus

f(1) = 0.

From the identification of Case 1, we have

0 = a + bf(1) + c + d = c + d.

Here b 6= 0 by the same reasoning as in Possibility 1. The equation (3.29) becomes

bω(x)ω(y) − dω(x + y) + d {ω(x) + ω(y)} = 0,
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which is of the same form as (3.21) in the proof of Theorem 3.3.1 and the same

analysis leads to

f(x) = ω(x) =
d

b
(E(x) − 1). (3.32)

Checking the solution functions (3.31) and (3.32) shows that the restriction of being

periodic with period 1 for E(x) can be discarded.

• Sub-case 2. df(1) 6= 0.

Substituting f(x) from (3.28) into the original equation (3.6) and simplifying give

0 = aω(xy) − adf(1)

c
xy + bω(x)ω(y) − bdf(1)

c
xω(y) − bdf(1)

c
yω(x) + b

(

df(1)

c

)2

xy

+ cω(x + y) − df(1)(x + y) + dω(x) + dω(y) − d2f(1)

c
(x + y).

Keeping y fixed for the time being, dividing this last relation by x, letting x → ∞

and using the finite-value assumption of the solution function, we get

−adf(1)

c
y − bdf(1)

c
ω(y) + b

(

df(1)

c

)2

y − df(1) − d2f(1)

c
= 0. (3.33)

Now dividing by y and letting y → ∞, we arrive at

−adf(1)

c
+ b

(

df(1)

c

)2

= 0.

Since df(1)/c 6= 0, we get

a =
bdf(1)

c
. (3.34)

If a = 0, then b = 0. The defining condition of Case 1 then implies c = −d which

turns the original equation (3.6) into (3.2). The solution function is thus

f(x) = A(x).
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If a 6= 0, substituting (3.34) into (3.33) and simplifying, we get

0 = −df(1)

c
{bω(y) + c + d} ,

and so

bω(y) + c + d = 0.

Since a 6= 0, the relation (3.34) shows that

b 6= 0.

Thus

ω(y) = −c + d

b
,

and (3.28) implies that

f(x) = −c + d

b
− df(1)

c
x = −1

b
(ax + c + d). (3.35)

Substituting this shape of f into the original equation (3.6) leads to

0 = a

{

−1

b
(axy + c + d)

}

+ b

{

−1

b
(ax + c + d)

}{

−1

b
(ay + c + d)

}

+ c

{

−1

b
(a(x + y) + c + d)

}

+ d

{

−1

b
(ax + c + d)

}

+ d

{

−1

b
(ay + c + d)

}

= −1

b
(a + d)(c + d),

which necessitates that the solution function is of form (3.35) if and only if a + d = 0

or c + d = 0.
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If a + d = 0, then the solution function is

f(x) = −1

b
(ax + c + d) =

a

b
(1 − x) − c

b
.

If c + d = 0, then the solution function is

f(x) = −1

b
(ax + c + d) = −a

b
x.

Case 2: a + bf(1) + d + c 6= 0.

The general solution of (3.26) is of the form

f(x) = ω(x)

(

−a + bf(1) + d

c

)x

− df(1)

a + bf(1) + d + c
:= ω(x)P x − df(1)

c(1 − P )
, (3.36)

where, by the hypothesis of the theorem,

P = −a + bf(1) + d

c
6= 0. (3.37)

Since a + bf(1) + d + c 6= 0, we see that P 6= 1. Substituting this shape of f into the

original equation (3.6) and simplifying, we arrive at

0 = aω(xy)P xy − a
df(1)

c(1 − P )
+ bω(x)ω(y)P x+y − b

df(1)

c(1 − P )
{ω(x)P x + ω(y)P y}

+ b

(

df(1)

c(1 − P )

)2

+ cω(x + y)P x+y − c
df(1)

c(1 − P )
+ dω(x)P x

− d
df(1)

c(1 − P )
+ dω(y)P y − d

df(1)

c(1 − P )
.
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Separating the constant, called α for short, and the variable parts, we get

α :=
df(1)

c(1 − P )

{

a − bdf(1)

c(1 − P )
+ c + 2d

}

(3.38)

= aω(xy)P xy + bω(x)ω(y)P x+y − b
df(1)

c(1 − P )
(ω(x)P x + ω(y)P y)

+ cω(x + y)P x+y + dω(x)P x + dω(y)P y.

Now we distinguish two separate sub-cases corresponding to a = 0 or otherwise.

• Sub-case 1. a 6= 0.

Putting y = 2 into (3.38) and using the periodicity of ω, we have

α = aω(2x)P 2x + bω(x)ω(2)P x+2 − b
df(1)

c(1 − P )

{

ω(x)P x + ω(2)P 2
}

+ cω(x + 2)P x+2 + dω(x)P x + dω(2)P 2.

= aω(2x)P 2x + bω(x)ω(1)P x+2 − b
df(1)

c(1 − P )

{

ω(x)P x + ω(1)P 2
}

+ cω(x)P x+2 + dω(x)P x + dω(1)P 2.

Again separating the constant, called β for short, and the variable parts of this last

relation, we get

β := α + b
df(1)

c(1 − P )
ω(1)P 2 − dω(1)P 2 (3.39)

= P x

(

aω(2x)P x + bω(x)ω(1)P 2 − b
df(1)

c(1 − P )
ω(x) + cω(x)P 2 + dω(x)

)

:= P xF (x),

where

F (x) := aω(2x)P x + bω(x)ω(1)P 2 − b
df(1)

c(1 − P )
ω(x) + cω(x)P 2 + dω(x). (3.40)
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Observe that (3.39) holds for any x ∈ R+ and so P x+1F (x + 1) = β implying that

PF (x + 1) = F (x). (3.41)

From the definition (3.40) and the periodicity of ω, we get

F (x + 1) = aω(2(x + 1))P x+1 + bω(x + 1)ω(1)P 2 − b
df(1)

c(1 − P )
ω(x + 1)

+ cω(x + 1)P 2 + dω(x + 1)

= F (x) + aω(2x)P x(P − 1).

This together with (3.41) show that

F (x) = PF (x + 1) = P {F (x) + aω(2x)P x(P − 1)} ,

i.e.,

(1 − P )F (x) = aω(2x)P x+1(P − 1).

Since 1 − P 6= 0, we deduce that

F (x) = −aω(2x)P x+1.

Going back to (3.39), we see that

β = P xF (x) = −aω(2x)P 2x+1,

i.e.,

ω(2x)P 2x = − β

aP
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implying that

ω(z)P z ≡ constant
(

z ∈ R+
)

.

The solution function, (3.36), is thus

f(x) = ω(x)P x − df(1)

(c(1 − P )
≡ constant.

To determine this constant, putting f ≡ k into (3.26), we have

k(a + bk + c + 2d) = 0.

If b = 0 and a + c + 2d = 0, then f is an arbitrary constant. If b = 0 but

a + c + 2d 6= 0, then f is the zero function.

If b 6= 0, then f(x) is the zero function or

f(x) =
−(a + c + 2d)

b
.

• Sub-case 2. a = 0.

Then (3.38) becomes

α =
df(1)

c(1 − P )

{

− bdf(1)

c(1 − P )
+ c + 2d

}

= bω(x)ω(y)P x+y − b
df(1)

c(1 − P )

{

ω(x)P x + ω(y)P y
}

+ cω(x + y)P x+y + dω(x)P x + dω(y)P y.

Rearranging and using the definition of P in (3.37) we get

P xP y {bω(x)ω(y) + cω(x + y)} +
d(c + d)

c(1 − P )
{P xω(x) + P yω(y)} = α. (3.42)

Now we consider the possibility whether |P | = 1.
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•• Possibility 1: |P | = 1.

Replacing y = 1 in (3.42) and using the periodicity of ω, we have

α = P xP {bω(x)ω(1) + cω(x)} +
d(c + d)

c(1 − P )
{P xω(x) + Pω(1)} . (3.43)

Replacing y = M ∈ N r {1} in (3.42) and using the periodicity of ω, we get

α = P xPM {bω(x)ω(1) + cω(x)} +
d(c + d)

c(1 − P )

{

P xω(x) + PMω(1)
}

. (3.44)

Equating (3.43) and (3.44), we have

P xω(x)(bω(1) + c)(P − PM) =
d(c + d)

c(1 − P )
ω(1)(PM − P ). (3.45)

Since P 6= 1, there must be an M ∈ N such that P − PM 6= 0. Thus,

P xω(x)(bω(1) + c) = − d(c + d)

c(1 − P )
ω(1). (3.46)

¯ For bω(1) + c 6= 0, (3.46) shows that P xω(x) is a constant function. The solution

function, (3.36), is thus

f ≡ constant.

To consider this constant, putting f ≡ k into (3.26), we again have

k(bk + c + 2d) = 0.

If b = 0 and c + 2d = 0, then f is an arbitrary constant. If b = 0 but c + 2d 6= 0,

then f is the zero function.
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If b 6= 0, then f(x) is the zero function or

f(x) = −c + 2d

b
.

¯ For bω(1) + c = 0, (3.46) shows that

d(c + d) ω(1) = 0.

Now, b and ω(1) are both nonzero, for otherwise the condition of this case entails

c = 0, contradicting its definition. Thus,

d(c + d) = 0

implying that either

d = 0 or c + d = 0.

In any case, (3.43) implies that α = 0 and (3.42) becomes

bω(x)ω(y) + cω(x + y) = 0,

or equivalently,

−b

c
ω(x + y) =

(

−b

c
ω(x)

)(

−b

c
ω(y)

)

.

Referring to (3.5), we have

ω(x) = −c

b
E(x).

If d = 0, then the solution function in (3.36) is

f(x) = ω(x)P x − df(1)

c(1 − P )
= −c

b
E(x)P x.
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Since in this case, P 6= 0 is arbitrary, the solution function can be put under the form

f(x) = −c

b
E(x),

where this last E is a generic symbol representating a general solution of (3.5).

If c + d = 0, the definition of P in (3.37) gives

f(1)

c(1 − P )
=

1

b

and the solution function, (3.36), is thus

f(x) = ω(x)P x − df(1)

c(1 − P )
= −c

b
E(x)P x − d

b

and as in the last case, the solution function can be put under the form

f(x) = −c

b
E(x) − d

b
=

d

b
(E(x) − 1) .

•• Possibility 2: |P | 6= 1.

Let P = reiθ. Substituting y = 1, respectively, y = M ∈ N r {1} into (3.42) and

using the periodicity of ω, we get (3.43), respectively,

α = P xrMeiθM {bω(x)ω(1) + cω(x)} +
d(c + d)

c(1 − P )

{

P xω(x) + rMeiθMω(1)
}

. (3.47)

Equating these last two equations gives

P xω(x)(bω(1) + c)(reiθ − rMeiθM) =
d(c + d)

c(1 − P )
ω(1)(rMeiθM − reiθ).

Since M 6= 1, we must have reiθ − rMeiθM 6= 0. This leads us to (3.46) of the last
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possibility and the same analysis is applicable leading to the same three forms of

solution. The results in Figure 3.3 is confirmed by checking the solution functions

found above.



CHAPTER IV

DEPENDENCE RELATIONS

The notions of alien and weakly alien relations among all solutions of the four classical

versions of the Cauchy functional equation are re-considered in this chapter, but are

investigated here among all solution functions, sending the set of positive reals into

the complex field, of the four forms of the Cauchy functional equation.

4.1 Known results

We recall the results stated in Chapter III:

Theorem 4.1.1. Let a, b, d ∈ C . If f : R+ → C satisfies the functional equation

af(xy) + bf(x)f(y) + d {f(x) + f(y)} = 0,

then all possible solution functions are
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Theorem 4.1.2. Let a, b, c (6= 0), d ∈ C. Assume that f : R+ → C satisfies the

universal Cauchy functional equation. If a + bf(1) + d = 0, then all possible solution

functions, where K = −df(1)
c

, are
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Theorem 4.1.3. Let a, b, c (6= 0), d ∈ C. Assume that f : R+ → C is bounded over

(0, 1] and satisfies the universal Cauchy functional equation. If a + bf(1) + d 6= 0,

then all possible solution functions, where ω(1) = − cf(1)(bf(1)+c+2d)
(bf(1)+d)(bf(1)+c+d)

, are

Our objective here is to investigate the above-mentioned two kinds of depen-

dence relations among the four forms of the Cauchy’s function equation displayed in

Theorems 4.1.1, 4.1.2 and 4.1.3.
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For the rest of the chapter, only solution functions which are complex-valued func-

tions with domain R+ and bounded over the interval (0, 1] are considered.

4.2 Alien and weakly alien relations

In this section, alien and weakly alien relations among the solutions of the four versions

of Cauchy’s equation are determined.

Theorem 4.2.1. For distinct i, j ∈ {1, 2, 3, 4}, each pair Ci, Cj, except for the pair

C3 and C4, is both alien and weakly alien relative to (R+, C).

Proof. There are six pairs of equations to be considered and we proceed to treat each

one of them separately.

1. C1 and C2

The functional equation C1 + C2 takes the form

f(xy) − f(x)f(y) + f(x + y) − f(x) − f(y) = 0, (4.1)

which corresponds to the universal Cauchy functional equation (3.1) with a = c = 1

and b = d = −1.

If f ≡ k is a constant solution function, then 0 = k − k2 + k − k − k = −k2, i.e.,

f ≡ k = 0. (4.2)

Since c 6= 0, those solution functions in Theorem 4.1.1 are untenable.

For solution functions in Theorem 4.1.2, we refer to Figure 2.

The possibilities (B1) and (B2) yield the zero function.

The possibility (B3) is ruled out because d = −1 6= 0.
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The possibility (B4) is ruled out since a + c + d = 1 6= 0.

The possibilities (B5), (B6) and (B7) are ruled out since b = −1 6= 0.

For solution functions in Theorem 4.1.3, we refer to Figure 3.

The possibilities (Γ1), (Γ2), (Γ11) and (Γ12) are ruled out since b = −1 6= 0.

The possibility (Γ3) yields f(x) = −1, contradicting (4.2).

The possibilities (Γ4), (Γ5), (Γ6) and (Γ13) up to (Γ18) are ruled out since a = 1 6= 0.

The possibilities (Γ7) and (Γ8) yield f(x) = x, which satisfies (4.1).

The possibilities (Γ9) and (Γ10) yield f ≡ 0.

To sum up, each solution of (4.1) is of the form f ≡ 0 or f(x) = x. Since both are

also solutions of C1 and C2, we conclude that C1 and C2 are alien relative to (R+, C),

and automatically, C1 and C2 are weakly alien relative to (R+, C).

2. C2 and C3

The functional equation C2 + C3 takes the form

f(xy) − 2f(x)f(y) + f(x + y) = 0, (4.3)

which corresponds to the universal Cauchy functional equation (3.1) with a = c = 1,

b = −2 and d = 0.

If f ≡ k is a constant function, then 0 = k − 2k2 + k = 2k(1 − k), i.e.,

f ≡ k = 0 or f ≡ k = 1.

All solutions from Theorem 4.1.1 are ruled out since c 6= 0.

For solution functions in Theorem 4.1.2, we refer to Figure 2.

The possibilities (B1), (B2) and (B3) yield f ≡ 0.

The possibility (B4) is untenable because a + c + d = 2 6= 0.



55

The possibilities (B5), (B6) and (B7) are untenable because b = −2 6= 0.

For solution functions in Theorem 4.1.3, we refer to Figure 3,

The possibilities (Γ1), (Γ2), (Γ11) and (Γ12) are not possible since b = −2 6= 0.

The possibilities (Γ3) and (Γ9) yield f(x) = 1.

The possibilities (Γ4), (Γ5) and (Γ13) up to (Γ18) are not possible since a = 1 6= 0.

The possibilities (Γ6), (Γ7) and (Γ8) are ruled out since d = 0.

The possibility (Γ10) yields the zero function.

To sum up, the only two solutions of (4.3) are the zero function and f ≡ 1, so C2

and C3 are alien and weakly alien relative to (R+, C).

3. C3 and C4.

The functional equation C3 + C4 is

f(xy) − f(x)f(y) + f(x + y) − f(x) − f(y) = 0, (4.4)

which corresponds to the universal Cauchy functional equation (3.1) with a = c = 1

and b = d = −1.

Note that (4.4) is the same as (4.1), so the only two solutions are the zero function

and the identity function. But f(x) = x does not satisfy f(x + y) = f(x)f(y), so C3

and C4 are not alien relative to (R+, C). Moreover, C3 and C4 are not weakly alien

relative to (R+, C).

The remaining three cases, which we omit their analogous proofs, are simpler as

the zero function is the only solution.

The functional equations E1 and E2 can be alien without −E1 and E2 being so.

This is seen by considering for example from the constant function f ≡ 2 which is a
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solution of

−C1 + C2 : −f(x + y) + f(x) + f(y) + f(xy) − f(x)f(y) = 0.

Here f ≡ 2 does not satisfy C1 and C2. Thus C1 and C2 are alien relative to (R+, C),

but −C1 and C2 are not.

This remark leads us to consider constant multiples of the four versions of the

Cauchy functional equation in the next section.

4.3 Multiple of functional equations

In this section, we investigate whether any pair taken from pC1, qC2, rC3 and sC4,

where p, q, r, s ∈ C r {0}, are pairwise alien or weakly alien. The analysis is similar

to that of Theorem 4.2.1 and we shall give detailed proofs only for some of them.

Proposition 4.3.1. Let p, q ∈ C r {0}. If p = q, then pC1 and qC2 are both alien

and weakly alien relative to (R+, C). If p 6= q, the functional equations pC1 and qC2

are neither alien nor weakly alien relative to (R+, C).

Proof. The functional equation pC1 + qC2 is

qf(xy) − qf(x)f(y) + pf(x + y) − pf(x) − pf(y) = 0, (4.5)

which corresponds to the universal Cauchy’s functional equation with a = q, b = −q,

c = p and d = −p.

If f ≡ k is a constant solution function, then 0 = qk−qk2+pk−2pk = k(q−qk−p),

and so

f ≡ k = 0 or f ≡ k =
q − p

q
6= 1. (4.6)
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The solutions from Theorem 4.1.1 are untenable as c = p 6= 0.

Next we treat the solutions from Theorem 4.1.2 displayed in Figure 2.

The possibility (B1) yields the zero function.

The possibility (B2) yields f(x) = c−a
b

= q−p

q
.

The possibility (B3) is ruled out because d = −p 6= 0.

The possibility (B4) is ruled out since a + c + d = q 6= 0.

The possibilities (B5), (B6) and (B7) are ruled out since b = −q 6= 0.

Next consider the solutions from Theorem 4.1.3 in Figure 3.

The possibilities (Γ1), (Γ2), (Γ11) and (Γ12) are not possible since b = −q 6= 0.

The possibility (Γ3) yields f(x) = −a+c+d
b

= − q+p−p

−q
= 1, contradicting (4.6).

The possibilities (Γ4), (Γ5), (Γ6) and (Γ13) up to (Γ18) are ruled out since a = q 6= 0.

The possibility (Γ7) yields f(x) = a
b
(1−x)− c

b
= x− 1+ p

q
; if 0 = a+ d = q− p, then

f(x) = x.

The possibility (Γ8) gives f(x) = −a
b
x = x which satisfies (4.5).

The possibility (Γ9) yields f(x) = −a+c+2d
b

= q−p

q
.

The possibility (Γ10) yields f ≡ 0.

To sum up, all the solutions of (4.5) are f ≡ 0, f ≡ q−p

q
, f(x) = x and f(x) =

x−1+ p

q
. All of them are also solution of pC1 and qC2 if p = q. Thus, pC1 and qC2 are

alien relative to (R+, C) if p = q. On the other hand, if p 6= q, the above conclusion

shows that pC1 and qC2 are neither alien nor weakly alien relative to (R+, C).

Proposition 4.3.2. Let p, r ∈ C r {0}. Then pC1 and rC3 are alien if and only if

p = r, while pC1 and rC3 are always weakly alien.

Proof. The functional equation pC1 + rC3 reads

−rf(x)f(y) + (p + r)f(x + y) − pf(x) − pf(y) = 0, (4.7)
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which corresponds to the universal Cauchy functional equation with a = 0, b = −r,

c = p + r and d = −p.

If f ≡ k is a constant function, then 0 = −rk2 + (p + r)k− 2pk = k(−rk + r− p),

i.e.,

f ≡ k = 0 or f ≡ k =
r − p

r
6= 1. (4.8)

We distinguish two cases whether c(= p + r) = 0.

Case c = p + r = 0. The solutions arising from Theorems 4.1.2 and 4.1.3 are

untenable. We treat next the solutions from the Theorem 4.1.1 individually.

The possibilities (A1) and (A2) are ruled out since b = −r 6= 0.

The possibility (A3) yields f(x) = −a+2d
b

= 2.

The possibility (A4) yields the zero function.

The possibilities (A5), (A6) and (A7) are ruled out since d = −p 6= 0.

The possibilities (A8) and (A9) are ruled out since a + d = −p 6= 0.

Case c = p + r 6= 0.

The solutions in Theorem 4.1.1 are untenable since c = p + r 6= 0. Next, we consider

the solutions in Theorem 4.1.2 individually.

The possibility (B1) yields the zero function.

The possibility (B2) gives f(x) = c−a
b

= −p+r

r
, which is a contradiction.

The possibility (B3) is ruled out since d = −p 6= 0.

The possibility (B4) is ruled out since a + c + d = 0 + p + r − p = r 6= 0.

The possibilities (B5), (B6) and (B7) are ruled out since b = −r 6= 0.

Finally for the solutions in Theorem 4.1.3, again we treat them individually.

The possibilities (Γ1), (Γ2), (Γ6), (Γ15) and (Γ16) are ruled out since b = −r 6= 0.

The possibility (Γ3) yields f(x) = −a+c+d
b

= −0+p+r−p

−r
= 1, which is not valid.

The possibilities (Γ4) and (Γ17) are ruled out since d = −p 6= 0.
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The possibilities (Γ5) and (Γ18) are ruled out since c + d = r 6= 0.

The possibilities (Γ7) up to (Γ12) are ruled out since a = 0.

The possibility (Γ13) yields f(x) = − c+2d
b

= r−p

r
.

The possibility (Γ14) yields f ≡ 0.

Thus, the only solutions of (4.7) are the zero function, f ≡ 2 and f ≡ r−p

r
.

Consequently, pC1 and rC3 are weakly alien relative to (R+, C). Since the only

constant solution of pC1 is the zero function and those of rC3 are f ≡ 0 and f ≡ 1,

we deduce that pC1 and rC3 are alien if and only if p = r.

Proposition 4.3.3. Let q, r ∈ Cr{0}. Then qC2 and rC3 are alien and weakly alien

relative to (R+, C) if q + r 6= 0. Moreover, if q + r = 0, they are weakly alien but not

alien.

Proof. The functional equation qC2 + rC3 reads

qf(xy) − (q + r)f(x)f(y) + rf(x + y) = 0, (4.9)

which corresponds to the universal Cauchy functional equation with a = q, b =

−(q + r), c = r and d = 0.

If f ≡ k is a constant function solution, then

0 = qk − (q + r)k2 + rk = k {q − (q + r)k + r} .

If q + r 6= 0, then

f ≡ k = 0 or f ≡ k = 1. (4.10)

If q + r = 0, then any arbitrary constant function can be a solution of (4.9).

The solutions from Theorem 4.1.1 are untenable because c = r 6= 0.
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For the solutions from Theorem 4.1.2 (Figure 2), we distinguish two possible cases.

Case b = −(q + r) 6= 0.

The possibilities (B1) and (B3) yield f ≡ 0.

The possibility (B2) yields f(x) = c−a
b

= r−q

−(q+r)
, contradicting (4.10).

The possibility (B4) is ruled out since a + c + d = q + r 6= 0.

The possibilities (B5), (B6) and (B7) are ruled out since a + d = q 6= 0.

Case b = −(q + r) = 0.

The possibilities (B1) up to (B4) are ruled out since b = −(q + r) = 0.

The possibilities (B5) up to (B7) are ruled out since a + d = q 6= 0.

For the solutions from Theorem 4.1.3 (Figure 3), we again distinguish the two

possible cases.

Case b = −(q + r) 6= 0.

The possibilities (Γ1) and (Γ2) are ruled out since b = −(q + r) 6= 0.

The possibilities (Γ3) and (Γ9) yield f(x) = 1.

The possibilities (Γ4),(Γ5),(Γ6), and (Γ13) up to (Γ18) are ruled out since a = q 6= 0.

The possibility (Γ7) is ruled out since a + d = q 6= 0.

The possibility (Γ8) is ruled out since c + d = r 6= 0.

The possibility (Γ10) yields the zero function.

The possibilities (Γ11) and (Γ12) are ruled out since b = −(q + r) 6= 0.

Case b = −(q + r) = 0.

The possibilities (Γ1) and (Γ11) yield any arbitrary constant solution.

The possibility (Γ2) yields the zero function.

The possibilities (Γ3), (Γ9) and (Γ10) are ruled out since b = 0.

The possibilities (Γ4),(Γ5),(Γ6), and (Γ13) up to (Γ18) are ruled out since a = q 6= 0.

The possibility (Γ7) is ruled out since a + d = q 6= 0.

The possibility (Γ8) is ruled out since c + d = r 6= 0.
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The possibility (Γ12) is ruled out since a + c + 2d = q + r = 0.

If q + r = 0, then the only solutions of (4.9) are abitrary constants. But f ≡ 0

and f ≡ 1 are the only two constant functions satisfying qC2 and rC3. Thus, relative

to (R+, C), qC2 and rC3 are not alien, but weakly alien in this case.

If q+r 6= 0, then qC2 and rC3 are both alien and weakly alien relative (R+, C).

The remaining cases can be proved in the same manner and we merely state them

without proofs.

Proposition 4.3.4. 1. Let p, s ∈ Cr{0}. Then pC1 and sC4 are alien and weakly

alien relative to (R+, C) if p + s 6= 0. If p + s = 0, they are weakly alien but not

alien.

2. Let q, s ∈ C r {0}. Then relative to (R+, C), the functional equations qC2 and

sC4 are weakly alien, while they are also alien if q = s.

3. Let r, s ∈ Cr{0}. Then rC3 and sC4 are neither alien nor weakly alien relative

to (R+, C).



CHAPTER V

HEUVERS’ EQUATION

5.1 Introduction

In 1999, Heuvers, [7], proved that the functional equation

f(x + y) − f(x) − f(y) = f

(

1

x
+

1

y

)

(5.1)

and the logarithmic Cauchy functional equation, see e.g. Chapter 2 of [1],

f(xy) = f(x) + f(y) (5.2)

are equivalent in the sense that any function f : R+ → R which is a solution of one

functional equation is also a solution of the other.

In 2005, [8], the functional equation

f(x + y) − f(xy) = f

(

1

x
+

1

y

)

(5.3)

is added to this list of equivalent functional equations.

It is thus natural to find out what functions f : R+ → C are solutions of a more

general functional equation of the form

af(x + y) + bf(x) + cf(y) = df

(

1

x
+

1

y

)

, (5.4)
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where a, b, c, d ∈ C. Our analysis is divided into two possible cases. The cases where

either (b 6= c) or (b = c = 0) or (b = c 6= 0 and d = 0) are quite simple and

it is shown in the next section that there are only constant function or the additive

function solutions. The remaining case except for the case (b = c = −1 and a = d = 1)

is dealt with in the last section. It is shown that under a continuity condition only

constant function solutions are possible.

5.2 The cases without continuity condition

In this section, cases where continuity is not assumed are solved.

Theorem 5.2.1. Assume that f : R+ → C satisfies the functional equation (5.4).

When b 6= c,

1. if a + b + c − d 6= 0, then f ≡ 0;

2. if a + b + c − d = 0, then f is an arbitrarily constant function.

When b = c = 0,

1. if a 6= d, then f ≡ 0;

2. if a = d 6= 0, then f is an arbitrary constant function;

3. if a = d = 0, then there is no equation.

When b = c 6= 0 and d = 0,

1. if a = 0, then f ≡ 0;

2. if a + b = 0, then f is an additive function;

3. if a + b 6= d and a + 2b = 0, then f is an arbitrary constant function;
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4. if a + b 6= d and a + 2b 6= 0, then f ≡ 0.

Proof. Interchanging x and y in (5.4), we get

af(y + x) + bf(y) + cf(x) = df

(

1

y
+

1

x

)

. (5.5)

Combining (5.4) and (5.5), we have

0 = (b − c) (f(x) − f(y)) .

If b 6= c, then f must be a constant function, say f ≡ k. Substituting into (5.4), we

get

(a + b + c − d)k = 0.

Thus, f ≡ 0 when a + b + c − d 6= 0 and f is any constant function provided

a + b + c − d = 0.

Next, we deal with the case b = c = 0. The functional equation (5.4) reduces to

af(x + y) = df

(

1

x
+

1

y

)

.

Replacing 1
x

for x and 1
y

for y leads to

af

(

1

x
+

1

y

)

= df(x + y).

Incorporating the last two equations yield

(a − d)

(

f(x + y) + f

(

1

x
+

1

y

))

= 0. (5.6)
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• If a 6= d, then

f(x + y) + f

(

1

x
+

1

y

)

= 0. (5.7)

Putting y = 1
x

in (5.7), we get

f

(

x +
1

x

)

= 0.

Since the map x 7→ x + 1
x

takes R+ onto [2,∞), we have

f(x) = 0 for all x ∈ [2,∞).

Replacing x and y in (5.7) by x
2
, we obtain

f(x) + f (4/x) = 0.

For each x ∈ (0, 2), since 4/x > 2, we get f(x) = −f (4/x) = 0, yielding f as the zero

function.

• If a = d, the equation (5.6) becomes

af(x + y) = af (1/x + 1/y) .

If a = 0, we have no functional equation. Assume then that a 6= 0 and divide through

by a, we get

f(x + y) = f (1/x + 1/y) . (5.8)

Choose x1, y1 ∈ R+ such that x1 + y1 = 1 and let
1

z
=

1

x1

+
1

y1

. Thus,

f

(

1

z

)

= f

(

1

x1

+
1

y1

)

= f(x1 + y1) = f(1).
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Since z = x1(1 − x1) ≤ 1/4, we have

f(w) = f(1) for each w ≥ 4. (5.9)

For w ∈ [1, 4), invoking upon (5.8) and making use of (5.9) we have

f(w) = f (1/4 + (w − 1/4)) = f

(

4 +
1

(w − 1/4)

)

= f(1). (5.10)

Using (5.8), for any x ∈ R+ we have

f(x) = f
(x

2
+

x

2

)

= f

(

2

x
+

2

x

)

= f

(

4

x

)

.

For each w ∈ (0, 1), since 4
w

> 4, (5.9) implies that

f(w) = f

(

4

w

)

= f(1). (5.11)

The required conclusion follows at once from (5.9), (5.10) and (5.11).

If b = c 6= 0 and d = 0, the equation (5.4) becomes

(a

b

)

f(x + y) + f(x) + f(y) = 0. (5.12)

If a = 0, then f is only the zero function. If a + b = 0, then (5.12) is the usual

Cauchy’s functional equation on R+, so f is any additive function.

Next, we deal with the case a + b 6= 0. Let x, y, z ∈ R+. Using (5.12) two times,

we have
(a

b

)2

f(x + y + z) = −
(a

b

)

f(x) + f(y) + f(z),
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and similarly,
(a

b

)2

f(x + y + z) = f(x) + f(z) −
(a

b

)

f(y).

Thus

(a + b) (f(x) − f(y)) = 0.

Since a + b 6= 0, f must be a constant function, say f ≡ k. Substituting into (5.12),

we get

(a + 2b)k = 0.

Thus, f ≡ 0 when a + 2b 6= 0, if not, f is any constant function.

5.3 Continuous solution functions

In this case, we are able to solve the functional equation under a continuity condition.

Theorem 5.3.1. Let f : R+ → C be continuous function satisfying the functional

equation

αf(x + y) + f(x) + f(y) = βf

(

1

x
+

1

y

)

, (5.13)

where α, β ∈ C. Then f is either the zero function or the constant function except

for the case α = β ∈ {0,−1} and β = 0.

Proof. Since f is continuous, we adopt the notions

f(0+) := lim
x→0+

f(x), f(∞) := lim
x→∞

f(x),

when both values are allowed to be infinite. We break up our consideration into two

cases.
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Case I: α 6= −1. The equation (5.13) yields

αf(x + y) + f(y) = βf

(

1

x
+

1

y

)

− f(x). (5.14)

For each x ∈ R+, lim
y→∞

(

βf

(

1

x
+

1

y

)

− f(x)

)

exists so (5.14) implies

lim
y→∞

(αf(x + y) + f(y)) exists,

so f(∞) is finite.

By (5.13) and lim
y→0+

(

αf(x + y) + f(x) − βf

(

1

x
+

1

y

))

exists, f(0+) is finite and

f(x) =
1

α + 1
(βf(∞) − f(0+)) =: K, a constant function.

Substituting this into the original functional equation (5.13), we have

(α + 2 − β)K = 0.

Consequently, if α + 2 − β 6= 0, then f ≡ 0, while if α + 2 − β = 0, then f is an

arbitrary constant function.

Case II: α = −1. The equation (5.13) becomes

−f(x + y) + f(x) + f(y) = βf

(

1

x
+

1

y

)

(5.15)

It is necessary now to distinguish the values of f(0+).

• If f(0+) is finite, then fix x and let y → 0+ in (5.15) to get βf(∞) = f(0+). Since

β 6= 0, we see that f(∞) is also finite. Replacing x and y by 1
x

and 1
y
, respectively in
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(5.15), we have

−f

(

1

x
+

1

y

)

+ f

(

1

x

)

+ f

(

1

y

)

= βf(x + y). (5.16)

Fix x and let y → 0+ in (5.16), we obtain −f(∞) + f
(

1
x

)

+ f(∞) = βf(x), i.e.,

f

(

1

x

)

= βf(x). (5.17)

Substituing y by 1
x

in (5.15) and using (5.17), we get

βf

(

x +
1

x

)

= −f

(

x +
1

x

)

+f(x)+f

(

1

x

)

= −f

(

x +
1

x

)

+f(x)+βf(x), (5.18)

and so

(β + 1)

(

f(x) − f

(

x +
1

x

))

= 0.

Since α = −1, by assumption, β 6= −1, so we get

f(x) = f

(

x +
1

x

)

.

Iterating this relation, we get

f(x) = f

(

x +
1

x

)

= f

(

x +
1

x
+

1

x + 1
x

)

= · · · = lim
x→∞

f(x) = f(∞),

i.e., f is an arbitrary constant function.

• If f(0+) is infinite, then substituting x, y by 1
x

and 1
y

in (5.15), we get

f

(

1

x
+

1

y

)

= −βf(x + y) + f

(

1

x

)

+ f

(

1

y

)

. (5.19)
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Adding (5.15) and (5.19), we obtain

−(β + 1)f(x + y) + f(x) + f

(

1

x

)

+ f(y) + f

(

1

y

)

= (β + 1)f

(

1

x
+

1

y

)

. (5.20)

On the other hand, substituting y = 1
x

into (5.15), we get

f(x) + f

(

1

x

)

= (β + 1)f

(

x +
1

x

)

. (5.21)

Applying this relation to the last four terms on the left-hand-side of (5.20) and

dividing through by β + 1 6= 0 yields

f

(

1

x
+

1

y

)

= −f(x + y) + f

(

x +
1

x

)

+ f

(

y +
1

y

)

.

Replacing the first term on the right-hand-side using (5.15) twice to get

f(x) − f

(

x +
1

x

)

+ f(y) − f

(

y +
1

y

)

= (β − 1)f

(

1

x
+

1

y

)

=
β − 1

β
(−f(x + y) + f(x) + f(y)) .

Simplifying, we have

(1 − β)f(x + y) = f(x) − βf

(

x +
1

x

)

+ f(y) − βf

(

y +
1

y

)

. (5.22)

Abbreviating F(x) := f(x) − βf
(

x + 1
x

)

, the equation (5.22) reads

(1 − β)f(x + y) = F(x) + F(y). (5.23)
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For a fixed c ∈ R+, choose x, y ∈ R+ such that x + y = c. Thus,

(1 − β)f(c) = F(x) + F(c − x).

Assume that β 6= 1. Then

f(c) =
1

1 − β
(F(x) + F(c − x)) .

Since F(0+) is finite, the above equation implies that f(0+) is finite, a contradiction.

Thus β = 1. By (5.22),

f(x) + f(y) = βf

(

x +
1

x

)

+ βf

(

y +
1

y

)

.

Take y = x, we obtain

f

(

x +
1

x

)

= f(x).

By the same agruments as at the end of the preceding case, we have

f(x) = lim
x→∞

f(x) = f(∞),

contradicting the fact that f(∞) = f(0+) is infinite.
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