CHAPTER II
PRELIMINARIES

In this chapter,we presents some basic concepts and facts of
theory of probability that are needed in this work. The proofs of the

statements are omitted; they can be found in [3] and [4].

Let Q be a nonempty set of elements and ?,( be a set of subsets

of 0 having the properties that
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Then 2L is called a g-algebra. A nonnegative countably
additive function P defined on 2L with P(R) = 1, is called a

probability measure. A triplet (Q,20,P) is called a probability

space. The elements of 0 are called points or elementary events and

the set Q is called a sample space.The elements ofu,are called events

and the value of P(A) is called the probability of the event A.

Let X be a real-valued function defined on . If the set
% ) v {w|X(w) € B} belongs to%| for any Borel subset B of R,

then the function X is called a random variable.




Let X be a random variable defined on a probability space

and B be a Borel subset of R. We shall usually use the notation

P(X g B)instead of P({wIX(w) e B}), in case of B = (-=,x], [x1,x2]

and {x}, we shall denote P(Xe B) by P(X < x)y P(x, < X< x,) and

Py (x) respeclively.

Let X be a random varlable. " The function Fx defined by

Fx(x) = P(X £ x);

is called the dlstrlbutlon function of X.

X has a normal distribution

We shall say that a random varlable

if its distribution function is given by

X

o (t-a)
i 2
LY J e Y- (-2 < x < =)
210 - -

where a and o are real numbers such that © > 0.

Let X be a random varieble and g: R = C be a Borel function.

We defined the expectation of goX by .

©
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provided that the Lebesque- 1ntegra1 j g(x)dF (x) exists. We

Genote the expectation of go X by E(g(X)). For any nonnegative

integer k, Wwe define the kth moment and the kth absolutely moment



of X by E(xk) and E(lek),respectively. .It follows from integration
theory that

i) E(&) is finite if and only if E(|X|*) is finite,

ii) if BE(xX) is finite,then E(X™) is finite for 0 < m < k.
By convention, E(x°) = E(IXOI) =1.

The variance OZ(X) of a random variable X is defined as the
expectation of (X-E(X))z. provided that=the expectatjion is finite.

For a random variable X, we defined the characteristic

function of X by

9, (t) = e ™), T (ewm <t < @),

We shall denote the argument of ¢x(t) by ex(t).

For a random variable X, we write

alt) = Gx(t) - E(X)t
and
; “|¢x(t)|sin(TJo2(x)t-a(t))dc
R(T) = -i—- J‘ "
n 0 § t
. sin —=
2
For an integral-valued random variable X,
we have
k R
E(X7) = 2 3 px(j)
j=-e
and
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In the following theorem,we shall show that for any

integral-valued random variable' X, if c?(x) > 0, then

P(k15 X < k2) = R(T2) - R(T1)
where
1 1
k.- E(X)-~= k.- E(CX) + =
1 2 2 2
T1 = and T2 = s
Jo? (x) Jo2 (x)
Theorem 2.1. Let X be any integral-valued . random variable with finite
variance.’ Assume that oz(X) > 0. Then
P(k1$ X L k2) = R(T2) - R(T1)
where
k-ﬁ(x)-l o RN
ol R L e and T, = - 5 s
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Proof. Observe that for each integer Kk,
n T T,
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where the second equality follows from the fact that z px(j)elJt

j=-=

converges uniformly on [-m,n].



Therefore
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Since P(k1_s X< kz) is real, hence
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1 J- sin(’ 5 t) (k1+k2)
(2.1.1)... P(k,<X<k)) =57 l(px(t) — cos (B, (t)- tidt.
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To obtain |¢X(t)| and ©,(t), observe that

g (t) = I PX(k)elkt )
k=—w
(-] @
= = Px(k)cos kt 35 . % P, (k)sin kt.
X
k=-x k=-o
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Note that |¢X(t)| is even and Gx(t) is odd. It follows that

(kz—k1+1)
sin( > t) 'k1+ k
|¢X(t)| T COS(ex(t) - (——5———)t) is even.

sin =
2

Therefore, from (2.1.1), we have
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Let X1,X2,...,Xn be random variables with finite expectations.

Then

E(X1+ Xoteoot X ) = E(X.) .
n 4
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Any random variables X1,X2,...,Xn are called independent

if

P(X1_<_ x1,X2_§_ x2,...,xn_<_ xn) P(X1$ x1)P(X2$ x2)...P(Xn5_ xn),-

holds for all real values of X ,X,5-.-»X -
122 n

1f the random variables X, ,X,,...,X are independent, then
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and
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Let x1,x2,...,xn be independent integral-valued random

variables. Throughout this thesis,we use the following notations :

)]
I

- X1+ X2+...+ Xn,

n
B w I 0%(X.).
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