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The Global Issues and Trends in Educational Statistics:
Merging Psychometric and Statistical Models

Akihito Kamata

ABSTRACT

One recent trend in educational statistics is treatments of psychometric models as
special cases of statistical models. For example, some classical test theory and item response
theory models have been shown that they can be modeled under a framework of multilevel
modeling, as well as under the framework of factor analysis and structural equation modeling.
A major benefit of these integrated approaches is that it allows educational researchers to
easily extend traditional psychometric models to more complex ones. In this paper, several

aspects of such generalization of psychometric models are reviewed.
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Multilevel Item Response Model

Multilevel modeling has become a popular data analysis framework in educational
research (e.g., Raudenbush & Bryk, 2002). Typical application of multilevel modeling is
in studying nested data, such as students nested within school, and studying repeated
measures, such as modeling growth. Interestingly, a multilevel modeling can be utilized
for psychometric analyses, and such a use of multilevel modeling techniques is referred to

as multilevel measurement modeling (MMM) (e.g., Beretvas & Kamata, 2005).

Typically, traditional psychometric models, including classical test theory (CTT)
and item response theory (IRT) models do not consider a nested structure of the data,
such as students nested within schools. The strength of MMM becomes important when
we analyze psychometric data that have such a nested structure. MMM appropriately
analyzes data by taking into account both within- and between-cluster variations of the
data. Also, since multilevel modeling is an extension of a regression model to multiple
levels, the flexibility of MMM offers the opportunity to incorporate covariates and their

interaction effects to a psychometric model.

HGLM Approach for Multilevel Item Response Theory Model

A desirable statistical approach to modeling categorical item responses is a
generalized linear model (GLLM) extension of the multilevel linear model, such as the
hierarchical generalized linear model (HGLM - Raudenbush & Bryk, 2002); specifically
one using the logit link. In this section, we assume that the responses are scored
dichotomously. However, extension to models for polytomously scored items are straight
forward, and shown in such as Rijmen et al. (2003), Shin (2003), and Williams and

Beretvas (2006).

Let Yl.jk = 1 if the fth response is correct for student j of school k and Y, = 0

ifk =
otherwise, and Moy be the probability of Y, -=1 This probability varies randomly across

students. However, conditioning on this probability, we have YUk

E( Yljk | “g,‘k) = Hyjp and var( Yijk l“z‘jk) = My (1 - /,Ll.jk). Then, a multilevel measurement

Hyjp ~ Bernoulli with

model can be written for the example data set as:

logit(u, )=y, +ry +u,, (1)
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where Y, is the effect of item i. Student ability2 variation within school, L~ N(0,0:k)
and the school mean ability variation u, ~ N(o, Gu) are assumed. This model is equivalent
to the Rasch model, where -y, is the item difficulty for item 7 and Iyt U is the trait level
for person j in school k. The difference from the Rasch model is that this multilevel
measurement model takes into account within-school (or between-students for each
school) variability, as well as between-school variability, while the Rasch model is a
single level model that only considers between-students variability for all schools combined.
In fact, equation (1) can be simplified to a 2-level model by not considering the

level-3 variation,

logit(y, ) =7, +7,. (2)

In this case, the model is equivalent to the Rasch model, where -#; is the item difficulty
for item i and y is the trait level for person j. See Kamata (2001) and Beretvas and
Kamata (2005) for more details about the relationship between HGLM and the Rasch

model.

Models in equations (1) and (2) are hierarchical generalized linear models based
on a logit link function; 3-level HGLM for (1) and a 2-level HGLM for (2). The
quantity being predicted is the log of the odds of getting item i correct for the jth child in
the kth school; the model in equation (2) assumes there are no school differences. However,
some constraints need to be imposed to identify the parameters of the model. Several
different ways to parameterize the model have been suggested, as well as different estimation
methods and optimization methods. For example, Kamata (2001) demonstrated that this
type of model can be modeled in the framework of HLM by using one item as a reference
item and including an intercept term. Also, it is possible to estimate parameters in the
model by constraining the mean item difficulties to be zero, rather than specifying a

reference item (e.g., Cheong & Raudenbush, 2000).

Parameter estimation can be accomplished by any of several different methods,
including the penalized quasi likelihood (PQL.), Laplace approximation, Gaussian numerical
integration of log-likelihood, and fully Baysian Markov Chain Monte Carlo (MCMC)

methods. Rijmen et al. (2005) provides a comparison of these estimation methods and
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demonstrated that all estimators performed equally well in reasonable conditions. For the
interested reader, Roberts and Herrington (2005) demonstrate how to set up and analyze

data for these models in several different software packages.

Equation (1) is fit by a 3-level HGLM for an example data set. The example data
set includes the simulated item response data for 22 dichotomously scored items with a
total of 3,372 students (N) from 30 schools (K). In the illustrative data, there are 22

items. Therefore, the level-1 equation is the item level model and can be written

21
logit(g, ) = 7, 4 + Zﬂq,quUk , - (3)

g=1
where D, is the gth indicator variable that takes a value of 1 if g = i for item i. There
is no error term in (3) because it is absorbed by the link function. One item is used as a
reference item, and item difficulties are assessed relative to the reference item. Thus,

q = 1, ..., 21, rather than up to 22. Then, the level-2 equations are

7o ik = Book + (4)

”qik :ﬂq()k t

where g = 1, ..., 21. Slopes are not random because item difficulties are assumed to be

equal across individual students. The level-3 equations are

Book =Yoo T oo (5)
ﬂt/Ok & quO :

Slopes are not randome because item difficulties are assumed to be equal across schools.
As a result, ¥y is the difficulty of the reference item, and Yoo is the difference between
item i (for g = i) and the reference item in their difficulties. The ability of student j in

school k is 7, + uy,. Both 7, and u,, are assumed to be normally distributed with

means of zero and unknown variances. The results of this model are presented in Table 1.
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The difficulty of item 22 (the reference item) was estimated to be .344 (yOOO) in
logit, indicating it is .344 higher than the mean ability. Other values indicated in Table 1a
are differences in their difficulties compared to item 22. For example, item 1 is more
difficult than item 22 by .178, thus its difficulty is .344 + .178 = .522. On the other hand,
item 2 is easier than item 22 by .408, so its difficulty is .344 - .403 = - .05%. Notice that
se(yl.oo) for item 22 is the standard error for the difficulty, while the standard errors for the
remaining estimated parameters are standard errors for the difference in difficulty from
that of item 22. For this model, the variances of the student abilities are provided in the
bottom panel of Table 1b. The within-school variance was estimated as sigma-squared =
var(r, /.k) = .694, while the between-school variance was estimated as tau = var (i, )
= .162. This implies that the intra class correlation in latent mathematics ability is
Ugo” (Fyju + o) = 162 7/ (.694 + .162) = .189. In other words, 18.9% of the variabi-
lity in mathematics ability can be ascribed to differences between schools as opposed to

variability among students within schools.

Table 1 Results of example data analysis by HGLM - unconditional model.

a. Fixed effects

Item Yioo se(Yiop) Item Yioo se (Yigo)
1 178 .054 12 -.006 .053
2 -.403 053 13 -.508 .053
3 023 .053 14 .399 .054
4 .028 .053 15 .377 .054
5 .061 .053 16 -.485 .053
6 -1.342 055 17 .507 .055
7 .883 057 18 -.977 .054
8 -.555 .053 19 ~.201 .053
9 -.265 .053 20 -.874 .054
10 -.785 .053 21 1.061 .058
M -1.266 .055 22% .344 .084

* This item was used as the reference item in the model. Therefore, the parameter listed for this item

is the estimate of the intercept Yoo,
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b. Random effects

Estemate Standard Error
Level 2
var (¥, . ) 694 016
Level 3
var( Uy,
) 162 .047

Model Extensions with a Covariate

The multilevel IRT models can be easily extended to include covariates and
additional variance and covariance components. For example,v let’s assume we have an
additional person-level predictor (Xj) in the 3-level HGLM measurement model, and
that our interest is in the main effects of the additional person-level predictor and the
interaction effect between the additional predictor and the item indicator (D Xj). We

can still use equation (3) as the level-1 model. The level-2 equations become

Tou = Booi * ﬂolkak Thou

7T ik :ﬁq()l\ +ﬂqlkak’ (6)

where g = 1, ..., 21. Here, 3, is the main effect of the person-level predictor, and 5,
is the person by item interaction effect. Furthermore, if we are also interested in the
random variation of the person by item interaction effect across the level-3 units, the

level-3 equations become

Boox = Vooo + Yoo
/8011\ =Yoo
Bor =7
40 q00 (7)
ﬂqlk =Va0 T Uk
where g = 1, ..., 21, and u,, is the random effect of the interaction effect. In addition

to the fixed effects (Yoo, Yo10, Yq00 and Ygi0), variance and covariance components

var (74 ), var(uy, ), var(t,) cov(uy,. u,,,) are estimated.
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If X is a dichotomous variable that represents two subpopulations of test examinees,
the interaction effect 7,10 is a differential item functioning (DIF) parameter that enables
one to detect potential item bias. In fact, this 3-level formulation of the model is equivalent
to the “random-effect DIF model” presented by Cheong (2006) and Kamata et al. (2005).
In this context, one’s interest is to estimate the magnitude of 7410 (the mean magnitude
of DIF across schools), and var(u,,,)(the randomly varying DIF magnitude across
schools). Also, cov(uy, u, ,) indicates how the mean performance of students and

DIF magnitude are related at the school level.

For demonstration, one student-level variable, a dummy variable that may represent
student characteristics, such as enrollment in a free or subsidized lunch program, is used.
Fifty-seven percent of the students in the sample were coded to 1, as opposed to 0. The
model was fit by the HGLM option in the HLM software, by arbitrarily treating the last
item (item 40) in the measurement subscale as a reference item. We needed further

constraints to fix the magnitude of the fixed interaction effect (DIF magnitude; Yo in

Equation 7) for identification reasons. Our preliminary data exploration indicated the
magnitude of the DIF for the third item in the measurement subscale was near zero (¥iio
= .0001 for this item). Therefore, its effect was constrained to be zero, and the parameter

was dropped from the model. Accordingly, var(y;,) was also constrained to be zero

for this item.

Seven items displayed significant DIF (DIF estimates were larger than twice their
standard errors), and they are indicated by asterisks in Table 2. All of them had negative
values, indicating students who had been coded 1 on the covariate had significantly lower
odds of correct answers for the indicated items, given the same level of ability. For item
20 in the data analysis subscale, for example, the odds of correct answer for students with
code 1 was only 70% (exp[-.351] = .704) of the odds of success for students who had
code 0. For the seven items that displayed significant DIF, random effects were further
estimated in a separate model. Six of these items displayed significant variability, indicating
statistically meaningful variations of DIF across schools. For example, the estimate of
var(u“k) was .230 for item 33. In conjunction with the estimate of the fixed effect, it
can be interpreted that the 95% of logits for DIF on item 33 are in the range of -.351
+1.964/.230 = [-1.291, .589], assuming the normality of the distribution of DIF across

schools.
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By examining the estimated cor (%, u;;) in Table 2, we see that the correla-
tions are all positive among the seven items experiencing significant DIF. Positive
correlations indicate that DIF were higher for schools with higher mean performance,
because these seven items had negative DIF magnitudes, indicating students with code 1
had lower odds of correct answer, given the same level of ability. However, since the
mean interaction effect (DIF) was é negative value, stronger interaction effects are actually
values of DIF closer to zero. In other words, the interaction effect resulted in DIF that

was close to zero for schools with higher mean performance.

Table 2 Estimates of fixed and random effects of the interaction effect.

Fixed effects Random effects

Item
Yo se var(gy,) - cor( Uy, )

1 ~.247% 113 0721 134
2 .000t 2

3 .024 133

4 -.297 10 059t 436
5 -.149 a1

6 -.066 107

7 -.307* 117 0787 573
8 139 128

0 -.155 103

10 - .284% 17 44t 453
11 -.069 108

12 .007 110

13 -.072 105

14 -.7¥ 105 0107 476
15 -.199 113

16 .182 107

17 -.264% 114 091" 643
18 -.040 1292

19 -.037 142

20 -.351% 128 2307 499
21 1 124

22 000t _

* Magnitudes are greater than twice the standard errors.

 Magnitudes are significant at & = .05 based on chi-square test.
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One advantage of formulating these models in the HGLM framework as compared
to the traditional (single-level) IRT frameworks is that these measurement models can be
extended to allow for variance components in the latent factors or traits at both the
individual and group level. When the full three~level model is specified, this allows for
variability in the factor means (item subscales) across groups, as well as within—-group
variability in individual levels on the latent factor. As such, the total variance of the
latent factor can be decomposed into between- and within-school components. Another
advantage is that observed predictors can be included in the model at either the individual

and/or group level to explain the two components of variance.

There are, however, some limitations to incorporating measurement models into
HGLM. One limitation is the assumption that the discrimination power (factor loadings)
are equal (or at least known a priori) for all test components. Ideally, these model
parameters could be estimated directly from the data, just as is typically done in confirmatory
factor analysis and two-parameter item response models. The need for this modeling
flexibility is suggested by many empirical applications of linear factor models and item

response models where the factor loadings are seen to differ across the observed measures.

By assuming equal factor loadings, we are assuming that the relationships between
the observed measures and the latent factor are equivalent across all test components. In
test-scoring, it is considered desirable for a measurement instrument to possess such a
property (see e.g., Embretson & Reise, 2000). Thus, when this equivalence assumption
is consistent with the data; it provides for a parsimonious and useful measurement model
for the instrument. On the other hand, a less restrictive model would allow the factor
loadings or item discriminations to vary, rather than constraining them to be equal a
priori. This constraint is more difficult to impose for binary items because a model that
contains item-specific discrimination parameters is not a hierarchical generalized linear
model anymore (Rijmen et al., 2003). More generally, a fundamental limitation of the
HGLM approach is that the random coefficients are related to the observed repeated
measures via a design matrix, which, by definition, must consist of known values (Bauer,
2003). The random intercept that constitutes the latent factor or trait is defined by inserting

a column of ones into the design matrix for the random effects. To overcome this limitation,
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one must leave the HGLM framework so that the design matrix can be replaced by a
matrix that allows the inclusion of both known values (e.g., covariates) and unknown

values (e.g., factor loadings or discrimination parameters).

For binary items, Rijmen et al. (2003) and Rijmen and Briggs (2004) provide an
example of such an approach using a non-linear mixed model. According to their
approach, a 2-parameter logistic IRT model is modeled by treating a logit of the probability
of the response as a linear function. We can assume that the distribution of the latent trait
to be an arbitrary distribution, such as a standard normal distribution. Also, we assume
that the probability of observing 1 rather than 0 for the dependent variable is defined by
the cumulative standard logistic distribution. One limitation is that the available software
(e.g., PROC NLMIXED in SAS) is limited to the formulation of 2-level models. (This
does not preclude the inclusion of level-3 covariates. In fact, we do not have to distinguish
the level of hierarchy for fixed effects, such as covariates in the model.) Thus we cannot
estimate the variance and covariance components of the level-3 model, such as var(u,,, ),

var(U,;,), cov(Uy,, U,,) in Equation (7).

An additional limitation of the HGLM approach concerns the simultaneous modeling
of several latent variables. Multiple latent variables can, in fact, be estimated by removing
the intercept from the model and estimating random effects for predictors coded one or
zero to differentiate groupings among the observed measures or items (see e.g., Raudenbush,
Rowan & Kang, 1991; Cheong & Raudenbush, 2000; Kamata & Cheong, 2007). However,
the structure applied to the covariance matrix among these latent variables is often quite
limited. Typically, the covariances would be left unstructured, indicating that each latent
factor 1s correlated with every other latent factor and that there are no structural relations
between them. The need to allow for such effects is demonstrated by the popularity of
structural equation models that include regressions among latent variables. Both predictors
and outcomes can be defined as latent variables and estimates of the effects can be

obtained that are unbiased by measurement error.

Given these limitations of the HGLM approach to the design and analysis of

measurement models, one alternative is the Generalized, Linear, Latent and Mixed Model
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(GLLAMM) (Skrondal & Rabe-Hesketh, 2004). This modeling allows for the estimation
of factor loadings or discrimination parameters, the specification of structural relations
between latent variables, and differences in the between-group and within-group model
structure. This model is very general. However, because the estimation requires numerical
integration, specifications including several latent variables and/or other random effects
can be computationally intensive. In fact, GLLAMM allows us to formulate the same
model used in the example data analyses based on Equations (6) and (7), along with
discrimination parameters. In this example, however, we had 8 random effects at level 3
of the model (7 random DIF and 1 school level variance of latent abilities), and this
number of random effects unfortunately makes numerical integration computationally

impractical.

Another alternative approach that has a similar flexibility is the 2-level structural
equation model (SEM). It is this approach that I discuss in greater detail in the next two

sections.
Item Response Theory Model as a Factor Analytic Model

The relationship between binary factor analysis (FA) and the two-parameter IRT
model has been clarified by Takane and de Leeuw (1987) and McDonald (1999). Among
those, Kamata and Bauer (2008) pointed out different parameterizations of a unidimensional
binary FA model are available and provided general conversion formulas to convert FA
model parameters to IRT parameters under several different parameterizations of the

binary FA model.

Factor Analytic Model for Binary Variables

The key assumption to the binary FA is that there is a continuous underlying
latent response, denoted y: , that is an additive combination of the common factor and
item-specific residual. A one-factor model for the latent response variable can thus be

written as

y::‘/i'l”lfé'*‘gia (8a)
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where v, is the intercept, 4, is the factor loading, the latent factor score for a particular
person is & and &, is the residual for item i (for compactness, no person subscript is
included). In addition, the residuals ¢, are typically assumed to be normally distributed,

but a logistic distribution can also be considered.

A threshold part of the model is then added to accommodate the dichotomous

nature of the observed response, V;:

lify: >,
T loify <, : (8b)

where, 7, is the threshold for item i. Since the intercepts v, and thresholds 7, are not
jointly identified, the intercepts are typically assumed to be zero, consequently we will
not consider the intercepts further. It is important to note that the scale of both predictor
(&) and outcome ( y:) are not fixed, since they are unobserved latent variables. Therefore,
the scales of parameters ( 4,and 7;) does not inherently exist, either. Parameterizations for
this model can be classified by the scaling of (a) the continuous latent response variables,

y: and (b) the continuos common factor &.

As one approach, the variance of is arbitrarily (but without a loss of generality)
constrained to be 1.0 for all items. If we do so, the residual variance of ¥, , var(g, ) or
var (y,*lg), is obtained as var(&;) =1 - /l,.z var(&). This parameterization has been common
in binary FA (Muthén & Asparouhov, 2002; Millsap & Yun-Tein, 2004). Since the
marginal distribution of the continuous latent trait score (,V,B is standardized, Kamata and

Bauer (2008) referred this parameterization to as the Marginal parameterization.

Another strategy is to constrain the residuals &, to have a fixed variance, such as 1.
With this arrangement, the variances of y: are obtained as var ( y: ) = /lf var(&)+1. This
parameterization is less commonly used with binary FA, but it is closer to the conventional
two-parameter IRT parameterization. Since the conditional distribution of the continuous
latent trait score ( y,~* |E) is standardized, Kamata and Bauer (2008) referred this

parameterization to as the Conditional parameterization.
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Two common scaling conventions are to choose a reference indicator or to
standardize the common factor. In the former approach, the threshold and factor loading
of one item are fixed to zero and one, respectively (e.g., ;= 0 and /11 = 1). These
constraints allow the mean and the variance of & to be freely estimated. In the latter
approach, the mean and the variance of & are constrained to be zero and one

[e.g., E(&) = 0 and var(&) = 1]. Consequently, all 4, and 7, are freely estimated.

By the combination of the two types of scaling choices mentioned above, four
different parameterizations are obtained. They are summarized in Table 1 of Kamata and

Bauer (2008).
Relation of Binary FA to Two-Parameter IRT

The two-parameter IRT model can be written
pf(yizllg):.f(ai§+ﬂi)* (9)

where «; is the slope parameter and f3, is the intercept parameter for item i, £ is the latent
trait score for a specific person, and fis a cumulative distribution function (CDF), chosen
to be either a normal or logistic CDF. Takane and de Leeuw (1987) derived the relationship
between parameters from the standardized FA and IRT models, that is, when assuming
zero mean and unit variance for the latent factor. For unidimensional models of the kind

considered here, their formulas reduce to

oz,.:i and,B,:-—-Ti, (10)
qi q[

where ¢, is Jvar(g;). Although not explicitly stated by Takane & de Leeuw, these
formulas make clear that the Conditional -Standardized binary factor model parameterization
is in fact equivalent to the IRT model, except for the reversal of sign for the threshold

parameter 7, relative to [ (given that ¢,= 1 in this parameterization). Under the Marginal-

Standardized parameterization, g, = /i - A2, paralleling formulas given in a number of
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other references (e.g., McDonald, 1999; p.259). These results are very useful for
understanding the relationship between FA and IRT models. Takane and de Leeuw’s
derivation is not, however, directly applicable to factor models using the reference indicator

convention for scaling the latent factor.

Kamata and Bauer (2008) recently derived and demonstrated a set of more general

formula. They are:

ai:_ﬂ_,-____‘\mr(é)andﬂ:{r,—/l,E(f)]. (1)
Jarter JFote)

Then, Kamata and Bauer rewrote these general formulas into 4 sets of conversion formulas
for the four different parameterizations by substituting the appropriate values for these

formulas. Their results of substitutions are also presented here in Table 3.

Table 3 Conversion formulas for 4 factor-analysis parameterizations

Reference Indicator Standardized Indicator
Marginal AV (E) Q. = A
1=AV(&) i
il Jr=AE) / J—
=AMV (&) =4
Conditional a, = AV (&) a, =4
B, =z, - AEE)] ==

Why is it important?

As Kamata and Bauer (2008) indicated, the choice between parameterizations is
arbitrary, because the results obtained under one specification can be translated directly
into the results under the other parameterizations. However, we should be mindful that
which parameterization we choose may influence interpretations when extending to more

complex models.
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One advantage of the Marginal parameterization is that the total variance of y; is
held constant as new predictors (either latent factors or item covariates) are added to the
equation for that item. As the explained variance in y; goes up, the residual variance,
var (¢&;), goes down, just as in a typical linear model. In contrast, if new predictors are
added to the equation in the Conditional parameterization, the residual variance, var(gi),
continues to be held constant and as the explained variance goes up, the total variance of
y: must also go up. As a consequence, all of the coefficients of earlier predictors (e.g,
factor loadings) must be adjusted to the new scale (regardless of whether the old and new
predictors, e.g., factors, are correlated). These adjustments due to the changing scale of
y, are non-intuitive for researchers more familiar with linear models and can make
interpretation of the coefficients more difficult. On the other hand, the Conditional
parameterization has other advantages. As discussed by Millsap and Yun-Tein (2004)
and Muthen and Asparouhov (2002), the Conditional parameterization may be preferable
when extending the binary FA to make comparisons across multiple groups or over
multiple time points. The reason is that in the Conditional parameterization, var(g,) is a
parameter in the model that is directly accessible to the researcher, whereas in the Marginal
parameterization it is an remainder involving several other model parameters. Having
direct access to var(&;) can be important if there is reason to believe this variance may
differ over groups or over time, in which case it can be standardized in one group/time
and estimated in another (provided that certain other constraints are implemented to

identify the model).

Regarding the choice between a reference indicator and the standardized factor,
standardizing the factor is a simple and elegant approach that many factor analysts use
regularly. Further, when used in concert with the Marginal parameterization and a normal
distribution for ¢, the thresholds fall on a standard normal curve, easing the translation of
these estimates into marginal proportions for the observed responses. Other factor analysts,
however, may prefer to use a reference indicator so that the latent factor will be in the
same metric as the chosen indicator. While this is a compelling rationale when the
indicators are continuous, for binary items the metric of the latent response variables is

ultimately arbitrary (for instance, depending on the choice of Conditional or Marginal
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parameterizations), so the reference indicator approach does not seem to provide a similar
interpretational advantage in this case. One advantage of the reference indicator approach
is that the mean and variance of the latent factor can be estimated, which may facilitate
across-group or over-time comparisons. Another possible advantage is that if there is a
particular item that one wishes to compare other items to, this item can be chosen as the
referent. The threshold parameters estimated for the remaining items will then reflect

differences in difficulty or severity relative to the referent item.
2-Level Structural Equation Model

The binary FA model can be extended as a more general framework for a multilevel
IRT modeling, namely, a 2-level structural equation model with categorical indicators.
The 2-level SEM is different from the traditional single-level SEM in assuming that
multiple individuals are sampled from each of many groups in the population. The two-

level factor model with categorical indicators can be written as

y* :AH'G +£pg’ (12)

PrPg Prg

which is a linear regression of the vector of I unobserved latent response variables y,,
on the latent variables @, for person p in group g. Y, is an I x 1 vector that

contains latent response scores to [ items, while 0,, is a K x 1 vector that contains

»g
latent scores for K latent factors. As such, Ay are factor loadings (I x K matrix) and
£,. are residuals (J x 1 vector), where the W subscript indicates “within-groups”. In a
unidimensional IRT application, for example, K = 1. Consequently, both Ay and ¢, are
Ix 1 vectors, where I is the number of items in the test. Observed dichotomous response

Ve 1s defined such that

yi/}g:l’ifyfﬁgzrf’and (13)

Ve =0, 1y, <7,

Here. 7; is the threshold for item i. Within groups, the latent factors are assumed to be
distributed with mean vector o and covariance matrix ¥, Similarly, for polytomously

scored items with scoring categories ranging from 0 to M,

266



® Akihito Kamata *

- *
yfl’g =M » if yipg = Tt »
. *
Yipg = M -1,if Tty S Vipg ST s
: (14)
. *
Yipg = 1,ifz, < Ve STi2» and

. *
yipg :0’ lf yipg <Til ‘

The residuals ¢, are assumed to be distributed with means of zero and covariance matrix

X, . Usually X

independence. If errors are distributed as the logistic distribution, the model is known as

, is assumed to be diagonal, reflecting independent residuals or local
the logistic model, and this will provide the basis of equivalency to logistic item response
models. If we have 0, as a7l x] scalar (i.e., only one latent trait) and M = 2 (i.e.,
dichotomously scored items), the model is equivalent to the 2PL IRT model. On the
other hand, if residuals are normally distributed, the model is known as the normal ogive
model. One important assumption with this approach is that these covariance matrices are
homogeneous across all groups, which will result in identical covariance structures between
groups. For any given group j, the within-group covariance matrix is given by essentially

the same equation as the single-level SEM,
V(y*)w :AWWWA;V+EW' (15)
On the other hand, the structural model of the SEM can be written as

0,=a,+B0

g +rgxpg +§pg’ (16)
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where latent variables are regressed on other latent variables, as well as on some observed
covariates X. The intercepts are given by @, slopes for latent predictors are B,, and
slopes for observed covariates are I',. The residuals are assumed to be normally distributed
with means of zero and K x K covariance matrix . If there is no latent variable regression
in an SEM (for instance, in a confirmatory factor analysis), the intercepts g, are simply
interpreted as factor means (which are typically constrained to be 0) and y is the

covariance matrix of the latent factors.
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The key difference between the 2-level SEM and the standard single-level SEM
involves the additional component of variability due to nested data structure. The multilevel
SEM imposes an additional factor structure on the covariance matrix (Ansari, Jedidi &
Dube, 2002; Goldstein & McDonald, 1988; McDonald & Goldstein, 1989; Muthén, 1995;

Muthén & Satorra, 1994). The resulting covariance structure at between-group level is

V(y),=Aw,A,+X,,and -

V(' |x),=A,d-B,) 'y,1-B,)"'A,+X,.

Similar expressions could be given for the full multilevel SEM with latent variable
regressions. Note that while the structure applied to the within- and between-groups
covariance matrices appears very similar (Equations 15 - 17), the differential subscripting
of the matrices W or B indicates that the parameter estimates or even the factor structure
of the model can differ between the two parts of the model. Assuming that only one
latent trait is measured and regression of the latent trait is only on some observed covariates,

the above general SEM will be reduced to be the multilevel IRT model, described earlier.

Traditionally, parameter estimation for this type of model has relied on the weighted
least squares (WLS) methods with a tetrachoric or polychoric correlation matrix, which
differs from IRT estimation tradition, where a full information maximum likelihood has
been a tradition. Also, the scaling of parameters will be different from the parameter scale
of IRT if the weighted least square is employed, which requires appropriate transformation
of parameters (Kamata & Bauer, 2008) as mentioned earlier in this paper. More recently,
a true full information maximum likelihood estimator has become available in several
general SEM software programs, which is consistent with the IRT tradition. Also, the
MCMC has been shown to be effective especially when the number of random effects
becomes large (e.g., Fox & Glas, 2003; Fox, 2005, 2007; Chaimongkol, 2005; Vaughn,
2006).

By this approach, the same data analysis presented by the HGLM approach can be

performed. Of course, a benefit of the multilevel SEM approach is that the model can
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incorporate variant item discriminations, while HGLM approach must restrict item

discriminations the same for all items.

Conclusion

In this paper a multilevel item response model was presented both from the
HGLM and multilevel SEM perspectives. While traditional measurement models, such as
IRT models, do not take into account of dependency of measures within groups, such as
schools, it was demonstrated the possibilities of modeling such a nested data structure in
measurement models. Although the discussion was limited to a unidimensional case,
similar modeling can be employed for multidimensional cases (e.g., Cheong & Raudenbush,
2000; Kamata & Cheong, 2007). Also, there are many issues that need further improvement,
including computational issues for 3-level models with item discrimination parameters
for categorical measurement indicators and models with random item discrimination

parameters. It is hoped that further advancement will be made in these areas.
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