CHAPTER II |
RANDOM SUMS OF RANDOM VARIABLES AND THEIR
ACCONPANYING DISTRIBUTION FUNCTIONS.

In this chapter we generalize a necessary and sufficient condition for
convergence of sums of independent random variables as stated in
Theorem 1.4.1 to the case in which the number of term in the sums are random.
This is done by using the concepts of random infinitesimal and accompanying

distribution functions of random sums.

2.1 Random Sums of Random Variables

Let (Zy,) be a sequence of positive integral-valued random vaiables.
Let (an) be a double sequence of complex-valued random variables. Here

our double sequence is infinite in both directions, i.e,n=1, 2, 3,..., and

J=1,2,3,...For each n, a value Zn(w) of Zy, determines a finite sequence

of values
an((l)), XDZ((‘D)"“’ Xn Zn(&))(m) '

of Xn1, Xn2.--- XnZz,@)- It can be seen that for each n, Z; and (Xnj)

together define a random experiment in which each outcome gives rise to
a finite sequence of complex numbers. However, the length of this finite

sequence is random. We shall call the system -(Zn;an), a random double

sequence of complex-valued random variables.
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Let (Zp;Xpj) be a random double sequence of complex-valued random
variables. For each nwe define
Z 4

n n
Z an s n an 3 and ann
J:l J:]

to be functions from Q to C given by the following formulas

Z, Z (o)
(2 X)) = (T X))
)=l )=l
Z Zn(w)
(I Xg)@) = (11 Xp;)@)
=l J=1
and
(nz, X0) = (X7 ()@
“respectively.

In case Xp;'s are real-valued random variables we define

sup  Xpj
1<j<Z

to be the function from Q to R given by

( sup Xnj)(w)=(1 o X ;@)

I<j<Z <j<Z,(w)
z, Z.
It will be shown that 3 an s an ,and X - are complex-valued
=1 = .

random variables and sup Xjj is a real-valued random variable. These facts
| 1<j<Z

are special cases of a more general result that follows.
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Proposition 2.1.1 Let (Y}) be a sequence of complex-valued random variables.

Let Z be a positive intgral-valued random variable. Let Yz denote a function
from Q to C defined by
Yz(@) = (YZ(w))(©)

for all ® € Q. Then Y7 is a complex-valued random variable.

Proof. Let B be a Borel subset of €. By a straight forword verifcation, it can

be shown that

Y,'[B] = v (%'[BINZ1[{K})),
keN

which can be seen to be a measurable set. Hence Yz is a complex-valued

random vanable.

Theorem 2.1.2 Let (Zp; Xp;) be a random double sequence of complex-valued

Z Z
) n n
random variables. Foreachn, 3 an, Il an , and X,z _are complex-
j=1 =1 n

valued random variables. Furthermore, in case where the Xp;'s are real-valued

random variables  sup Xpj is areal-valued random variable.
1<j<Z

Proof. The assertions of the theorem follow from Proposition 2.1.1 by defining

k k
Y| to be & an .11 an » Xnk and sup an respectively.

For each complex number A, we shall associate a complex-valued
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random variable whose value is A for every sample point ® € Q. We shall
aenote such a complex-valued random variable by A. By using this
interpretation, any sequence or double sequence of complex numbers may be
considered as sequence or double ‘sequence of complex-valued random
variables.

In the sequel, we shall consider sums of the form

Szn = an +Xn2 e o XnZ 'Anz

n n

where (Zp;Xp;) is a random double sequence of random variables and (Ap;) is

a double sequence of real numbers. We shall refer to them as random sums. -

Let (Z;,) be a sequence of positive integral-valued random variables and
(cpnj) be a double sequence of characteristic functions. Let (Anj) be a double
sequence of real numbers. We define a function

(pzn: QOxR—->C
by

| Z,(©)
(pzn ((D’t) = exp('lt Anzn(w)) J];l‘ (Pn_](t)

We will denote ¢z, (o,t) by o Zn(w) (1).

Proposition 2.1.3 Let ¢ Zn be defined as above. Then the following hold.

(1) Foreachnandt, Gz (1) is a complex-valued random variable.
(1) Foreachnandow, ¢ "is a characteristic function.
Z,(0)

(ii1) For each n, the function ¢y given by
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on() = Eloz (1]

is a characteristic function.

Proof.
(1) follows from Theorem 2.1.2

(ii) follows from the fact that exp(-it A nZ, (m)) and @p;j are characteristic

functions together with Proposition 1.2.4 (i).
(iii) follows from Proposition 1.2.6 and the fact that

, © : k
E[o, (1)]1= ZP(Zn=kK)exp(-itAnk) I1 @nj(®)-
Zn £ - ]

J=1
4

We shall call such ¢ , the random characteristic function associated
n
with (Zp),(¢nj) and(Ap;).
W shall frequently make uses of the distribution function and

characteristic function of Xp;. For convenience, we shall denote them by Fp;

and @p; respectively.

Theorem 2.1.4 Let ( Zp;X pj) be a random double sequence of complex-valued

random variables such that for each n, Z,, X, 1,Xp2,...are independent. Let

(Anj) be a double sequence of real numbers. Then the characteristic functions

¢p, of the random sums
S = Xp1 + Xp2 +..+ X -A
< 8 nl n2 nZ,"*nZ,

are given by

vn(® = Elo,_ ()]
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where ¢, are the random characteristic function associated with (Zp), (¢n;)
: n

and (Anj)-
Proof. Fixn € N. Let Fy, be the distribution function of SZn . For each j, let

F;] and ("21 be the distribution function and the characteristic function of S}.] =

Xn1+Xn2t--+Xnj-Anj respectively. Observe that

Fa(x) = P(Sz_<x)

.

J

By Proposition 1.2.6, we have

= = P@n=iol®.
j=1

Since (pgl(t) = exp(-it Apj) T1 @nk(®),
k=1

we have

o . : j
yn(t) = ZP(Zp=pexp(-it Anj)kn @nk(1),
7 =1

=Eloz, O
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2.2 Random Infinitesimal.

~ We shall say that (Xpj) 1s random infinitesimal with respect to (Z) if

for every € > 0, we have

sup P(IanIZs)—p-aO.
1<)<Zn

Lemma 2.2.1 Let (Xn;j) be a double sequence of random variables. Then, for

any n, k and £ > 0, the following hold.

(e &

(1) sup
1<j<k o 1+x?

X dFp) < 54 o RICHEND

(11) For any real number t # 0, we have

sup |¢op;j(t)-1]| <—+2 < P(IX 2
1<5<k W I<i<k o 2”

Proof. Obsenve that

x?
f ——:anj(x) +
+X .

~2c " \\{: i

£

\

< f %’ dFp;(x) + f dFpj(x)
"‘.'<E . |x!>

V2 2y

ST
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£ e P
< 4P |D)

Therefore, we have ().

To prove (ii) observe that

lonj®-11=1 [ (F1)dFpi(x)|

=00

< [ 1eite1 Py + f feite11dFy 0

bl 2]11 b 5

< [ lxarnico+ § (Ieitxl+1)anj(X)

+2 sup P(|Xgil 2
e 21"

IA

Therefore (i1) follows.

Theorem 2.2.2 Let (Zy; Xpj) be a random double sequence of tomplex-valued

random variables. Then the following statements are equivalent .

(1) (Xp;) is random infinitesimal with respect to (Zy) ,

(1) foranye>0, sup P(I)\njl>£) —20,
1<J<Zn

(i11) forenye>0, E[ sup P(anJ|>a)]—) 0,
1<j<Zp
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oo

4 2
) E[ sup [ —=—dFpj®)]— 0,
Isj<zp - I+x
00 5 !
) sup ~— dFy(x)—"-5 0.
1sj<Zp o 1+x
Proof.

The equivalence of (i) and (ii) follows from Theorem 1.1.5.
The equivalence of (ii) and (iii) follows from the fact that

E[l sup P(Xpjl2e)-0=E[ sup P(Xgil2e)]

The equivalence of (iv) and (v) follows from the fact that

(') - oo

Bl sp [ zzanj(x)-Ol]=E[ sup | x? dF )1

1<j<Zp, 7 l4x ISj<Zn 1+x?

=00

So it remains to show that (iii) is equivalent to (iv) .
First we assume (111) holds. By Lemma 2.2.1(i), we have that for any

>0,

oC
)
E[ su 2 dF.xI< £+ E P([Xnil>. £
[lsj_spzn_!onz nj(0)] 2 Lls?;pzn (Pni \/;)]

Using this fact together with (iii) , it can be shown that
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(o]

x2
B[ sup {25
Jgi<Zzy < 14X

Conversely, we assume (iv) holds. Let € > 0 be given. From the fact
that for |x| 2 €,

2 1 1 _ 2
2 1+x2 1+€ 1+8

we have

E[ sop P(Xpjl2e)] =E[ sup [ 1dFpj(0)]
15j<Zn 15j<Zn i, . -

2 )Py (x)]

1*.‘:
g e f(——)dFm(x)l

kiz e

which converges to 0 by (iv).

Theorem 2.2.3 Let (Zp,Xp;) be a random double sequence of random variables.

If (an) is random infinitesimal with respect to (Zp,), then

sup  |¢pj()-1]——0
1<j<Znp

for every t.

Proof. Clearly sup [o(t)- 1]——0 holds for t=0. Assume thatt= 0. Let
1<j<Zp
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£> 0 be given. By Lemma2.2.1(ii), we have that

Q)] E[ sup |onj(t)-1] < £+ 2E[ sup P(lxn_]|>
1=j<Zy 1<j<Zp 2It

)]

Since (an) is random infinitesimal with respect to (Zp), by Theorem2.2.2 we

have

lim E[ sup P(IXI]JI—
n—oow 1£j<Zq 2t

- 0.

Using this fact together with (1), it can be shown that

E[ sup |gpj®)-1]] = 0.
1<j<Zy

That is sup [(pnj(t)-l |——0.
1<j<Zq

By Theorem 1.1.5(i) we see that

sup  [gnj(D-11—2->0.
]<J<Zn

For the remainder of this work we assume futher that for each n and j,

Xpj has finite variance. We shall denote its mean and variance by ppj and oimj

respectively.

2.3 Accompanying Distribution Functions of Random Sums.

In this section, we let (Zp,Xp;) be a random double sequence of random
variables. Let
SZn = Xp1 * Xp2 +...F ann-AnZn
where (Ayj) is a double sequence of real numbers. For each n and k, let (pﬁ be

the characteristic function of the accompanying distribution function of
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Xn1*+ Xn2 ...t Xpk - Ank.
Therefore,
k

k oc
LogoK (1) = -itAng + it ht 2 )€ 5 it 1)dFpj(x-+ing).
J— ] : v:ﬂ

For each n, let
fﬁzn:Q xR— C

be defined by

" Zn(@)
bz @D= (" ).

We shall call such $Zn’ the random accompanying characteristic function

associated with (Zp), (o, j) and (Anj).We will denote ¢ Zn(m,t) by ¢ zn(m) ®.

Remark 2.3.1. For each n and o, QZn(w)iS infinitely divisible.

The accompanying distribution function of Sz is the distribution function
n

whose characteristic function is given by
Gn(® = E[6,_(0)]

where § Znis the random accompanying characteristic function associated
Note that the accompanying distribution function of S, may not be
n

infintiely divisible.
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2.4 A Necessary and Sufficient Condition for Convergence.

Let (Z;Xp;) be a random double sequence of random variables. Let

-A
nZ, " nZ,

Szn = Xn] -+ an ot X
where (Anj) is a double sequence of real numbers. In this section, we
generalize Kolmogorov's result on accompanying distribution functions
(Theorem 1.4.1) to the case of random sums. To do this we shall generalize
conditions (o) and (B) used there. Our generalized conditions are the following.

(&) (Xnj-Hnj) is random infinitesimal with respect to (Zp).

- Zn
(B) There exists a constant ¢>0 such that P(T C%j > c)—0.
j=1

In Lemma 2.4.1 - Lemma 2.4.3, we assume that for every real number

t,¢onj(t) is non-zero.

Lemma2.4.1 Let (Zn;an) be a random double sequence of random variables.

Then for every € > 0 and ye(O,%) we have

Z
P(Z [LogenjD-0nj®+112e) < P( sup lon®-1127)

=l 1=jxZy

Zp
+P(Z lonj®-122eA sup [opj(H)-1] <)
j:] ISJSZn

for every t.

Proof. Lett be any real number. Let
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Zp(w) |
Ag={weQ] X [Logenjt)-enjt)+1|=¢}
J=1

and By ={weQ)| sie |@pj(t)-1] 2 v}
1_<_j52n(0))

Let @ be any element of Q-By . Then we have

Zn(m) Zn(m)
2 [Logenj(D-onj)+1] = X [Log(1+¢nj(t)-1)-(¢njt)-1)|
j=1 j=1

Zn(w)
< X lopyt)-1 &
5 1=1

The last inequality follows from the fact that |Log(1+z) - z| < |z|? for all z such
that ' |

lz| <y < % Hence for ke Ag N(Q2 - By),

Zp()
> |(Pnj(t)'1|2 2e
=1

which imples that

Zp() '
() Ae NQBY) c{0eQ] Y lonj®-122eA  sup |onj(t)-11<v}.
j=] ISJSZn

From the fact that

Ag = (AgNBY)U(Ag N(2-By))
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and (1) we have that

Zn(0)
P(Ag) SP(AnBY) (o<l 3 lenj®-12 28 sup loni(0-11<))
=1 S)S4Ln

Zp(®)

<P(By) tP({weQ| > lonj®)-122eA sup |onj(®)-1l<r})
j:] IIS_]SZn

So we have the conclusion of the lemma.

Note that, in Lemma 2.4.1 the finiteness of variances of Xp;'s are not assumed.

Lemma 2.4.2 Let (Zn;Xp;) be a random double sequence of random variables.
Assume that for each n and j, an has zero mean. Then for every € > 0 and

vy > 0 we have

Zn ' Zn

28
P(X lonj®-122eA  sup [onj®-1<7) < P(3 01211.2—2-)
=1 1<)V 5 j=1 Yt
for every t #0.
Proof.
Zn , ‘
P(2 lonj®)-122eA  sup |opj(t)-1| <)
j:l ]SJSZn
Zn

< POY. lonj(0-112 )
i
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P(Z lonj(®)-1]2 = )

j=1
- o )
Y
Zn | . ® :
= PQY | [(ei1- it)dFpiof 2 £)
= :
Zn 0o
£ P [l(€1- it)|dFpi(x) 2 —)
]—l
P(Z [ drn 2 £ °)
57l =
= P(Z ijanj(x)> )
Zn 2e
= -
P(jz, ot J>712)
4

Lemma 2.4.3 Let (Zp;Xp;) be a random double sequence of random variables
satisfying the conditions (&) and (ﬁ). Assume that for every n and j, an has
zero mean. Then .

Zn

2. |Logenj(t)-onj(t)-11——0
j=1

for every t.
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Proof. If t=0 then done. Suppose that t# 0. Let € > 0 be given. By condition

(B) there exists ¢ > 0 such that

Zn
1) P> 02 >c ) —0.
=1
Let y be a positive real number such that y < mm{l 2—8} By Lemma 2.4.1
ct
and Lemma 2.4.2 we have
Zn Zn
P(2. [Lognj(t)-onjH+1] 2 8) < P( sup  |onj(t)-1] 2 Y) + P(Z i )-
<Zn nj
j=1 1<j = 'Yt
2¢ L
Smcey<—,wehaveP(Z 2 7y )< P(Z
ct °niT L2 =
=l Y i=1
Hence
Zn Zn
(2) P(2 [Logonj()-@nj(t)+1}2¢) < P( swp [9nj(®-1127) + P(X o2 2c).
=1 1<j<Zn =1

Since (an) satisfy the condition (&), it follows from Theorem 2.2.3 that

(3) P( sup ppj(t)-1/27) —0.
1sj<Zp

From (1), (2) and (3) we have
Zn

2. [Logonj()-onj(t)-1]——0
=

Theorem 2.4.4. Let (Zn;an) be a random double sequence of random
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variables satisfying the conditions (&) and (). Let
SZn = Xpn1 +Xp2 +...+ ann 'AnZn
where (Anj) be a double sequence of real numbers. Let 0z be the random
characteristic function associated with (Zn),(q)nj) and (Anj) and § ane the

random accompanying characteristic function associated with (Zn_),(cpnj) and
(Anj)- Then |
N m
07, ® -6, O] —=> 0.

for every real number t.

Proof. Lett be given. Since (Zn;an) satisfies condition (@), by Theorem 2.2.3

we have
\ 1
P( ‘sup |opjt) - 1|2 =) —>0.
1<j<Z 2
n
Since
Z
P(T] 0.®=0)<P( sup Joni(®-1]24)
jzl(p"j . TS0 % 27

we have P(o Zn(t) =0)— 0. Hence we can assume that ¢ Z, (o) ®=0

for every n and o, i.e. (pnj(t) # 0 for every n and j.
For each n and ), Let &nj = Xnj-Hnj and (?’nj be the characteristic
function of an. Therefore (?)nj(t) = e-it“n.i(pnj(t)_

Observe that

. Zp . . Zn T
-itA nzn+j§_:lLogcpnj(t)+ltAnZn-ltj>_:]un r j§1 f (€B-1)dFpj(x+ip;)
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T b -
- ):Log(pnj(t)-ltz Mpj- 2 { teitx-1)dFgjxpng)

=1 =1 <o
it zn- S :
= >:Log(e "’(Pn_](t))'ltz Hpj- S(e‘ml)anj(anj)
j=1 A = j—l 0

- i ZLOg%J(t) Z j(eltx-l)anJ(x+an)

=1 o

= ] o0 B f eI5AE (1))
J-— 00

= ZLOg(Pn_)(t) Z( [ ‘an(pn_](t) 1)‘
=1 =1

= ZLog(pn_](t) Z((Pn_](t) 1
j=1 J=1

Zp
<Y |Loghnj(©-$ nj(0+1]
=t

which converges in probability to 0 by Lemma 2.4.3.
So |

-1 e tx.
ltAnZn+JZ]L0g(Pn_](t)+ltAnZn 1t§ Hnj jzl L(el l)anJ(X+HnJ)

converge in probability to 0. By Theorem 1.1.2(11) we have
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oo

: i Zp . . Zn Zn . .
exp{-ltAnZ + ZLog(pnj(t)ﬂtAnZ -it 3 Hnj- N j(e'tx-])anj(x+pnj)}
n =] n o j=1 j=1-%
converge in probability to 1, i.e.,
: Zp
expl-itA, +3Logoni(0)
-
) P
> 1
Z Z . 3
. £n (O
exp(-th ; HUT iyt 2 | (@O-DdFyiGctun)
o, el =l 2
1.e.,
_(pzn(t) .\ 1
b2, ® !

. A <
Since I(ozn(t)l <1, we have |
197, © = §7, 01 =0
By Theorem 1.1.5(ii) we have

07 @8, (O] =2 0.

Theorem 2.4.5 Let (Zy;Xp;) be a random double sequence of random variables

which satisfies the conditions (&)and(f}) and for each n, Z;;,Xp1,Xn2,...are
independent. Let (Ap;) be a double sequence of real numbers. Then the

distribution functions of random sums

A

S = X +X +...+X =
B nl n2 nZ. " HE

converge weakly to a limit distribution function if and only if their
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accompanying distribution functions converge weakly to the same limit

-distribution function.

Proof. Let ¢ Zn be the random characteristic function associated with (Zp),
((pnj) and (Anj) and § ane the random accompanying characteristic function-

associated with (Z;)), (¢nj) and (Ap;). Let ¢ be any characteristic function. By
Theorem 2.4.4 we see that the following ststements are equivalent.
(1) foreveryt, E[(pzn(t)] — @(t)
(2) for every t, E['cbzn(t)] - ¢(t).
From this fact together with the fact that the characteristic functions of SZn are
given by )

wn(® =Elo,_ (]
and the characteristic functions of the accompanying distribution function of
Szn is givén by

n(0) = E[5;_O)],

we have the conclusion of the theorem.
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