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CHAPTER IV

THEOREMS ON CONVERGENCE TO THE STANDARD NORMAL
DISTRIBUTION FUNCTION.

In this chapter we apply our main result of Chapter IIl (Theorem 3.2.6)

to the case in which the given limit distribution function is the standard normal

distribution function. A condition for convergence is stated and proved in .-

section 4.1. In section 4.2, we state theorem on convergence to the standard
normal distribution function of Bethmann [1]. In section 4.3, we compare

convergence theorems in section 4.1 and section 4.2.

4.1 Theorem On Convergence The Standard Normal Distribution Function.

The standard normal distribution function usually denoted by i) and i1s

given by

Its mean and variance are 0 and 1 respectively. Its characteristic function is

given by
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We can represented its Jogarithm by

oo

Logo(t) = j f(1,x)dK (),

=00

where
0 ifx <0,

K(xx) =
11fx20.

Theorem 4.1.1 Let (Zn;Xpj) be a random double sequence of random variables

which are independent in each row and satisfy the condition (&). Then there
exists a double sequence (Ap;) of real numbers such that

(i-a) the distribution functions of random sums

=X_ O X LT v
SZ nl n2 n3 Xn Zn A A
n n
converge weakly to (I), and
2

-

(1-b) 61 (q)(t)——-) e 2 for each qe(0,1) and each real number t, where ’CpZ are
n n

random accompanying characteristic functions associated With (Zp),(¢p;) and

(Anj)’ and

s n -
a) X ol. —1,
j=1 "

if and only 1f
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. Zn 2 P
ay = f x#dFpj(x+ppj))— 1
3=l e »

for every € > 0, and

Z oC
@) | x2Fpixtug) =1
=1 -

The constants Ay may be chosen according to the formula

Proof. Since the constant p, the function K in Kolmogorov formula of the

characteristic function of (1) are given by

Kx) =
1 ifx20,

and the variance of (1) is 1, it follows that the conditions (i') and (i1) are

equivalent to the following conditions.

(1) K, (u)——>K(u), for every continuity point u of K, and
n

Q)X 7z & oc)—F— K(+).
n



63

Hence the theorem follows.

Remark 4.1.2. For a random double sequence (Zp;Xpj) of random variables,

the condition (ii) of Theorem 4.1.1 is equivalent to condition (i1") of Theorem

4.1.1. 18
x n
() X i
: nj
3=1
is equivalent to

Zn ©
@) ¥ { *2dFpj(stun)— 1
)=1

=20

Proposition 4.1.3 Let (Zp;Xp;) be 2 random double sequence of random variables

which satisfies the following conditions.

-
o n
(@) E § x2dFpi(x-+ppj)—— 1,and
1=l e
Zn oo
(i) > | 2P — 1. ,
=1 —x

Then (Zp;Xp;) satisfies the condition (&).

Proof. By (i') and (ii') we have
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I 23 (v A_E
by X anJ(x+pnj)———>0.
j = ] lxl 2 €

for every € > 0. From this fact and the fact that

sup P (|an'l—lnj| 2¢) 5 - sup J' anj(X+l»1nj)
1§ Z 1<)j<2Z
n n Hz:
. § S
< AT [ e
€ = 1 le -

we have (Zp;Xp;) satisfies the condition (a).

From the above proposition we have the following corollary.

Corollary 4.1.4 Let (Zn;an) be a random double sequence of random variables

which are independent in each row and

Then there exists a double sequence (Anj) of real numbers such that

(i-a) the distribution functions of random sums

S, = Xn1+tXp2+Xp3t..... +Xn -A
n n

converge weakly to (I) and
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(i-b) fﬁl (q)(t)-—é e 2 for each qe(0,1) and real number t, where (p\z are
n n

random accompanying characteristic functions associated with (Zp,), ((pnj) and

(Anj), and

(11) (Zp;Xp;) satisfies the condition (5 )
if only if

Z
n

f x2dFpj(x+ppj)— 1

Ix|<e

j=1

for every € > 0.

The constants Apj may be chosen according to the formula -

When we specialize Corollary 4.1.4 to the cases in which the Xnj's have
zero means, we can take all the Anj's to be zeros. In this special case, the
condition (i') and (ii'") will be simplified.

The Condition (1) becomes the following.
Z

(RL) F | x2argi0—=1
J=1|i<e

for every € > 0. This condition is known as the random Lindeberg condition

[1]. So, as a special case of Theorem 4.1.4 we have the following theorem.
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Theorem 4.1.5 Let (Zn;an) be a random double sequence of random variables

which are independent in each row and satisfy the following conditions.

(a) For each n and j, pp; = 0.

(b) 3 o2 —E1.
=

- Then

(i-a) the distribution functions of random sums

n nZn

converge weakly to q), and

—t2

(i-b) $l (q)(t)-—> e 2 for each qe(0,1) and real number t, where $Z are
o n

random accompanying characteristic functions associated with (Zp)), (¢n;j) and

(Apj), and

(1) (Zn;Xp;j) satisfies the condition (@),

if and only if (Zy;Xp;) satisfies the random Lindeberg condition, i.e.

Zn
5 j x2dFp;(x)—"> 1
j = ] .‘xi(t

for every € > 0.
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4.2 Bethmann Theorem On Convergence To The Standard Normal Distribution

Function.

In this section, we state Bethmann Theorem on convergence to the standard

normal distnbution function in our terminology.

Theorem 4.2.1 ([1]) Let (Zn,an) be a random double sequence of random
variables which are independent in each row and satisfy the following
conditions.

(a) For each n and j, Mpj =0

Z
®) E[ ¥ oZ]-1.

.

1=1
(©) Zp—2>0
Then

(1) the distribution functions of random sums

converge weakly to q), and
(i) (Xp;) satisfies the condition (&)

if and only if (Zn;an) satisfies the random Lindeberg condition satisfied, i.e.

Zn
T S x2dFp;(x)— 1.
j=1 Il<e

for every € > 0.
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4.3 A Comparision Between Bethmann Theorem (Theorem 4.2.1) And
Theorem 4.1.5.

The differences between Bethmann's Theorem (Theorem 4.2. 1) and our
theorem (Theorem 4.1.5) is in the general assumption. There are cases in
which our theorem can be applied, but Bethmann Theorem can not be applied.
There are also cases in which Bethmann can be applied but our theorem can not

be applied. These are illustrated in the following examples.

Example 4.3.1. For each n, let Z;, be such that

P(Zy=m)=1-— and P(Zp=n+l)= —.
n

n

For each n and j, we define Xpj as follow,
If j # nt+1, then an 1s defined by
PXnj= 1) = PXnj= -=)= 1.
n vn
In case j=n+1, let Xnj be defined by
P(Xpj = 2) = P(Xpj = -20) =

L]
2

It can be seen that

Hpj = 0 for every n and j, and

e itagel
= |

22" ifj=n+1.
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Hence for every n > 0, we have

Z
L 2
P(Ij};"_lcnj-HZ'rL)s P(Zp=n+1)
_—
n2
which converge to 0. So
Z
}_"r,l o2, —P 5]
g nj

Hence all the assumptions of Theorem 4.1.5 are satisfied.
Next, we show that (Zp;Xp) defined above does not satisfy the general
assumption of Bethmann Theorem.

Observe that

Zn Zn Zn
E[S oij] = P23 c;’;j +P(Zy=n+1) 3 cfu.

j=1 =] j=1

1 1 2n
saatisallinad
sl )

which converge to ©Q Hence the condition

2 4

Z,
lim E[ X cnj]= 1,

n—>w  j=]
does not hold. So the general assumption of Bethmann Theorem is not
satisfied.
In applying our theorem to the double sequence (Zn;Xnj) of randdm
variables in example 4.3.1, we find that, for any positive real numbers € and ul

we hawe
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Z
n
P( Y, {x2dFn)-1120) <Pz = n+1)
j:] [xi<e

-
2

for alln> 1 It follows that (Zn;Xpj) satisfies the random Lindeberg condition.
>
Hence the distribution functions of random sums

n n.

converge weakly to q) and (Zp;Xp;) satisfies the condition (&).

Example 4.3.2. For each n, let Zy be such that

P(Zy=n)= % and P(Zn=n+1)=%.
For each n and j, we define Xp; as follow.
If j # n+ 1, then let
Xnj=0.
Ifj=n+1,let Xy defined by
P(Xpi=a2) = Pigi =2} = %

It can be seen that

Hpj=0 for every n and j, and

0 ifj#n+1

c .
nj
2 ifj=n+1.

Hence
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for every n. It follows that

Zn
im E[ T o%]=1.
noeo j=1 ¥
Let T\be any positive real number. Choose n_to be a positive integer such that
n 7. Then we have
PZn2n)=1

foralln 2 n. It follows that

lim P(Zp2n)=1.

n— o

Therefore ;
Zn B4
Hence all the assumptions of Bethmann Theorem are satisfied.
Next, we show that (Zy;Xpj) does not satisfy the general assumption of
Theorem 4.1.5.
Observe that

Zn ' 1
2 =] I3 ) =
P(lji:lonj 1 2) 1

for all n. Hence the condition

does not hold. Therefore the general assumption of Theorem 4.1.5 is not

satisfied.

In applying Bethman Theorem to the double sequence (Zn;Xp;) of

random variables in example 4.3.2, we see that
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y4
P(S { x2dFp;(x)-1] 2 %)z%

J— ] Ixj<e

for every £>0. It follow that (Z,:Xp;) dose not satisfy the random Lindeberg

condition. Hence the distnbution functions of random sums

S, =X s 1F 25 F s + X
n n

do not converge to @, or

(Zn;Xnj) does not satisfy the condition (&).

It is natural to ask whether there exists an example of random double
sequence (Zp;Xp;) that satisfies the general assumption of Bethmann's
Theorem as well as the random Lindeberg condition but does not satisfy the
general assumption of our theorem. The answer to this question is in the

negative. The reason is in the following proposition.

Proposition 4.3.3. Let _(Zn,an) be a random double sequence of random

variables which are independent in each row and satisfy the following
conditions.
(a) Foreachnandj, ppj=0
Z

2
(b) E[jglonj]—al.

() Zp—t-o0
If (Z,n;an) satisfies the random Lindeberg condition, then
Z

n
Y O
j=1

2.—")1.
n



Z

n
k .
Proof. Let( X ci j)be arbitrary subsequence of ( Zn oij). By

=1 k J:]
- Lemma 3.1.4
Z 4 ln(q)
Nk 2 kK 5
E[3o) ;1= | o} dg
J=] k & J:] k

Hence it follows from the assumption that

11, @
. k\\|//7
lim S r o .dq =1
By Fautou's Lemma we have that
. @ ¢ In @
‘liminf Y o2 .dg < llmme N o2 . q
s koo j=1 ) kool j=1 B )
o [
: lnk(q)
=—hm S b o2 . q
kool j=1 "
o
= 1,
1.e. ¢
4 I, @
(1) Slxminf Y o® .dq <1.
. koo j=1 "kJ
lete>0. Let
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Since (Zp;Xp;) satisfies the random Lindeberg condition, by Lemma3.1.5 we
have that

1 (@)

) im % (x2dFpm0 = 1,
R Ey j=] ];i<:

for every q € (0,1). From this fact and the fact that

'n, @ 1 @
“ 2
(3) o, 2 2 (x dF_ (%)
j=1 k j=1 - k?
xl<e
we have
A ', @
4) Xliminf Y 62 .dqg 21
P4 k—> o j:] nkJ

From (1) and (4), we have

4 1@
St
(5) Sliminf Vg2 Vdq 2.
k—ow j=1 k]
0
From (2) and (3) we have
l"k(q)
(6) iminf ¥ o2 .>1
koo j=1 "k

From (5) and (6) we have



1 ()

n,

Iim inf 2 02 .=1a.e.
k—ow j=1 il

I ()
Since Z c“. is non-decreasing on q, we have
i=1 )
1, @
liminf X 02 . =1
koo j=1 e
lnk(q)
for every q € (0,1). Hence for arbitrary subsequence ( ¥ ci j) of
j=1 "k
NG
( ): o )we have
=1
lnk(q)
liminf ¥ o2 .=1.
k3o j=1 "k
From this fact, it can be seen that
@
Iim Y o° =1
nooewj=1
for every qin (0,1).
By Lemma3.1.5, we have that
Z
Zn 02 —r 51
nj ’

=0

5
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