

#### CHAPTER I PRELIMINARIES

### 1.1 Random Variables and Various Modes of Convergence

A <u>probability space</u> is a measure space  $(\Omega, \emptyset, P)$  in which P is a positive measure such that  $P(\Omega) = 1$ . The set  $\Omega$  will be referred to as a <u>sample</u> <u>space</u>. The elements of  $\Omega$  are called <u>events</u>. For any event A, the value P(A) is called the <u>probability of A</u>.

A function X from a probability space  $(\Omega, \emptyset, P)$  to the set of complex numbers  $\mathbb C$  is said to be a <u>complex-valued random variable</u> if for every Borel set B in  $\mathbb C$ ,  $X^{-1}[B]$  belongs to  $\mathbb C$ . In the case that X is real-valued, we say that it is a real-valued random variable, or simply a <u>random variable</u>. We note that the composition between a Borel function and a complex-valued random variable is also a complex-valued random variable.

We will use the notations  $P(X \le x)$ ,  $P(X \ge x)$  and  $P(|X| \ge x)$  to denote  $P(\{\omega | X(\omega) \le x\})$ ,  $P(\{\omega | X(\omega) \ge x\})$  and  $P(\{\omega | |X(\omega)| \ge x\})$  respectively.

We define the expectation of a complex-valued random variable X to be

$$\int X dP$$

provided that the integral  $\int X dP$  exists. It will be denoted by E[X].

Proposition 1.1.1 ([3], p.174) Let  $X_1$ ,  $X_2$ ,  $X_3$ ,...,  $X_n$  be random variables. Then

$$E[X_1 + X_2 + ... + X_n] = \sum_{j=1}^n E[X_j],$$

provided that the sums on the right hand side is meaningful.

Let  $(\Omega, \mathcal{O}, \mu)$  be a measure space and  $\mathcal{Y}$  be a topological space. Let  $X_1, X_2, X_3, ..., X_n$  be measurable functions from  $\Omega$  to  $\mathcal{Y}$ . We will write

$$X_n \longrightarrow X$$
 a.e.  $[\mu]$ 

if  $(X_n)$  converges to X almost everywhere with respect to  $\mu$ . In the case  $\Omega = \mathbb{R}^{(k)}$  and  $\mu$  is the Lebesgue measure, we simply write

$$X_n \longrightarrow X$$
 a.e..

From now on, we shall assume that all our complex-valued random variables, including real-valued random variables, are defined on a common probability space ( $\Omega, \mathcal{O}, P$ ).

A sequence  $(X_n)$  of complex-valued random variables <u>converges</u> in <u>probability</u> to a complex-valued random variable X if  $(X_n)$  converges in measure to X. In this case we write

$$X_n \xrightarrow{P} X$$
.

In the case that E[|X|] and  $E[|X_n|]$ , n = 1, 2, 3,..., are finite. We say that  $(X_n)$  converges in the mean to X and write

$$X_n \xrightarrow{m} X$$

if  $E[|X_n - X|] \rightarrow 0$ .

The following theorems are known properties of convergence in probability and convergence in the mean.

Theorem 1.1.2. ([9], P.63) Let  $X, X_1, X_2, X_3, ...$ , be complex-valued random variables.

- (i)  $X_n \xrightarrow{P} X$  if and only if for every subsequence  $(X_{n_k})$  of  $(X_n)$  contains a subsequence  $(X_{n_{k_r}})$  such that  $X_{n_{k_r}} \to X$  a.e.[P].
  - (ii) If  $X_n \xrightarrow{P} X$  and  $g : \mathbb{C} \to \mathbb{C}$  is continuous, then  $g(X_n) \xrightarrow{P} g(X)$ .

Theorem 1.1.3. ([12], P.201) Let  $X, X_1, X_2, X_3, ...,$  and  $Y, Y_1, Y_2, Y_3, ...,$  be complex-valued random variables. If  $X_n \xrightarrow{P} X$  and  $Y_n \xrightarrow{P} Y$  then  $X_n + Y_n \xrightarrow{P} X + Y$ .

Theorem 1.1.4. ([9], P.46) Let X, Y, X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, ..., be complex-valued random variables.

- (i) If  $X_n \xrightarrow{P} X$  and  $X_n \xrightarrow{P} Y$ , then X = Y a.e. [P].
- (ii) If  $X_n \xrightarrow{P} X$ , then for every subsequence  $(X_{n_k})$  of  $(X_n)$   $X_{n_k} \xrightarrow{P} X$ .

Theorem 1.1.5. ([9], P.49) Let X, X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>, ..., be complex-valued random variables.

- (i) If  $X_n \xrightarrow{m} X$  then  $X_n \xrightarrow{P} X$ .
- (ii) If  $X_n \xrightarrow{P} X$  and there exists a complex-valued random variable Y such that  $E[|Y|] < \infty$  and for each n,  $|X_n| \le |Y|$  a.e. [P] then  $X_n \xrightarrow{m} X$ .

# 1.2 Distribution Functions and Characteristic Functions.

A function F from R to R is said to be a <u>distribution function</u> if it is non-decreasing, right-continuous,  $F(-\infty) = 0$  and  $F(+\infty) = 1$ .

For any random variable X, the function  $F : \mathbb{R} \to \mathbb{R}$  defined by  $F(x) = P(X \le x)$ 

is a distribution function. It is the <u>distribution function of the random variable</u> X.

Theorem 1.2.1 ([3], p.57) In order that a function F is a distribution function of a random variable it is necessary and sufficient that F is non-decreasing, right-continuous,  $F(-\infty) = 0$  and  $F(+\infty) = 1$ .

<u>Proposition 1.2.2</u> ([9], p.28) Let X be a random variable with the distribution function F. If E[X] exists, then

$$E[X] = \int_{-\infty}^{\infty} x dF(x).$$

The expectation of a random variable X is also known as the <u>mean</u>. The expectation of  $(X - E[X])^2$  is known as the <u>variance</u> of X and it denoted by  $\sigma^2(X)$ . Note that mean or variance of a random variable may be infinite.

Let F be a distribution function. The function  $\varphi : \mathbb{R} \to \mathbb{C}$  defined by

$$\varphi(t) = \int_{-\infty}^{\infty} e^{itx} dF(x)$$

is called the characteristic function of the distribution function F. If F is the distribution function of a random variable X, then  $\phi$  is also called the characteristic function of X.

Proposition 1.2.3 ([8], p.45) For any characteristic function φ, we have

- (i)  $\varphi(0) = 1$
- (ii)  $|\varphi(t)| \le 1$  for every t
- (iii) φ is uniformly continuous on R.

Proposition 1.2.4 ([11], p.45)

- (i) The product of two characteristic functions is a characteristic function.
- (ii) If  $\phi$  is a characteristic function, then  $|\phi|^2$  is also a characteristic function.

Theorem 1.2.5 (Bochner's Theorem, [11], p.62) A function  $\varphi:\mathbb{R} \to \mathbb{C}$  is a characteristic function if and only if the following hold.

- (i)  $\varphi(0) = 1$
- (ii) φ is continuous
- (iii) for any positive integer m, the sum

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \phi(t_i - t_j) c_i c_j$$

is real and non-negative for any real numbers  $t_1$ ,  $t_2$ ...,  $t_m$  and any complex numbers  $c_1$ ,  $c_2$ ,...,  $c_m$ .

<u>Proposition 1.2.6</u> ([6], p.477) Let  $(F_n)$  be a sequence of distribution functions and let  $(\phi_n)$  be a sequence of corresponding characteristic functions. Let  $(p_n)$  be a sequence of non-negative numbers such that

$$\sum_{k=1}^{\infty} p_k = 1.$$
 Then the function

$$F(x) = \sum_{k=1}^{\infty} p_k F_k(x)$$

is a distribution function and the function

$$\varphi(t) = \sum_{k=1}^{\infty} p_k \varphi_k(t)$$

is the characteristic function of F.

Any random variables  $X_1, X_2, X_3, ..., X_n$  are called independent if

$$P(\bigcap_{j=1}^{n} \{\omega | X_{j}(\omega) \le x_{j}\}) = \prod_{j=1}^{n} P(X_{j} \le x_{j})$$

holds for every real numbers  $x_1, x_2, ..., x_n$ .

A sequence of random variables  $(X_n)$  is said to be a <u>sequence of independent random variables</u> if  $X_{i_1}, X_{i_2}, X_{i_3}, ..., X_{i_n}$  are independent for all distinct  $i_1, i_2, i_3, ..., i_n$ .

Theorem 1.2.7. ([3], p.188,191) Let  $X_1$ ,  $X_2$ ,  $X_3$ ,...,  $X_n$  be random variables with the characteristic functions  $\varphi_1$ ,  $\varphi_2$ ,  $\varphi_3$ ,...,  $\varphi_n$  respectively. Assume that  $X_1$ ,  $X_2$ ,  $X_3$ ,...,  $X_n$  are independent. Let

$$Y_n = X_1 + X_2 + X_3 + ... + X_n.$$

Then the following hold.

(i) The characteristic function  $\varphi$  of  $Y_n$  is given by  $\varphi(t) = \varphi_1(t).\varphi_2(t).\varphi_3(t)....\varphi_n(t).$ 

(ii) 
$$\sigma^2(Y_n) = \sigma^2(X_1) + \sigma^2(X_2) + \sigma^2(X_3) ... + \sigma^2(X_n).$$

Theorem 1.2.8. ([8], P.48) Let F be a distribution function and  $\varphi$  be its characteristic function. If  $x_1$  and  $x_2$  are continuity points of F, then

$$F(x_2) - F(x_1) = \frac{1}{2\pi} \lim_{c \to \infty} \int_{e^{-c}}^{c} (\frac{e^{-itx_1} - e^{-itx_2}}{it}) \phi(t) dt.$$

Remark 1.2.9 It follows from the above theorem that a distrubution function is uniquely determined by its charateristic function ([8], p.50).

Let F, F<sub>1</sub>, F<sub>2</sub>, F<sub>3</sub>,..., be bounded non-decreasing functions. A sequence (F<sub>n</sub>) converges weakly to F if

- (i) for every continuity point x of F,  $F_n(x) \rightarrow F(x)$ , and
- (ii)  $F_n(\pm \infty) \longrightarrow F(\pm \infty)$ .

We will write

$$F_n \xrightarrow{w} F$$

if  $(F_n)$  converges weakly to F. Note that the weak limit of the sequence  $(F_n)$ , if it exists, is unique. In the following theorems we state some facts of weak convergence which be used in our work.

Theorem 1.2.10 (Helly's Theorem, [9], P.133) Let  $(F_n)$  be a sequence of uniformly bounded, non-decreasing, right-continuous functions. Then  $(F_n)$  contains a subsequence which converges weakly to a bounded, non-decreasing, right-continuous function.

Let  $\mathbb{M}$  be the set of bounded, non-decreasing, right-continuous functions  $\mathbb{M}$  from  $\mathbb{R}$  into  $[0,\infty)$  which vanish at  $-\infty$ . The function  $\mathbb{L}$  defined for any  $\mathbb{M}_1, \mathbb{M}_2 \in \mathbb{M}$  by

$$L(M_1, M_2) = \inf_{h \ge 0} \{h | M_1(x-h) - h \le M_2(x) \le M_1(x+h) + h \text{ for every } x\}$$
 is complete metric on  $M$ . ([8],p.39)

In the following corollary, it follows from Theorem 1.2.10 and the fact that the elements in M vanish at -\infty.

Corollary 1.2.11 Let  $(M_n)$  be a uniformly bounded sequence of elements in  $\mathbb M$ . Then it contains a subsequence which converges weakly to an element in  $\mathbb M$ .

Theorem 1.2.12 ([8], p.39) Let M,  $M_1$ ,  $M_2$ ,  $M_3$ ,..., be elements of  $\mathbb{M}$ . Then the following statements are equivalent.

- (i)  $M_n \xrightarrow{w} M$ .
- (ii) For every bounded continuous function g on R,

$$\int_{-\infty}^{\infty} g(x) dM_{\mathbf{n}}(x) \longrightarrow \int_{-\infty}^{\infty} g(x) dM(x),$$

(iii) 
$$L(M_n, M) \rightarrow 0$$
.

In the following, we summarize facts concerning weak convergence of distribution functions needed in our work.

Theorem 1.2.13 ([13], p.15) Let  $(F_n)$  and  $(\phi_n)$  be sequences of distribution functions and their characteristic functions. Let F be a distribution function with the characteristic function  $\phi$ . If  $F_n \xrightarrow{w} F$ , then  $(\phi_n)$  converges to  $\phi$  uniformly in an arbitrary finite interval.

Theorem 1.2.14 ([13], p.15) Let  $(F_n)$  and  $(\varphi_n)$  be sequences of distribution functions and their characteristic functions. Let  $\varphi$  be a complex-valued function which is continuous at 0. If  $(\varphi_n)$  converges to  $\varphi$  for every t, then there exists a distribution function F such that  $F_n \xrightarrow{w} F$  and the characteristic function of F is  $\varphi$ .

# 1.3) Infinitely Divisible Distribution Functions.

A disl ribution function F with the characteristic function  $\phi$  is said to be infinitely divisible if for every natural number n, there exists a characteristic functions  $\phi_n$  such that for every t,

$$\varphi(t) = \{\varphi_n(t)\}^n.$$

The characteristic function of any infintely divisible distribution function is also said to be <u>infinitely divisible</u>. A random variable is said to be <u>infinitely divisible</u> if its distribution function is infinitely divisible.

Theorem 1.3.1 ([7], p.305) If  $\varphi$  is an infinitely divisible characteristic function, then for every t,  $\varphi(t) \neq 0$ .

Proposition 1.3.2 ([11], p.81) If  $\varphi$  is an infinitely divisible characteristic function, then  $|\varphi|^2$  is also infinitely divisible characteristic function.

Theorem 1.3.3 ([7], p.307) In order that a disbribution function F with finite variance is infinitely divisible it is necessary and sufficient that there exist the constant  $\mu$  and a non-decreasing function of bounded variation K such that the logarithm of its characteristic function  $\phi$  is given by

(1) 
$$\operatorname{Log}\varphi(t) = i\mu t + \int_{-\infty}^{\infty} f(t,x) d K(x),$$
 where

$$f(t,x) = \begin{cases} (e^{itx} - 1 - itx)\frac{1}{x^2} & \text{if } x \neq 0, \\ \\ -\frac{t^2}{2} & \text{if } x = 0. \end{cases}$$

In the sequel, f(t,x) always denote this function. The formula (1) is known as Kolmogorov formula.

Theorem 1.3.4 ([9], p.246) For each infinitely divisible distribution function, the function K in Theorem 1.3.2 can be chosen to be right-continuous and  $K(-\infty) = 0$ . The function K in this theorem is unique.

Throughout this work, we assume that the function K in Kolmogorov formula has properties in the Theorem 1.3.4.

Theorem 1.3.5 ([8],p.85) Let X be an infinitely divisible random variable with finite variance. Let the constant μ and the function K be given in the Kolmogorov formula of the characteristic function of X. Then

- (i)  $E[X] = \mu$
- (ii)  $var(X) = K(+\infty)$ .

Theorem 1.3.6 ([11],p.81) The product of a finite number of infinitely divisible characteristic functions is infinitely divisible.

Theorem 1.3.7 ([11],p.82) A characteristic function which is the limit of a sequence of infinitely divisible characteristic functions is infinitely divisible.

# 1.4 Kolmogorov Theorems.

In this section, we let  $(X_{nj})$  be a double sequence of random variables with finite variances. Here, we assume that  $j=1,2,3,...,j_n, n=1,2,3,...$  For each n and j, we let  $\mu_{nj},\sigma_{nj}^2$  and  $F_{nj}$  be the expectation, variance and distrubution function of  $X_{nj}$  respectively.

In [8], Kolmogorov gives a necessary and sufficient condition for weak convergence of the disbribution functions of the sums

$$S_n = X_{n1} + X_{n2} + ... + X_{nj_n} - A_n$$

where  $(A_n)$  is a sequence of real numbers. There are two important convergence theorems (Theorem 1.4.1 and Theorem 1.4.2). In the first theorem  $(X_{nj})$  must satisfy the following conditions.

(a)  $(X_{nj} - \mu_{nj})$  is infinitesimal, i.e., for every  $\epsilon > 0$ 

$$\sup_{1 \le j \le j_n} P(|X_{nj} - \mu_{nj}| \ge \epsilon) \to 0.$$

(β) There exists a real number c such that

$$\sum_{j=1}^{j_n} \sigma_{nj}^2 < c.$$

In order to prove the first theorem, Kolmogorov defines the <u>accompanying</u> distribution function of the sums

$$S_n = X_{n1} + X_{n2} + ... + X_{nj_n} - A_n.$$

to be the distribution function whose logarithm of its characteristic function is given by

$$\text{Log}\psi_n(t) = -iA_nt + it \sum_{j=1}^{j_n} \mu_{n,j} + \sum_{j=1-\infty}^{j_n} \int_{-\infty}^{\infty} (e^{itx} - 1)dF_{n,j}(x + \mu_{n,j}).$$

Theorem 1.4.1 ([8], p.18) Assume that  $(X_{nj})$  satisfies the conditions  $(\alpha)$ ,  $(\beta)$  and for each n,  $X_{n1}$ ,  $X_{n2}$ , ...,  $X_{nj}$  are independent. Then there exists a sequence  $(A_n)$  of real numbers such that the distribution functions of the sums  $S_n = X_{n1} + X_{n2} + ... + X_{nj} - A_n$ 

converge weakly to a limit distribution function if and only if the accompanying distribution functions of  $S_n$  converge weakly to the same limit distribution function.

Theorem 1.4.2 ([8], p.100) Assume that  $(X_{nj})$  satisfy the condition  $(\alpha)$  and for each n,  $X_{n1}, X_{n2}, \dots, X_{nj_n}$  are independent. Then there exists a sequence  $(A_n)$  of real numbers such that

(i) the distribution functions of the sums

$$S_n = X_{n1} + X_{n2} + ... + X_{nj_n} - A_n$$

converge weakly to a limit distribution function F whose variance is  $\sigma^2$ , and

(ii) 
$$\sum_{j=1}^{j_n} \sigma_{nj}^2 \to \sigma^2,$$

if and only if there exists a function K in M such that

(i')  $K_{j_n}(u) \rightarrow K(u)$ , for every continuity point u of K, and

(ii') 
$$K_{j_n}(+\infty) \rightarrow K(+\infty)$$
 where

$$K_{j_n}(u) = \sum_{j=1}^{j_n} \int_{-\infty}^{u} x^2 dF_{nj}(x+\mu_{nj}).$$

The constants A<sub>n</sub> may be chosen according to the formula

$$A_n = \sum_{i=1}^{j_n} \mu_{nj} - \mu$$

where  $\mu$  is any real number. Logarithm of the characteristic function of the limit distribution function is given by

Log
$$\varphi(t) = i\mu t + \int_{-\infty}^{\infty} f(t,x) dK(x).$$