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CHAPTER 1

PRELIMINARIES

1.1 Random Variables and Various Modes of Convergence

A probability space is a measure space (2 ,(,P) in which P is a
positive measure such that P(QQ) = 1. The set Q will be refered to as a sample
space. The elements of (} are called M. For any event A, the value P(A) is
called the probability of A.

A function X from a probability space (©,(,P) to the set of complex

numbers € is said to be a complex-valued random variable if for every Borel

set Bin C, X-1[B] belongs to(1. In the case that X is real-valued, we say that

it is a real-valued random variable, or simply a random variable. We note that

the composition between a Borel function and a complex-valued random
variable is also a complex-valued random variable.

We will use the notations P(X < x), P(X > x) and P(|X| > x) fo denote
P({olX (o) <x}), P({oX(0) 2 x}) and P({o | [X(0)] = x}) respectively.

We define the expectation of a complex-valued random variable X to be

[xap
o)

provided that the integral jX dP exists. It will be denoted by E[X].
Q0

Proposition 1.1.1 ([3], p.174) Let X], X5, X3,..., X  be random variables.
Then




n
E[X1+Xa+...+Xp]l = > E[X]],
j=

provided that the sums on the right hand side is meaningful.

Let (2,01, ) be a measure space and Ybea topological space. Let X,

X1, X2, X3, ..., Xp be measurable functions from Q toY . We will write
| Xp— X ae.[p]
if (X;,) converges to X almost everywhere with respect to ;,l In the case
Q=R&) and p is the Lebesgue measure, we simply write
- Xp— X ae.

From now on, we shall assume that all our complex-valued random
variables, including real-valued random variables, are defined on a common
probability space { Q,(0.,P).

A sequence (X)) of complex-valued random vanables converges in
probability to a complex-valued random variable X if (Xp) converges in
measure to X. In this case we write

Xp — X.
In the case that E[|X|] and E[|Xp]], n =1, 2, 3,..., are finite. We say that (X[,)

converges in the mean to X and write

Xp—/> X
if E[|Xp - X|] = 0. ’
The following theorems are known properties of convergence in probability and

convergence in the mean.

Theorem 1.1.2. ([9], P.63) Let X, X}, X7, X3, ..., be complex-valued

random vanables.



(i) X —&— X if and only if for every subsequence (X, ) of (Xp)

‘contains a subsequence ( X"kr) such that X"Fr_—) X a.e.[P].

(i) If X, —2> Xandg:C — Cis continuous, then gXp)——gX).

Theorem 1.1.3. ([12], P.201) Let X, X1, X2, X3, ...,and Y, Y1, Y2, Y3,...,

~ be complex-valued random variables. If Xp—E—>X and Yp——Y then

Xp +Yn——X+Y.

Theorem 1.1.4. ([9], P.46) Let X, Y, X1, X, X3, ..., be complex-valued

random variables. ‘
@) If Xp—">X and X —* Y, then X =Y a.e. [P].
(ii) If Xp—2—X, then for every subsequence (Xp, ) of (Xpn) Xp) A,

Theorem 1.1.5. ([9], P.49) Let X, Xy, X2, X3, ..., be complex-valued random

variables.
() If Xp—=>X then Xp——X.
(i) If X;,—2—X and there exists a complex-valued random variable Y

such that E[|Y]] < e and for each n, [Xy, | <|Y] a.e. [P] then Xp——X.

1.2 Distribution Functions and Characteristic Functions.

A function F from R to R is said to be a distribution function if it is non-

decreasing, right-continuous, F(-0) = 0 and F(+o0) = 1.
For any random variable X, the function F : R — R defined by
Fx)=P(X<x)
is a distribution function. It is the distribution function of the random variable

X.




Theorem 1.2.1 ([3], p-57) In order that a function F is a distribution function

of a random variable it is necessary and sufficient that F is non-decreasing,

right-continuous, F(-0) = 0 and F(+0) = 1.

Proposition 1.2.2 ([9], p.28) Let X be a random variable with the distribution
function F. If E[X] exists, then

oo

E[X] = [ xdF(x).

=00

The expectation of a random variable X is also known as the mean. The
expectation of (X - E[X])2 is known as the variance of X and it denoted by

o2(X). Note that mean or variance of a random variable may be infinite.

Let F be a distribution function. The function ¢ : R— C defined by

o0

o ® = eittd Feo)

=00

1s called the characteristic function of the distribution function F. If F is the

distribution function of a random variable X, then ¢ is also called the

charactenistic function of X.

Proposition 1.2.3 ([8], p.45) For any characteristic function ¢, we have
(i) @0 =1
(1) | ()] <1 foreveryt

(111) ¢ is uniformly continuous on R.

Proposition 1.2.4 ([11], p.45)



(1) The product of two characteristic functions is a characteristic
- function.
(ii) If @ is a characteristic function, then |¢|2 is also a characteristic

function.

Theorem 1.2.5 ( Bochner's Theorem, [11], p.62) A function ¢:R —»C isa

characteristic function if and only if the following hold.
@)  e0)=1

(ii) @ is continuous

(iii)  for any positive integer m, the sum

m m \
Z Zolti—tjkic;
i=1j=1

is real and non-negative for any real numbers t), t..., t; and any complex

numbers ci, €2,..., Cm-

Proposition 1.2.6 ([6], p-477) Let (Fp) be é sequence of distribution functions

and let ( ¢ ) be a sequence of corresponding characteristic functions. Let (pp)

be a sequence of non-negative numbers such that

(e o]
> pk = 1. Then the function
k=1

oo
F(x) = kZ Pk Fk(¥)
, =] ‘

is a distribution function and the function

o0
o(t) = kz Pk Pk(t)
=]



is the characteristic function of F.
Any random variables X}, X7, X3,..., Xy, are called independent if

P( ~{oXj@<x}) = [[PXj<x)
J=1 =

holds for every real numbers x|, X2 ,...,Xp,

A sequence of random variables (Xp) is said to be a sequence of

independent random varniables if X;;,Xj, Xi3,.., Xj,, are independent for all

distinct i, iz’,i3,...,in. _

Theorem 1.2.7. ([3], p.188,191) Let X1, X, X3,..., Xy be random variables

with the characteristic functions ¢, ¢2, ¢3,..., ¢ respectiv.ely. Assume that
X1, X2, X3,..., Xp are independent. Let '
Yn = X3t Xo+X3+..+ X,
Then the following hold .
(1) The characteristic function ¢ of Yy, is given by
o) = @1(1).02(1).93(1).... en(t).

(ii) 62(Yn) = o2(X1)+ 02(X2)+62(X3)...+ 62(Xp).

4

Theorem 1.2.8. ([8], P.48) Let F be a distribution function and ¢ be its

characteristic function. If x and x) are continuity points of F, then

c —itx —itx
t 1t 9

Fox) - Fo) = 5 Im [ (50t
' -C

kg



" Remark 1.2.9 It follows from the above theorem that a distrubution function is

uniquely determined by its charateristic function ([8], p.50).

Let F, F1, Fo, F3,..., be bounded non-decreasing functions. A sequence

(Fp) converges weakly to F if

(i) for every continuity point x of F, Fy(x)— F(x), and
(i) Fp(2oo }—> F(dw0).

We will write

T N

if (Fy, ) converges weakly to F. Note that the weak limit of the sequence (Fp),
if it exists, is unique. In the following theorems we state some facts of weak

convergence which be used in our work.

Theorem 1.2.10 (Helly's Theorem, [9], P.133) Let (Fp) be a sequénce of

uniformly bounded, non-decreasing, right-continuous functions. Then (Fp)
contains a subsequence which converges weakly to a bounded, non-decreasing,

right-continuous function.

Let M be the set of bounded, non-decre'asing, right-continuous functions
M from R into [0,00) which vanish at -oo. The function L defined for any
Mj, Maell by
L(M1,Mp) = ;gf;) {hM(x-h)-h < M3(x) < Mj(x+h)+h for every x}

4

is complete metric on . ([8],p.39)

In the following corollary, it follows frem Theorem 1.2.10 and the fact that

the elements in NN vanish at -0Q
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- Corollary 1.2.11 Let (My,) be a uniformly bounded sequence of elements in M .

Then it contains a subsequence which converges weakly to an element inl| .

Theorem 1.2.12 ([8], p-39) Let M, M}, Mp, M3,..., be elements of IN .

Then the following statements are equivalent.
i) Mp——M.

(i) For every bounded continuous function g on R,

[ 8)aMp(x) — [26)IM),

«00 . =00

(iii) L(Mp,M) — 0.

In the following, we summarize facts concerning weak convergence of

distribution functions needed in our work.

Theorem 1.2.13 ([13], p-15) Let (Fp) and ( ¢ ) be sequences of distribution
functions and their characteristic functions. Let F be a distribution function
with the characteristic function ¢. If F, —— F, then (¢p) converges to ¢

uniformly in an arbitrary finite interval.

Theorem1.2.14 ([13], p.15) Let (Fp) and ( ¢@p) be sequences of distribution

functions and their characteristic functions. Let ¢ be a complex-valued
function which is continuous at 0. If (¢) converges to ¢ for every t, then there
exists a distribution function F such that F,—*—F and the characteristic

function of F is ¢.

1.3) Infinitely Divisible Distribution Functions.



11

A distibution function F with the characternistic function ¢ is said to be

infinitely divisible if for every natural number n, there exists a characteristic

functions ¢p such that for every t,
¢ = {en(M}™
The characteristic function of any infintely divisible distribution function is

also said to be_infinitely divisible. A random variable is said to be infinitely

divisible if its distribution function is infinitely divisible.

Theorem 1.3.1 ([7], p-305) If @ is an infinitely divisible characteristic

function, then for every t, ¢(t) # 0.

Proposition 1.3.2 ([11], p.81) If ¢ is an infinitely divisible characteristic

function, then |@|2 is also infinitely divisible characteristic function.

Theorem 1.3.3 ([7], p.307) In order that a disbribution function F with finite

variance is infinitely divisible it is necessary and sufficient that there exist the
constant p and a non-decreasing function of bounded variation K such that the

logarithm of its characteristic function ¢ is given by

[0 o]
1) Loge() = ipt+ [ f(t,x)d K(x),
where id
f .
@™X-1-ix)~  ifx=0,
- X.'
f(tx) =4
-+ ifx = 0.
2
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In the sequel, f(t,x) always denote this function. The formula (1) is known as

Kolmogorov formula.

Theorem 1.3.4 ([9], p.246) For each iﬁfmitely divisible distri bution function,

the function K in Theorem 1.3.2 can be chosen to be right-continuous and

K(-o0) = 0. The function K in this theorem is unique.

Throughout this work, we assume that the function K in Kolmogorov

formula has properties in the Theorem 1.3.4.

Theorem 1.3.5 ([8],p.85) -Let X be an infinitely divisible random variable with
finite variance. Let the constant p and the function K be given in the
Kolmogorov formula of the characteristic function of X. Then

(1) EX]=n

(11) var(X) = K(+00).

Theorem 1.3.6 ([11],p.81) The product of a finite number of inﬁnitély divisible

characteristic functions is infinitely divisible.

Theorem 1.3.7 ([11],p.82) A characteristic function which is the limit of a

sequence of infinitely divisible characteristic functions is infinitely divisible.

1.4 Kolmogorov Theorems.

In this section, we let (an) be a double sequence of random variables

with finite variances. Here, we assume that j=1,2,3,...,jp,n=1,2,3,....

For each n and j, we let py;, °%1j and Fp;j be the expectation, variance and

distrubution function of Xp; respectively. |
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In [8], Kolmogorov gives a necessary and sufficient condition for weak
convergence of the disbribution functions of the sums
Sn=Xn1+Xp2 t+...t Xnj, - Ap
where (Ap) is a sequence of real numbers. There are two important
convergence theorems (Theorem 1.4.1 and Theorem 1.4.2). In the first
theorem (an) must satisfy the following conditions .
(@) (Xpj- Hnj) is infinitesimal, i.e., for every €>0
sup  P(IX pj - Hpjl2¢) = 0.
1<j<jn

(B)  There exists a real number ¢ such that

el

In order to prove the first theorem, Kolmogorov defines the accompanying

distribution function of the sums

Sn = Xn1+ an s ann' An.

to be the distribution function whose légarithm of its characteristic function
is given by
-n jn

j =
Logyn(®) =-iAnt +it 3 pyjt 2 [(elX -1)dFpi(xtin).
j=1 )

j= =12

Theorem 1.4.1 ([8], p.18) Assume that (an) satisfies the conditions (o), (B)

and for eachn, X 1, Xp2, ... » Xnj, are independent. Then there exists a

sequence (Ap) of real numbers such that the distribution functions of the sums

Sn = an+ Xn2+...+ ann’An
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“converge weakly to a limit distribution function if and only if the
. accompanying distribution functions of S, converge weakly to the same limit

distribution function.

Theorem 1.4.2 ([8], p.100) Assume that (Xp;) satisfy the condition (c) and for

eachn, X 1,Xp2 5 --- »Xnj_ are independent. Then there exists a sequence (Ap)
nl-4n2 i P q n

of real numbers such that

(1) the distribution functions of the sums
Sn = X n]+ Xn2 OF Y s ann" An

converge weakly to a limit distribution function F whose variance is o2, and |
(1) 2.

if and only if there exists a function K in Il such that
(1) K jn(u) — K(u), for every continuity point u of K, and
(ii) Kj, (+) = K(+o)

where

. s dhsh
an(u) b I x2 dFp;j(x+pp;).
fila

o0

The constants A, may be chosen aécording to the formula

where p is any real number. Logarithm of the characteristic function of thé

limit distribution function is given by

Logp(t) = ipt+ j f(t,x)d K(x).

<0



	Chapter I Preliminaries

