ความคงตัวของเตตานัสทอกซอยด์ไมโครแคปซูล

นางสาว กฤษณา เศรษฐปิยานนท์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต ภาควิชาเภสัชกรรม บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2538

> ISBN 974-631-495-5 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

STABILITY OF TETANUS TOXOID MICROCAPSULES

MISS. KRISANA SETHPIYANON

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Pharmacy

Department of Pharmacy

Graduate School

Chulalongkorn University

1995

ISBN 974-631-495-5

Copyright of the Graduate School, Chulalongkorn University

Thesis Title :

Stability of tetanus toxoid microcapsules.

Ву :

Miss Krisana Sethpiyanon

Department:

Pharmacy

Thesis Advisor:

Associate Professor Ubonthip Nimmannit, Ph.D.

Thesis Co-Advisor

Associate Professor Vimolmas Lipipun, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

Sant Throngsusan

Dean of Graduate School

(Associate Professor Santi Thoongsuwan, Ph.D.)

Thesis Committee:

Prapapuck Bilaparhtechairman

(Associate Professor Phrapapak Silpachote)

Whenthip Nimmannit Thesis Advisor

(Associate Professor Ubonthip Nimmannit, Ph.D.)

Vimolmas Lipipun Thesis Co-Advisor

(Associate Professor Vimolmas Lipipun, Ph.D.)

Dampind C. Rittle Ly Member

(Associate Professor Garnpimol C. Ritthidej, Ph.D.)

(Parkpoom Tengamnuay, Ph.D.)

Parlyoom lay Member

พิมพ์ตันฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

กฤษณา เศรษฐปิยานนท์ : ความคงตัวของเตตานัสทอกซอยด์ไมโครแคปซูล (STABILITY OF TETANUS TOXOID MICROCAPSULES) อ.ที่ปรึกษา : รศ.ดร.อุบลทิพย์ นิมมานนิตย์, อ.ที่ปรึกษาร่วม : รศ.ดร.วิมลมาศ ลิปีพันธ์, 255 หน้า. ISBN 974-631-495-5

เตตานัสทอกชอยด์ไมโครแคปซูลชนิดออกฤทธิ์นาน เตรียมโดยวิธีอินเตอร์เฟเชียลเดโพชิชั่น โดยมีเลซิทินบริสุทธิ์จากไข่แดงเป็นส่วนของผนังเมมเบรนและคาร์บอกซีเมทิลไคติน ช่วยเพิ่มความคงตัว ของยาเตรียม ไมโครแคปซูลที่เตรียมขึ้นถูกแยกและรวบรวมโดยใช้เทคนิคของแรงหมุนเหวี่ยงความเร็วสูง ที่ 15000 รอบต่อนาที

ประสิทธิภาพความแรงของเตตานัสทอกซอยด์ (TT), เตตานัสทอกซอยด์ไมโครแคปซูล (TTM) และส่วนผสมของเตตานัสทอกซอยด์ กับเตตานัสทอกซอยด์ไมโครแคปซูล (TT+TTM) พบว่ายาเตรียม TT, TTM และ TT+TTM สามารถป้องกันหนูจาก เตตานัสทอกซิน ได้ระหว่างวันที่ 7 ถึง 15 วันที่ 15 ถึง 180 และวันที่ 7 ถึง 180 ตามลำดับ ยาเตรียม TT+TTM สามารถป้องกันหนูได้ตั้งแต่วันที่ 7 ถึง 180 ซึ่งให้ผลการป้องกันหนูได้ดีที่สุด เมื่อเทียบกับ TT

การเปรียบเทียบความแรงในการทดสอบความคงตัวของยาเตรียมเตตานัสทอกซอยด์ เมื่อ เก็บยาเตรียมทุกชนิดที่ 4 องศาเซลเซียส เวลา 0, 3, 6 และ 9 เดือน พบวายาเตรียมทุกตัวมี ความแรงเท่ากัน ดังนั้นยาเตรียมทุกตัวมีความคงตัวในช่วงเวลาที่ทดสอบ

การหาระดับภูมิคุ้มกันในหนูถีบจักร โดยวิธีอีไลซ่า (ELISA) พบว่า TT, TTM และ TT+TTM กระตุ้นหนูให้สร้างแอนติบอดีไตเตอร์สูงเกินกว่า 50 ระหว่างวันที่ 7 ถึง 90, 15 และ 180 และวันที่ 7 ถึง 180 ตามลำดับ เมื่อแอนติบอดีไตเตอร์เท่ากับ 1250 จะให้ผลในการป้องกันหนูจากเตตานัส-ทอกซินได้ 100%

การทดสอบความคงตัวของยาเตรียมเตตานัสทอกชอยด์ โดยตรวจหาระดับแอนติบอดี ไตเตอร์ในหนูถีบจักร พบว่ายาเตรียมทุกตัวมีความคงตัว และให้ระดับแอนติบอดีไตเตอร์เท่ากัน ในช่วง ระยะเวลาทดสอบ 9 เดือน

	٩
ภาควิชา เภสัชกรรม	ลายมือชื่อนิสิต กฤษณา เศรษฐปิ
77111 0 D 1	ลายมือชื่ออาจารย์ที่ปรึกษา
สาขาวิชาเภสัชกรรม	
ปีการศึกษา2537	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

C575035 : MAJOR PHARMACEUTICS

KEY WORD: ELISA/ MICROCAPSULES/ TETANUS TOXOID/ STABILITY

KRISANA SETHPIYANON: STABILITY OF TETANUS TOXOID MICROCAPSULES.

THESIS ADVISOR: ASSO. PROF. UBONTHIP NIMMANNIT, Ph.D., THESIS COADVISOR: ASSO. PROF. VIMOLMAS LIPIPUN, Ph.D. 255 pp. ISBN
974-631-495-5

Long acting tetanus toxoid microcapsules were prepared by interfacial deposition technique. Purified egg yolk lecithin and carboxymethylchitin were used as a polymeric membrane and a stabilizer respectively. Tetanus toxoid microcapsules were collected by centrifugation at 15000 rpm.

The potency of tetanus toxoid (TT), tetanus toxoid microcapsules (TTM) and the mixture of them (TT+TTM) showed that TT, TTM and TT+TTM could protect mice from challenging with tetanus toxin during day 7-90, day 15-180 and day 7-180 respectively. TT+TTM could protect mice from day 7 until 180. It gave the best protection when compared with TT.

To compare the potency in the stability testing for TT, TTM and TT+TTM stored at 4° C for 0, 3, 6 and 9 months. They showed the same potency. All of tetanus toxoid preparations were stable until 9 months.

The antibody titers of sera from mice immunized with tetanus toxoid preparation were determined by ELISA. The antibody titers were higher than 50 for TT, TTM and TT+TTM group during day 7-90, day 15-180 and day 7-180 respectively. The antibody titer of serum of 1250 gave 100% protection in mice from challenging with tetanus toxin.

Stability test of tetanus toxoid preparations were evaluated by the antibody titer of serum. All of tetanus toxoid preparations were stable and gave the same results of antibody titers until 9 months.

ภาควิชาเภสัชกรรม	ลายมือชื่อนิสิต กฤบณา เศรบรูปิงนนท์
	ลายมือชื่ออาจารย์ที่ปรึกษา 🔍 คพิพิปาทางโพ
<u>ปีการศึกษา2537</u>	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม วีมอเกอ คิมัพันธ์

This thesis would have never been succeeded without the assistance of several people. For their suggestions, helps and supports I will always be grateful.

I would like to express my sincere thanks and gratitude to my thesis advisor, Associate Professor Dr. Ubonthip Nimmannit and my thesis co-advisor, Associate Professor Dr. Vimolmas Lipipun. They have freely given their time and effort to assist me throughout this thesis. Their valuable advices, patience, kindness, guidance, encouragement and understanding are also deeply appreciated.

A special thanks is extended to Mr.Thamnu Chantorn for providing the tetanus toxoid and permission in using the laboratory section of The Government Pharmaceutical Organization, Biological Division for this experiment.

Grateful appreciation is also expressed to all staffs in the Department of Pharmacy, Department of Microbiology of Chulalongkorn University, Science Division of the Thai Red Cross Society, and Biological Division of the Government Pharmaceutical Organization, for their assistance.

Sincere thanks are expressed to my friends for their assistances and encouragements. Their friendships were continued source of strength to me.

Above all, I would like to express my infinite thanks and deepest gratitude to my family, especially, my parents and Dr.Samart Yimsiri for giving me so much in the way of educational opportunity, inspiration, love, warmly care, help, understanding and great encouragement.

Finally, I would like to express my thanks to all of those whose name have not been mentioned and to those who in one way or another have helped to make this thesis a reality.

Thank you for all.

CONTENTS

		Page
ABSTRA	CT (THAI)	IV
ABSTRA	CT (ENGLISH)	V
ACKNOV	WLEDGEMENTS	VI
CONTEN	NTS	VII
LIST OF	TABLES	VIII
LIST OF	FIGURES	XVII
LIST OF	ABBREVIATIONS	XX
CHAPTE	R	
1	INTRODUCTION	1
11	MATERIALS AND METHODS	30
111	RESULTS AND DISCUSSION	42
IV	CONCLUSIONS	109
REFERE	NCES	112
APPEND	DICES	117
VITA		255

LIST OF TABLES

Table			Page
Table	1	The cumulative percentage undersized distribution of	
		tetanus toxoid microcapsules that obtained from 15,000 rpm	
		centrifugation	50
Table	2	Number of survived mice and determination of $\mathrm{LD}_{\mathrm{50/ml}}$ of	
		tetanus toxin	54
Table	3	Number of survived mice which were immunized with	
		tetanus toxoid preparations stored for 0 month	59
Table	4	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in number of survived mice	
		during day 0 and 180	61
Table	5	Number of survived mice which were immunized with	
		tetanus toxoid preparations stored for 3 months	62
Table	6	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in number of survived mice	
		during day 0 and 180	64
Table	7	Number of survived mice which were immunized with	
		tetanus toxoid preparations stored for 6 months	65
Table	8	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in number of survived mice	
		during day 0 and 180	67
Table	9	Number of survived mice which were immunized with	
		totanus toxoid preparations stored for 9 months	68

		F	Page
Table	10	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in number of survived mice	
		during day 0 and 180	70
Гablе	11	Number of survived mice which were immunized with	
		tetanus toxoid stored for 0, 3, 6 and 9 months	73
Table	12	Pairs of each time period (A,B,C) that was significantly different	
		in number of survived mice during day 0 and 180	75
Table	13	Number of survived mice which were immunized with	
		tetanus toxoid microcapsules stored for 0, 3, 6 and 9 months	77
Table	14	Pairs of each time period (A) that was significantly different in	
		number of survived mice during day 0 and 180	79
Table	15	Number of survived mice which were immunized with	
		mixture of tetanus toxoid and tetanus toxoid microcapsules	
		ratio 1:1 stored for 0, 3, 6 and 9 months	81
Table	16	Pairs of each time period (A) that was significantly different in	
		number of survived mice during day 0 and 180	83
Table	17	The antibody titers of serum from mice immunized with	
		tetanus toxoid preparation stored for 0 month	86
Table	18	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in antibody titers of mouse	
		anti - tetanus serum during day 0 and 180	88
Table	19	The antibody titers of serum from mice immunized with	

Table	20	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in antibody titers of mouse	
		anti - tetanus serum during day 0 and 180	91
Table	21	The antibody titers of serum from mice immunized with	
		tetanus toxoid preparation stored for 6 months	92
Table	22	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in antibody titers of mouse	
		anti - tetanus serum during day 0 and 180	94
Table	23	The antibody titers of serum from mice immunized with	
		tetanus toxoid preparation stored for 9 months	95
Table	24	Pairs of each time period (A) and tetanus toxoid preparations (B)	
		that were significantly different in antibody titers of mouse	
		anti - tetanus serum during day 0 and 180	97
Table	25	The antibody titers of serum from mice immunized with	
		tetanus toxoid stored for 0, 3, 6 and 9 months	99
Table	26	The antibody titers of serum from mice immunized with	
		tetanus toxoid microcapsules stored for 0, 3, 6 and 9 months	102
Table	27	The antibody titers of serum from mice immunized with	
		tetanus toxoid and tetanus toxoid microcapsules ratio 1:1	
		stored for 0, 3, 6 and 9 months	105
Table	28	Contingency table of survived mice during day 0 and 15	120
Table	29	ANOVA table of survived mice during day 0 and 15	123
Table	30	Contingency table of survived mice during day 30 and 75	125
Table	31	ANOVA table of survived mice during day 30 and 75	126
Table	32	Contingency table of survived mice during day 90 and 180	127

			Page
Table	33	ANOVA table of survived mice during day 90 and 180	128
Table	34	Contingency table of survived mice during day 0 and 15	130
Table	35	ANOVA table of survived mice during day 0 and 15	131
Table	36	Contingency table of survived mice during day 30 and 75	133
Table	37	ANOVA table of survived mice during day 30 and 75	134
Table	38	Contingency table of survived mice during day 90 and 180	135
Table	39	ANOVA table of survived mice during day 90 and 180	136
Table	40	Contingency table of survived mice during day 0 and 15	138
Table	41	ANOVA table of survived mice during day 0 and 15	139
Table	42	Contingency table of survived mice during day 30 and 75	141
Table	43	ANOVA table of survived mice during day 30 and 75	142
Table	44	Contingency table of survived mice during day 90 and 180	143
Table	45	ANOVA table of survived mice during day 90 and 180	144
Table	46	Contingency table of survived mice during day 0 and 15	146
Table	47	ANOVA table of survived mice during day 0 and 15	147
Table	48	Contingency table of survived mice during day 30 and 75	149
Table	49	ANOVA table of survived mice during day 30 and 75	150
Table	50	Contingency table of survived mice during day 90 and 180	151
Table	51	ANOVA table of survived mice during day 90 and 180	152
Table	52	Contingency table of survived mice during day 0 and 15	154
Table	53	ANOVA table of survived mice during day 0 and 15	157
Table	54	Contingency table of survived mice during day 30 and 75	159
Table	55	ANOVA table of survived mice during day 30 and 75	160
Table	56	Contingency table of survived mice during day 90 and 180	162
Table	57	ANOVA table of survived mice during day 90 and 180	163

			Page
Table	58	Contingency table of survived mice during day 0 and 15	165
Table	59	ANOVA table of survived mice during day 0 and 15	166
Table	60	Contingency table of survived mice during day 30 and 75	168
Table	61	ANOVA table of survived mice during day 30 and 75	169
Table	62	Contingency table of survived mice during day 90 and 180	170
Table	63	ANOVA table of survived mice during day 90 and 180	171
Table	64	Contingency table of survived mice during day 0 and 15	172
Table	65	ANOVA table of survived mice during day 0 and 15	173
Table	66	Contingency table of survived mice during day 30 and 75	175
Table	67	ANOVA table of survived mice during day 30 and 75	176
Table	68	Contingency table of survived mice during day 90 and 180	177
Table	69	ANOVA table of survived mice during day 90 and 180	178
Table	70	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	179
Table	71	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	182
Table	72	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	184
Table	73	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	186
Table	74	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	187
Table	75	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	189

			Page
Table	76	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	191
Table	77	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	193
Table	78	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	195
Table	79	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	197
Table	80	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	198
Table	81	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	200
Table	82	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	202
Table	83	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	204
Table	84	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	206
Table	85	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	208
Table	86	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	209
Table	87	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	211

			Page
Table	88	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	213
Table	89	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	215
Table	90	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	217
Table	91	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	219
Table	92	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	220
Table	93	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	222
Table	94	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	224
Table	95	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	226
Table	96	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	227
Table	97	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 75	229
Table	98	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	230
Table	99	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	232

			Page
Table	100	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	233
Table	101	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	235
Table	102	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	236
Table	103	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	238
Table	104	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	239
Table	105	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	241
Table	106	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	242
Table	107	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 0 and 15	244
Table	108	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 30 and 75	245
Table	109		
		serum during day 30 and 75	247
Table	110	Contingency table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	248
Table	111	ANOVA table of antibody titers of mouse anti - tetanus	
		serum during day 90 and 180	250
Table	112	F - Ratio for .05 (Above) and .01 (Below) level of Significance	253

			Page
Table	113	Significant Studentized Ranges for 5% and 1% level New	
		Multiple - Range Test	254

LIST OF FIGURES

Figure			Page
Figure	1	Some typical structure of microcapsules	6
Figure	2	Capsule configurations	7
Figure	3	Schematic representation of microencapsulation of a droplet	
		by interfacial polymerization	14
Figure	4	Direct ELISA for detecting antigen (double antibody sandwich	
		method)	26
Figure	5	Indirect ELISA for detecting specific antibodies (open - faced	
		sandwich method)	27
Figure	6	Chemical structure of carboxymethylchitin	33
Figure	7	Infrared spectra of chitin	45
Figure	8	Infrared spectra of carboxymethylchitin standard	46
Figure	9	Infrared spectra of carboxymethylchitin preparation	47
Figure	10	Structure of lecithin and carboxymethylchitin walled	
		tetanus toxoid microcapsules by interfacial polymerization	
		technique	49
Figure	11	The cumulative percent undersize distribution curves of	
		tetanus toxoid microcapsules	51
Figure	12	Scanning electron micrograph of tetanus toxoid microcapsules	52
Figure	13	Comparison of the number of survived mice in potency	
		testing of TT, TTM and TT+TTM that were stored for	
		0 month	60

		Page
Figure	14	Comparison of the number of survived mice in potency
		testing of TT, TTM and TT+TTM that were stored for
		3 months63
Figure	15	Comparison of the number of survived mice in potency
		testing of TT, TTM and TT+TTM that were stored for
		6 months
Figure	16	Comparison of the number of survived mice in potency
		testing of TT, TTM and TT+TTM that were stored for
		9 months
Figure	17	Comparison of the number of survived mice in stability
		testing of TT that was stored for 0, 3, 6 and 9 months74
Figure	18	Comparison of the number of survived mice in stability
		testing of TTM that was stored for 0, 3, 6 and 9 months78
Figure	19	Comparison of the number of survived mice in stability
		testing of TT+TTM that was stored for 0, 3, 6 and 9 months82
Figure	20	Comparison of the antibody titers of serum from mice
		immunized with various preparations of tetanus toxoid
		that were stored for 0 month87
Figure	21	Comparison of the antibody titers of serum from mice
		immunized with various preparations of tetanus toxoid
		that were stored for 3 months90
Figure	22	Comparison of the antibody titers of serum from mice
		immunized with various preparations of tetanus toxoid
		that were stored for 6 months93

		Page
Figure	23	Comparison of the antibody titers of serum from mice
		immunized with various preparations of tetanus toxoid
		that were stored for 9 months96
Figure	24	Comparison of the antibody titers of serum from mice
		immunized with TT stored for 0, 3, 6 and 9 months100
Figure	25	Comparison of the antibody titers of serum from mice
		immunized with TTM stored for 0, 3, 6 and 9 months103
Figure	26	Comparison of the antibody titers of serum from mice
		immunized with TT+TTM stored for 0, 3, 6 and 9 months106
Figure	27	Correlation of OD determined by ELISA and various
		concentration of human anti - tetanus serum251

LIST OF ABBREVIATIONS

ANOVA = Analysis of variance

C = Degree celcious

cm³ = Cubic centrimeter

ELISA = Enzyme - link immunosorbent assay

g = Gram

hr = hour

I.U. = International Unit

mg = Milligram

min = Minute

ml = Millilitre

mm = Millimetre

no. = Quantity

NS = Non significantly difference

rpm = Revolutions per minute

S = Significantly difference

TT = Tetanus toxoid

TTM = Tetanus toxoid microcapsules

TT+TTM = Tetanus toxoid + Tetanus toxoid microcapsules

 μ I = Microlitre

 μ m = Micrometre

x = mean