CHAPTER II1
A GENERALIZATION OF KOLMOGOROV THEOREM

The pupose of this chapter is to find a necessary and sufficient
condition for the weak convergence of sequences of distribution functions of
random sums to a limit distribution function. That is we generalize
Theorem 1.4.2 to the case of random sums.

In [1] Bethmann gives a necessary and sufficient condition for the
weak convergence of sequences of distribution functions of random sums to the
standard normal distribution function. One of the important tools used by
Bethmann is what is known as the "q-quantiles of an“. We shall also make use
of this tool.

3.1 Definition and Properties of Q-Quantiles.

Let Z be a positive integral-valued random variable. Let 1:(0,1)— N be
defined by
I(q)= max { ke N| PZ<k)<q}.

The function 1 is called the g-quantile of Z.

Remark 3.1.1 Let Z be a positive integral-valued random variable. For each

q € (0,1), the set {keN | P(Z <k) < q} is non-empty and bounded. So the

function g-quatile 1 of Z is well-defined.

Remark 3.1.2 For a positive integral-valued random variable Z, the function

g-quatile of Z is non-decreasing.
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Remark 3.1.3 For a positive integral-valued random variable Z, the function

4q—quat1'le 1 of Z is a Borel function.

Proof. LetJ be the range of Z. Let kp,k2,....km,..., be the sequence obtained by

arranging the values in J in ascending order. Note that this sequence may be

finite or infinite. For each k je J, we define

k.
i
qkj)= XPZ=k)
k=1 |

and
q(k)=0.

Observe that for each k; € J and a positive number q in [q(kj-l);q(kj)) we have
(@) =kj. '

So

F({k}) = [atkj-1).95)
forj=2,34,..., and

Fl(ki}) = O.qk1).

It follows that for any open set O in N

)= U lak;_D.ak)HnO,1)
kjeO

which implies that 1'1(0) is a Borel set in (0,1). Therefore 1is a Borel
function.

Lemma 3.1.4 Let Z be a positive integral-valued random variable and
g N — C be a Borel function. If E[goZ]<w, then



i 38
E[goZ] = gga(q))dq.

o

Proof. Let] be the range of Z. Let ky,kp,...km,---, be the sequence obtained
by arranging the values J in ascending order. Note that this sequence may be
finite or infinite. For each kj € J, we define
=
q(k;) = kz P(Z=k)
=]

and

qk)=0.

Since for each kj and q € [q(kj-1).9(k;)) we havel(q) = kj, so

feacanda=gt it -at; )
la®;j-1.a%;)

for every kjin J. Therefore,

E[goZ] = X gkjpPZ=k)
kje :

1l

z g(kj)(Q(kJ)—Q(kJ_ 1))
kj €l

= ¥ {e0@)dg
ks €J1aa a6

q{
= [e0@)dq.
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In the sequel, for each n we shall denote the function g-quatile of Z;, by

I

Lemma 3.1.6 (Bethmann [1]) Let (anj) be a double sequence of non-negative

real numbers such that for each n a sequence (ap;) is non-decreasing. Let a be
anon-negative real number. Then anZ.._p;a if and only if for every q in (0,1),

an| n(Q)—)a'

_ 3.2 Generalization of Kolmogorov Theorem.

In this section we will give a necessary and sufficient condition for weak

convergence of the distribution functions of random sums to a limit distribution
function.

Lemma32.1 Let (Xp) be a sequence of random variables. Let x be a real
mumber. If X, —E—x, then there exists a real number ¢ > 0 such that

P(Xp 2 ¢)—>0.

Proof. Let c be a positive number such that x + 1 <c. Observe that
PXp2¢c) < PXp2x+1)
= P(Xp-x21)
< P(Xp-x| 2 D).
Since Xy, —2—>x, hence

P(Xq- x| 2 1)—0.
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Therefore

P(Xp 2 c)—>0.

Lemma 3.2.2 Let X1, X2,..., Xy, be a complex-valued random variables. Then

for every € > 0, we have

n n
P(13 X;l2e)< zp(|xj|z-§).

j=1 j=1

n n |
Proof. Letw € Q be suchthat | > Xj(oa)l 2e. So ) |Xj(co)|2 €. Hence
=3 ¥=1

there exists j € {1,2,3...,n } such that |Xj(m)| >L So
. 7 n

n n
(ol T X@}ze} € UtelXj@)2)
j=1 j=1 2

which imples the conclusion of the lemma.

In the following lemmas, we study the convergence of sequence in the

space M, of bounded, non-decreasing and right-continuous functions from R

into [0,00) which vanish at -00and the metric L defined on M

Lemma 32 .3 Let K,-Kl, K3,..., be elements in M . Assume that the following

conditions are satisfied.
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(a)‘ There exist real numbers p, py, pH2,..., such that

oo [0 o]
ippt + g fitx)dKn(x) — ipt + [ £(1,x)dK (x)
-0 -00
for every real number t.
(b) (Kp(+90)) is bounded.

Then we have the following.

() Bn Su

(11) There exists a subsequence of (Kp) which converges weakly to K.

(111) For every subsequence of Kp), it contains a subsequence which converges
weakly to K.

(v) Kp,— K.

Proof. By (a), fort# 0 we have

oo oo

i + % ff(t,x)ng(x)-——) i ot %-Si(t,x)dK(x).-

So, in order to prove (i) it suffices to show that

[ @]
) tim 2 {f(tx)dKq(x) = 0. uniformly, and
t—>0 t. ‘

e e
@) Jim .Lf(t,x)d}\(x) 0.
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dbserve that
o0 (>8]
1 1
k [faxdKkae)| < i1 TE01Kn )
=00 0
o0
2
1 t
< — t — dK
Itl_c"; 2 Il(x)
o

From this fact together with (b), we have (1).
Equation (2) can be proved similarly to equation (4).
Since K;, is non-decreasing and (K;(+90)) is bounded, we have (Kp,) is

uniformly bounded. By Corollary 1.2.11, there exist a subsequence (Knk) of

(K;,) and a function K in M such that K ., —*—> K. Since for each arbitrary

nk
but fixed t, | f(t,x) lis bounded, it follows from Theorem 1.2.12 that

oo 0
[Tk, 00— [feaR e
-0 =30
for every real number t. By (i) and this fact we have .

oo (e o]

b, U j f(tx)dK py (x) —> ipt+ j £(t,x)dK (x).
=20 . .

=00

From this fact and (a) we have

o0 0o

ipt + ff(t,x)df(x) = ipt+ f f(t,x)dK(x).

=0
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By Theorem 1.3.4, we have K =K. So Kny —> 3 K. That is we have (i1).

To prove (iii), we use the same argument of (i1).

It follows from (iii) by using Theorem 1.2.12 that for every subsequence
of (Kp), it contains a subsequence which converges to K with the metric L.
This implies that (K;;) converges to K with metric L. So by Theorem 1.2.12 we

have (iv).

In order to state following theorem and lemmas, we make uses of
families of random variables defined in terms of Z;. This is done in the

following remark.

Proposition 3.2.4 For each ueR, Let

y A u
7 n
K, ()= > 5 x2dFp(x + n;j)
n j — l-oo

Then the following hold.

(1) Foreachu, K Zn(u) are random variables.

Zp
p2
J:
(ii1) For each 0eQ, K7 (o) may be considered as a function from R to R for

(i) K Zn(m) = ogj.

1

which its value at u is K Zn(m)(“)' With this interpretation, we see that

Kzp@)<M -
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Lemma 3.2.5 Let (Z;Xp;) be a random double sequence of random variables

and (Anj) be a sequence of real numbers. Let 62 be the random
n

accompanying characteristic functions associated with (Zp), (¢n;) and (Anj)-

Let ¢ be the characteristic function of a distribution function with finite

variance 62. Assume that the following hold.

@ o —(t) for every q and every real number t.
1 @M

Then there exists a function K in Il such that
(i) K(+©) = o2, and
(11) KZn(u) —2 5K (u), for every continuity point u of K.

Proof. It follows from Remark 2.3.1 that ?p] (q)is infinitely divisible. By (a),
n

it follows from Theorem 1.3.7. that ¢ is infinitely divisible. Therefore,
according to Theorem 1.3.5, there exist the constant p and the function K in m

such that K(+00 = 02 and

o0

Logo (1) = ipt + J’ f(t,x)dK (x),

=0

for every t. So we have (1).

To prove (ii), let u be any continuity point of K. For eachn and j, let

i ou
apju)= 3 szank(x+“nk)_
k

=]lo
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Hence anzn (u) =Kz (). In order to prove }(Zn(u)——P—>K(u) by using

Lemma 3.1.5, it suffices to show that

a n(q) (u)—/ K(u)

for every qe (0,1), i.e.

Kln(q) (u)— K(u),

for every qe (0,1).
To do this, we will apply Lemma 3.2.3 (iv) to a sequence ( K, (q)). So it
n
suffices to show that the conditions (a) and (b) of Lemma 3.2.3 are satisfied.

Let t be any real number. By Theorem 1.3.1, o(t) # 0. From this fact together

with (a) we can choose a branch of logarithm such that
A 1 /
logy () (O—>1og()

This implies that

Log@,n(q) ()—Logo(t),

1.e.,
ln(Q) ln(q) o© ©
i( 'Z]unj - Anln(q))t+ .Z] Jf(t,x)anj(x +ipj) = ipt + f £(t,x)dK (%)
3= J=1l=x ~0

which is equivalent to

1 (q) oo T o

n

i( Elunj Ay @" RENL Ky @)= int+ [tk
- - 00

«=00
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So (a) of Lemma 3.2.3 is satisfied where

INC)

= 1 .- A .
Hn .Z‘nj nl_(q)
j=1 i

By (b), it follows from Lemma 3.1.5 that

1@
Zoz —02.
i=1

This implies that (Kl @ (+99) is uniformly bounded. Therefore the
n

condition (b) of Lemmma 3.2.3 is satisfied.

In the following, we state and prove the main theorem of this chapter.

Theorem 3.2.6 Let (Zy;Xp;) be 2 random double sequence of random variables
which satisfies the condition (&) and for each n, Zy,,X,1,Xp2, ... are
independent. Then there exist a double sequence (Ap;) of real numbers and a
distribution .function F with finite variance 62 and the characteristic function ¢
such that

(i-a) the distribution functions of the random sums

5, - = En X sSE, A
n n n

converge weakly to F, and

(1-b) $l @ (t) =@ (1) for every q € (0,1) and every real number t where
n

GZ are the random accompanying characteristic functions associated with
n

(Zp), (Cbnj ) and (Anj), and
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zn
(i1) J?::]onj B seyd

if and only if that there exist a function K in I such that
(1" K, (u)—"— K(u)for every continuity point u of K and
n
(11") K, (+00)—E— K(+40o0).
n

The real number Ak may be chosen according to the formula

where p 1s any real number. The logarithm of characteristic function of the

limit distribution is given by

Logo(t) = iut + j f(t,x)dK(x)).

Proof. By (1-b) and (i1), it follows from Lemma 3.3.5 that (i') holds and
K(+00) = 62. According to this fact and Remark 3.3.4 (ii) we have (11) 1s
equivalent to (i1").

Conversely, let F be the distribution function whose the logarithm of

characteristic function defined by

Logo(t) = iut + | f6X)AK(x)).
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and Apk = 2. My - M

By Theorem 1.3.5, K(+0) is the variance of F. Hence (ii) follows from
this fact and (ii"). |
To prove (i-b), let q be given and t be any real number. By Lemma3.1.5,

it follows from (1') that

K — 5 K.

1 (q)

n

By Theorem 1.2.12,

j LK) (o () [ e).

Since
1@
A @ 2 Hy
=
we have
]n(Cl) oo o)
-it An]n(q)+ it 3 pt Jf(t,x)dl(]n(q)(x) —5 it + _{f(t,x)dK(x).
=1 ) =0
So

Logﬁln(q)(t) — Logo (1).

Hence, (i-b) hold.
We shall prove (i-a) by using Theorem 2.4.5. So we must to show that
(1) (Zn:;Xnj) satisfy the condition (B) and
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(2) E[@Zn(t)] —¢(t) for every t.

By (ii), it follows from Lemma 3.2.1 that (1) holds.

To prove (2), let t be arbitrary but fixed. Since (t)] <1, hence

&
I ()

61 @ considered as a function of q is dominated by a constant function. By
n

(i-b), it follows from Lebegue Dominated Convergence Theorem that

1
[ & @®da o0
o]

By Lemma 3.1.4 we have (2).

3.3 A Speacialization

In this section we specialization our main theorem to the cases where
each n, Z, has a single value, i.e., there exists a positive integer jy such that.
Zn(w) =]n
for every 0 e Q). As a result, we obtain Theorem 1.4.2 (Kolmogorov Theorem).
Let (Xpj) be a double sequence of random variables with finite variance
which are independent in each row and are defined on a common probability
space (QQ,4,P). In this section, we again assume that (an) is a sequence which
is finite in each row, i.e., we assume that j =1, 2,...,jn, n=12,.. Let(Ap) be

a sequence of real numbers. For each n, let

n
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In order that Sy, can be viewed as a random sums, we define Z;; and s('nj as

follows.
Let n be any positive integer. Define
Zn(®) =Jn
forallw € Q. Forj=1, 2, ...,jn, define

inj(w) = an((’))
for all ® € Q, and for j > j;, define

X @ =0

forall ® € Q.
It follows that (Zn;)ﬁ('nj) 1s a random double sequence of random
variables which are independent in each row. We shall call (Zn;inj), a random

double sequence of random variables induced by (Xnj)-

We shall denote the distribution function, characteristic function, mean
and variance of inj by Fnj »®nj.Hnj and Gij respectively. Observe that for -

each n and j be such that j < j,, we have

Foj = Fpj,
" OPpj = @ny
ﬁnj = Hnj
and
. E3'21)'_= fu

Remark 3.3.1 In the following, we shall make uses of g-quatiles of the random

variables Z;, defined above. For later reference, we note that

1n(Q) = jn.
for every q in (0,1).



Lemma 3.3.2 Let (ap) be a sequence of complex numbers. Let (j,) be a

sequence of positive integers. For each n, let Z; be defined by
Zn(©) =Jn
for every we Q. Then the following hold.

() Ela, 1=a,
n n

Z
n n

(i) a—aifandonlyif 2 _r g
Proof.
Since
1if j=jp,
P(Zp=j )=
0 otherwise,

hence we have

o0
E[aZ ]= ZP(Zn = k)aj
n k=1 k

1.e. (1) holds.

To prove (i1), first we assume that

a.—>a.
Jn

Let € > 0 be given. So there exists an n€ N such that

la. -a|<e.
In

foralln>n- So,using the fact that P(Z,=jn ) =1 we have
(<]



P( laz -a| 2 €)= 0.

n

foralln 2> n, Hence

a, ——a.
Zn

Conversely, assume that

a, —it—a.
Zn

Let £ > 0 be given. So

P( la, -a|2¢) 0.

n

Hence there exists a positive integer n_such that

P( |aZn—a]_>.e)<l

foralln 2n. Since Zp, is a single value,

P(laZ -a|2¢)=0

foralln > n. So
P(|aZ -a|<g)=1
n
foralln > B Therefore
la. -a]<e
Jn

foralln > n. Hence

di—>24d.
n
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Proposition 3.33 Let (Xp;) be a double sequence of random variables. Let
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(Zn;i;nj) be the random double sequence of random variables induced by (Xnj)-
If (an) satisfies the condition (a), then (an;s\:nj) satisfies the condition (&).

Proof. Let € >0 be given. Since (Xp;) satisfies the condition (a), we have

sup  P(IXpj-Hpjl 2 €) - 0,

1< ] <J
Let
a. = sup P(lxnj Pn_ﬂ 2 €)
Jn ]< J <J
So
a—0.
Jn

According to Lemma 3.3.2 (ii), we see that
a, —2>0
n
LE

sup P(Ian-und 2 )70
I1£)=4

n

This implies that (Zn&nj) satisfies the condition (&),

Proposition 3.3.4 Let (Xp;) be a double sequence of random variables which

are independent in each row. Let (Zn;gnj) be a random double sequence of
random variables induced by (Xpj)- Let F be a distribution function. Then

there exists a sequence (Ap) such that the distribution functions of the sums

Sn= Xn1+ Xn2 +----+an - An

n



54
converge weakly to F, if and only if there exists a double sequence (Anj) of

real numbers such that the distribution functions of the random sums

B, = 5<“n1+§n2+...+'i’nz -A_,
n n n

converge weakly to F.

Proof. Let ¢ be the characteristic function of F. According to fact that

P(Zy =jn) = 1, we have the characteristic function 'q‘a'n of ’§Z is given by
n

Z
n
B0 =Elexptita g )] 5,0)
J =

- k
=kzlp(zn - ]()exp(—itAnk).l_I1 anj(t)
= 373 i

j
n

= exp(_itAnj )H &;n_](t)
n j=1

J

n
=exp(-itA_. ) (t
nj_ _]IJ](an()

which is the characteristic function ¢, of S, with A, = Anj . Hence
n

on(t) = o(t)
for every real numbert, if and only if
6. (1) o)
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for every real number t. Therefore the distribution functions of Sp converge

weakly to F if and only if the distribution function functions of §Z converge
: n

weakly to F.

Proposition 3.3.5 Let F be a distribution function with finite variance o2 and

the characteristic function ¢. Let (Xpj) be double sequence of random
variables which are independent in each row and satisfy the condition (a). Let

(Zn;inj) be a random double sequence of random variables induced by (Xnj)-

Let (Anj’) be a sequence of real numbers. Let 62 be the random
n

accompanying characteristic functions associated with (Zp), (('}')nj) and (Anj)-

Assume that

Zn
5§ 22,52
& onj

LY

Then the distribution functions of the sums

S, = Xn1+xn2+...+5<'nz -A

Z nZ

n n n

converge weakly to F, if and only if
G, , .\ t

for every q € (0,1) and évery real number t.

Proof. Since

Zn
§ 2,02,
=1 L

e
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it follows from Lemma 3.2.1 that (Zn’inj) satisfy the condition ('ﬁ), So
(Zn;inj) satisfies both (&) and (). Therefore, by Theorem 2.4.5, the

distribution functions of the sums

S, =ZXn +5<"n2+...+§nz A,
n n n

converge weakly to F, if and only if
E[$, OF—o(t)
n

for every real number t.
Since
Zn(©) =g
for every o € Q. It follows from Lemma 3.3.2 (1) that

3. (> @)
Jn

for evéxy t. Hence,by Remark 33.1, we have
2
t
(Pln(q)( Jreey ‘P(t)
for every q € (0,1) and every real numbert.

) =

Remark 3.3.6 Let (an) be a double sequence of random variables which are

independent in each row and satisfies the condition (a). Let (zn;San) be a
random double sequence of random variables induced by (an). Then the
following hold

(1) By Lemma 3.3.3, (Zn;;(nj) satisfy the condition (&). According to
Theorem 3.2.6 we know that in order that there exist a double sequence (Ap;)
of real numbers and a distribution function F -with finite variance 62 and the
characteristic function ¢ such that

(i-a) the distribution functions of the random sums
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SZ = Xnl+ X0 +"'+§n2 —AnZ
n n n

converge weakly to F, and

b)) B

| (q)(t) —¢(t) for every q € (0,1) and real number t,where Z’;?Z are
n n

the random accpmpanying characteristic function associated with (Zp), (¢nj)
and (Ap), and
. Zn~ 3 o
(i1) jz:]cnj — 50
it necessary and sufficient that there exists a function K in I} such that

1" K 7 (u)—— K(u), for every continuity point u of K, and
n

(ii’)f(Zn (+00)—2— K(+oo))
where
—u
~ n ~ A~
K Zn(u) = _Z] J’xzanj(x + Hnj).
J= o

The real number Apk may be chosen according to the formula

where p is any real number. The logarithm of the characteristic function of the

limit distribution function is given by

Logo(t) =iut+ If(t,x)dK(X).
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(2) By Proposition 3.3.5 we see that the condition (i-a) and (i-b) of (1) are
equivalent. Hence by (1), in order that there exist a double sequence (Ap;) of
real numbers and a distribution function F with finite variance o2 and the
characteristic function ¢ such that

(i) the distribution functions of the random sums

e = Xp1+Xmp +.4% , -A_,
n n n

converge weakly to F, and

Z
n
o s 2 v,
(i) chj —2 50
1=
it is necessary and sufficient that there exists a function K in I, such that

@) K 7 (u)——K(u), for every continuity point u of K, and
n

@)K, (roo)—TrK(+e0).
n

(3) It follows from Proposition 3.3.4 that the condition (1) of (2) is equivalent to
the condition (K-1).

(K-i) The distribution functions of the sums

Sp= Xn1+Xp2 +...+X . -Ap

njn
converge weakly to F.
And, it follows from Lemma 3.3.2 (ii) that the conditions (i1) of (2) is
equivalent to the condition (K-i1).
i
r 22 2 2
(K-ii) Zonj —c".
)=l o
By using from Lemma 3.3.2 (ii), it follows that

(a) the condition (i) of (2) is equivalent to the condition (K-1').



59

(K-1") Kj (u)— K(u) for every continuity point u of K,
n

(b) the condition (ii') of (2) is equivalent to the condition (K-11")
(11'-K) Kj (+)—> K(+=).
n

Therefore Theorem 1.4.2 is a consequence of Theorem 3.2.6.
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