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Photocatalytic degradatic tigated in the presence of zinc oxide and

titanium dioxide as photoca ere synthesized via sol-gel method

with an addition of am and 28% by mass. The powder

obtained was characte/™e< o - atalytic degradation of 10 ppm
diuron aqueous sol; vl | Wo-reactor. The solution was

periodically sampled ®lia HPLC. The decrease of total

organic carbon as a - \ % was also observed during the

degradation process? nhltocatalysts increases when the

ammonia content is i cerformance in degradation and

mineralization of diuron of much lower surface area. The

degradation of diuron on oAb 2% 'Whin 6 hours, while that achieved on

titanium dioxide is only 4594 generates several intermediates. The

intermediates species were_i f-'r""-;"?.__.'._ £ soradation of diuron produces different

degradation produ e — #=J h of UV-radiation, and type

of photocatalyst. ¢ F:_ A ed by reactions of hydroxyl

radical attacking to Mieral sics o— re duri the photocatalytic degradation

process.
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CHAPTER I

INTRODUCTION

Chemicals used in agriculture have posed environmental problemsin the present [1]. The
chemicals can contaminate soil and underground water [2]. The most chemicals used in
agriculture are pesticides and herbicides. Diuron is one of the most commonly used herbicides

in Thailand. Diuron is also classified as a harmful chemical [1]. It has effect for human health

Yyiron can be naturally degraded in the

- . é&n [3], the degradation rate is slow.
Diuron can aso be degrad s ¢ LA C (i1 0Cess [2]. The photodegradation

of diuron has often bey i oomsphotocatalysts. Among various
oxide semiconductors, L \\ e have been investigated and

ironmental applications. They

and the equilibrium of ecosystez;

ant via photocatalysis reaction.
They have good physiCa & - , strong oxidizing power [4, 5] and
high photocatalytic activ#§ n : - \ bxic and available at low price.
es [7]. They have the same band
gap energy of 3.2 eV. Yet, tl, — y ytic degradation of zinc oxide and

Titaniaand zi nc, ;,»_ : .‘;d of the popular techniquesis
sol-gel method because =S Wil ty, simplicity and relative mild

conditions of synthea:, [9] Sol-gel process is a route™ generally applied to prepare

:viiokin;:i;%ﬁm ﬁﬁ?jﬂm ﬂg-fgﬁ %crostructure [5]. In this
QRN VTN ATNEAR B e

monitorirgy using different techniques is essential in order to control all transformation steps,

to identify harmful intermediates and to understand and interpret the reaction mechanism. The
assessment of pollutant disappearance in the early steps is not sufficient to ensure the absence
of residual products. The heterogeneous photocatalytic treatment may give rise to a variety of
organic intermediates which can themselves be toxic, and in some cases, more persistent than
the original substrate [10]. Therefore, it is an interest of this research to identify the formation
of intermediates during the photodegradation of diuron.



The objective of this research is to investigate the photocatalytic degradation and the
formation of intermediates during the photodegradation of diuron solution, using zinc oxide
and titanium dioxide as catalyst.

The present thesis is arranged as follows:

Chapter | is the introduction of this work. Chapter 11 describes basic theory about diuron
such as chemical and physical of diuron. Photocatalytic reaction, physical and chemical

properties of zinc oxide and titanium i otocatalytic degradation of diuron are also

described. Furthermore, literatus /“ious works related to this research are
presented in this chapter as i ‘ émental systems and procedures for

the photocatalytic degradati™ ifi- — ——tes products. Chapter 1V presents
the experimental results arz w20 the overall conclusions of this

research.

(7
4
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CHAPTER Il

THEORY AND LITERATURE REVIEWS

2.1 Photocatalysts

Various types of photocatalyst have been investigated as a potential catalyst to degrade

organic matters. Titania and zinc oxi¢ ich are inexpensive and non-toxic, becomes

attractive for this research.

.;\\ :
Titanium dioxiae d Jick or titania, has great potential for

many industrial applic#® ] H;:. wefields of application such as
' : amafilter coating. In recent years,
main attention has ber N ) \ .'""w.\' activity and photoinduced
superhydrophilicity. Since t’ v : N gap (3.2 eV), charge carriers, i.e.

i . Consequently, highly reactive
radicals are generated and ox'at"

on"&F species adsorbed on the surface of

titania can occur. The use of titaczEZ kg4 2 /] iic degradation of organic pollutants has

attracted much attentjo-4 ' b gtaminated waters and soils

[11]. 7 )

..i .
¥ ¥

Titania occurs |n‘nature as well- know minerals rutile, anatase and brookite, and
additionally a iht ﬂﬁylte-llke form and an
orthorhombic ﬂyﬁgj for ﬁe most commonms rutile, which is also the most
stable ﬁ g. Anatase is a
metastzﬁrm% Hﬁoﬁmeﬁﬁﬁmgjﬂ |te it is formed

under hydrothermal conditions and usually found only in mineral. Brookite has been

produced by heating amorphous titania, which is prepared from the reaction between alkyl
titanates with sodium or potassium hydroxide in an autoclave at 200 to 600°C. Although
titania is known to have three natural polymorphs, only anatase is generally accepted to have

significant photocatalytic activity [6].


http://en.wikipedia.org/wiki/Lead_dioxide

The crystallographic characteristic of these varieties are shown in Table 2.1.
Although anatase and rutile are both tetragonal, they are not isomorphous as shown in Figure
2.1. Anatase usually occurs in near-regular octahedral form, while rutile forms slender
prismatic crystals that are frequently twinned. Nevertheless, both anatase and rutile are
anisotropic of which physical properties vary according to direction relative to the crystal
axes. However, in most applications using these substances, the distinction between
crystallographic directions is lost because of the random orientation from large number of
small particles or grains in the particle.

Properties Rutile
Crystal Structure Tetragonal
Optical Uniaxial
Density, g/cm® 4.23
Lattice parameter, nrii
a 0.4584
b
c 037737+ I 2.953
y; Y
Three allotrop ,i TOrMS U1 oo e gmEelii prepar , artificially, but only rutile has

been obtained in the form gf Ensparent Iarge smgle crystal. The transformation from anatase

to rutile is acmﬂ;ﬂoﬁi% ﬂrg’(m moI) The rate of phase
transformation isqgreatly affected by temperature and by presence of other substances which
may e it a rﬁ e at which the
converﬁmﬁ ﬁ‘ﬁ ﬁ‘mrﬁja pls Mﬁ)j tely 500-550°C
[12]. The change is not reversible and it has been shown that AG for the transformation from

anatase to rutile is always negative.
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Zinc oxide is ar g The Sula ZnO. Zinc oxide is a white

or yellowish powder. It ocr “* ite. It is nearly insoluble in water
N

acicular or nodular depenc# : . The particle shape is important

for maximizing physical proy, ir b3 Il UV light radiation at wavelength

below 360 nm. Zinc oxide has res= Tz ] attention because of its unique optical,

semiconducting, pie;Myles “20 nanostructures exhibit

interesting properties § " Y J g adsorption ability. ZnO is

able to degrade a wide [ Je o ot iinic pollutants due to its ability

dF

to generate highly OXIdIZII}g and reducing speues It could be photo-excited by absorbing

g o ) "TI’[ZEWJ b (1011 S
ARAINTRURVI R B o e

excitatlorﬂenergy of 60 meV, which makes it very high potential for room temperature light
emission. This also gives zinc oxide strong resistance to high temperature electronic
degradation during operation. Therefore, it is attractive for many opto-electronic applications
in the range of blue and violet light as well as UV devices for wide range of technological
applications. Zinc oxide also exhibits dual semiconducting and piezoelectric properties. A

summary of the physical and chemical properties of zinc oxide are given in Table 2.2.


http://en.wikipedia.org/wiki/Inorganic_compound
http://en.wikipedia.org/wiki/Chemical_formula

Table 2.2 Physical and chemical properties of zinc oxide.

Molecular formula ZnO

Molecular weight 81.38 g/mole

Hexagonal wurtzite

Cubic zincblende

Crystal structure Cubic rocksalt

(The hexagonal wurtzite structure is most stable at

gpnditions and thus most common.)

Lattice parameters of hexagonas
wurtzite at 300 K

Density

Melting point

Energy gap

Appearance

Synonyms

Solubility

U
| ¢ o [
CONONIYREL S LT 1)
borderling betwee al nd"iohic semiconductor.” THhe cryStal structures shared by zinc

oxide are wurtzite, zinc blende, and rocksalt, as schematically shown in Figure 2.2. At
ambient conditions, the thermodynamically stable phase is wurtzite. The zinc-blende structure
can be formed only by the growth of ZnO on cubic substrate. The rocksalt structure may be

obtained at relatively high pressure.



L”mx- > prepared in industrial scale by
vaporizing zinc metal and 4 ) 47 wor with preheated air. Zinc oxide
has numerous industrial appl# ti n White pigment in paints. It is used to

make enamel, white printing ink. fj_f_r:"

alasses, and floor tiles. It is also used in
cosmetics, pharmac i ﬂ astringent, dental cements,
batteries, electrical e 48 Y | applications are the use as
flame retardant, and U\ i bsoriue: s ocless, P e current major application of

zinc oxide is in the prepara‘;on of most zinc salts

B UEAN gmmmm -
p AN TG et

hole palrieparatlon under |IIum|nat|on and, consequently, a higher reaction rate.The increase
in the lifetime of the photoproduced pairs, due to hole and electron transfer between the two

coupled semiconductors, is produced in many cases as key factor for the improvement of the
photoactivity [14].



2.1.3 Photocatalyst synthesis

There are several methods that can be used to synthesize photocatalyst. In general,
methods which have been reported for titania and zinc oxide are: sol-gel method [5, 15],
hydrothermal or solvothermal method [16, 17], and precipitation method [18, 19]. Previous
researches have revealed that different photocatalyst synthesis methods result in different
surface properties, which consequently affect the interaction between catalyst surface and the
compound to be degraded. One of the popular techniques is sol-gel method because of its low

Sol-gel technolom TAEN inq materials [20]. This method can
be performed at relativelv 4 { N SNgalid. Sol is firstly prepared from
suitable reactants in su#io!: 4 \ \ Siher simply the dispersion of
insoluble solids in liqu’ ! ' ire \ ! N ts with the solvent to form a
colloidal product. A ty'pir e ' ar&e%h is the dispersion of oxides or
hydroxides in water wi e X ANid particles remain in suspension
e g approach is the addition of metal
alkoxide to water. The alkox #&s @ ng*¥he oxide as a colloidal product. The

sol is then either treated or simpk g-;;:' _¢

obtain a final product, the gel is heated.

This heating serves (o4 . k. J'ecomposes anions such as

alkoxides or carbonatseds I}p' he structure of the solid and

allows crystallization. [} the Synive erine pifllss starts with the mixing of
titanium alkoxide with alcghilo!-.i Acidic aqueousiglution is subsequently added to the mixture

[21]. S l. i I i e elliptical in shape. Th
ueta rﬁaﬁ:‘g!ag mﬂmﬁw rﬂlme iptical in shape. The

crystal size of nm as the temperature of the calcination was
increased t - C_The speci '_’ﬂjc rea, 0 t m?g™ [15]. This
techniq ;ﬁhﬁlﬁﬂﬁ | eﬂﬁﬁﬁmﬂﬁﬁﬂma with higher
specific sﬂjrface area as well as larger pore size of titania nanoparticles. Urea showed a
retarding effect on the transformation of titania from anatase to rutile [22]. In 2009, the
composite of zinc oxide and titania were prepared by sol-gel process. The results indicated
that the as-synthesized powder was consisted of anatase TiO,, zincite ZnO, and Zn(OH),
phase. Upon the heating up to 220 °C all of Zn(OH), phase was transformed into ZnO.
Increasing calcination temperature up to 680 °C produced Zn,TiO, and ZnTiOj3 solid solution

in ZnO/TiO, system. With an increase in temperature, the amount of ZnTiO; phase decreased

in way that it totally disappeared at 900 °C and transformed into Zn,TiO,. The specific



surface area of the samples after being calcined at 220, 420, and 800 °C were 51.24, 46.32,
and 26.28 m°g™, respectively [19]. Increase in particle size and aggregation occurred after
high temperature treatment. Tian et al. prepared N-doped titania/zinc oxide composite powder
by sol-gel method whereas ammonia was used as a nitrogen source. The phase transformation
of anatase to rutile was retarded via the ammonia treating process, leading to the presence of
anatase phase in the composite. Crystallite size of the composite powder was about 15 nm [5].
The biggest advantage of N-doping, compared to undoped titania, is their lowered excitation
energy [23]. N-doping is reported to be a good way for the preparation of TiO, photocatalysts

with enhanced photocatalytic activity &g lified the particle and crystallite size [24].

Sol-gel process is s /ét promising alternative because it

presents a number of advar: ' - Joerature, versatility of processing
and homogeneity at molec!:: \\[

auerof reactants, aging time and

it of this method is that strong

ed precipitation. The parameters

temperature. The reactic [ “ — +| )-(3).

Hydrolysis:

M-O-R + H,0 O
Condensation:

M-OH + HO-M{| @

M-O-R+HO-M ‘ -O R+R- OH ©)
whereas, M is @u gjOR lsnoglylnu? w EJ’] ﬂ ‘j

ZZD,@Wlaﬂﬂ‘iﬂJmﬂﬂﬂEﬂﬁﬂ

Diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], is a long acting herbicide,belonging
to the family of halogenophenylureas. It has been one of the most commonly used herbicides
for more than 40 years. Diuron has been reported to be highly toxic for some non-target
organisms. Diuron in agricultural may penetrate through soil slowly and contaminate
groundwater. It may pose potential environment and health problems from runoff waters

coming from agricultural land where diuron has been used extensively [26].Therefore, diuron
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was selected for investigation of the photocatalytic degradation in this research. There are

some human health concerns about the toxicity of some impurities in the active constituent of

diuron as well. Its properties are shown in Table 2.3.

Table 2.3 Physicochemical properties of diuron.

Structure formula

Molecular weight

Molecular formula

Melting point

Vapor pressure

Appearance
Synonyms \ i : LH.‘ ilon; Di-on; Krovar; Unidron;
! e i etc.
Solubility Wy L
7 ted Vmaterial may cause irritation to eyes
Toxicity gne # It a 50% -water paste is not
.‘:i of mammal.
Half-life

¥

e M ANENTNENS
AR RIDTUIRAITRH DB cosmione

in enviroﬂmental control. It can use sunlight, which is available in abundance, as the energy
source to initiate the photodecomposition of pollutants. The end products of this treatment
process are usually harmless compounds such as carbon dioxide, water and inorganic ions
such as chloride and nitrate. It has been widely used as an alternative physical-chemical
process for the elimination of toxic and hazardous organic substances in wastewater, drinking
water, and air. In this process, a semi-conductor activated by ultra-violet (UV) radiation is

used as a catalyst to destroy organic contaminants.
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The photocatalysis can be defined as the acceleration of a photoreaction by the presence
of a semiconductor catalyst that can be activated by the absorption of light of energy greater
than its band gap. Since the contaminants are present in the agueous phase, while the
semiconductor is solid, this process can be called heterogeneous photocatalysis process. The
generations of electron-hole pairs are represented in Eq. (4). The photo-generated holes and
electrons give rise to oxidation and reduction processes, respectively. In an agueous solution,
water molecules adsorb onto surface of the catalyst. They are oxidized giving rise to OH’
radicals. As the process is usually carried out in aerobic conditions, the species to be reduced

is oxygen, generating the superoxide j §j following Eqg. (5) to (7). Organic pollutants

adsorb onto the surface of the caia 7 & oxidized by OH’ radicals.

Semiconductor 4)

h" + H,0. (5)

h" + OH (6)

e + O (7)
Support of the OH" 4 \ 2rives from the observation that

intermediates detected di g lation of halogenated aromatic

compounds are typically hy#0x @
with a known source of OH r_? Aff

semound when similar aromatics react

vl radical has a very short half-life of

approximately 10°° sl s, J
7 Y]

|ueous organic compound on

The mechanism o" e piiee ] o'

anatase titania can be expre‘ssed by a series of advanced OX|dat|on process as following [28].

UHANENANEIDS,
amaﬁmhmum'mmaﬂ ®

2) Oxygen ionosorption (first step of oxygen reduction)
(O2)ass + €¢p - 0O 9)

3) Neutralization of OH" groups by photoexcited holes


http://en.wikipedia.org/wiki/Half-life
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(H:O < H" +OH)ws + hyy — H" + OH° (10)

4) Neutralization of O," by protons

0, + H* — HO, 11)

5) Transient hydrogen peroxide formation

2 HO, (12)
Y
6) é zction of oxygen
(13)
7) Wessive attack by OH* radical

o YA (14)

-|’.r \

8) Direct ox #tigye _@ 'S
=

WR o or ficts (15)

The mechanisms =i =N nanosized ZnO powder can

1
be expressed by applyir®fthe research of N. Daneshvar [297#Ihe photocatalytic degradation

-~

in the sﬂtlon is initiate@»by photoexcitation of the semiconductor,

" Iﬂiﬁm@ S N AR e o
AR A8y,

of herbicide into the reactive intermediates (Eq.17).

hyg” + herbicide — oxidative products of the herbicide a7

Very reactive hydroxyl radicals can also be formed either by the decomposition of water
(Eq.18) or by the reaction of the hole with OH™ (Eq.19).
hg" + HO — H'+ OH’ (18)
hg" + OH — OH (19)
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The hydroxyl radical is an extremely strong, non-selective oxidant that brings about the
degradation of organic chemicals as well [30, 31].

Electron in the conduction band (ecg—) on the catalyst surface can reduce molecular
oxygen to superoxide anion (Eq.20). This radical, in the presence of organic scavengers, may
form organic peroxides (Eq.21) or hydrogen peroxide (Eq.22). Electrons in the conduction
band are also responsible for the production of hydroxyl radicals, which have been indicated
ijation (Eq.23) [10, 30]

as the primary cause of organic matter g

. (20)
——idc — 00’ (21)
0, (22)

2™ Won of the herbicide (23)
Photodegradation is W is surface reaction since the
reaction occurs when tne % caalyst surface. The reaction is
M, \
heterogeneous catalytic | P asWollowed: diffusion of reactants,

adsorption, surface diffusic sion of products.

2.4 Photocatalytic De#gad

Y
Advanced Oxidat 3r anfrery useful for the degradation
of non-biodegradable on anlc pollutants. They are much more efficient than conventional
techniques suc aﬁ?]) rﬁq} chemical processing by
AOPs could IH ﬁtﬂ ﬂﬁlz i dﬂoﬁﬂﬁOPs are based on the
generation of the ydroxyl radicals ang" use them as Aagimary oxidant fpy the degradation of

e QRAANTIUNATINETRE

2.4.1 The kinetic of photodegradation of diuron

Several papers on photocatalytic processes have been presented in the recent years
[1, 6, 10, 18, 26, 29, 32-36]. The degradation rate of diuron depending on parameters
influencing the oxidation such as pH value, light intensity, and concentration of photocatalyst.
According to these papers, the photocatalytic processes are able to degrade non-biodegradable

organic pollutants. They have also found that the kinetic model suitable for, the photocatalytic
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reaction is the Langmuir — Hinshelwood model, in which the substrates must adsorb on the
catalyst surface sites for bond breaking or bond formation. The adsorption of substrates and
the availability of sites are important parameters in photocatalytic reactions. The rate of
substrate conversion is proportional to the available active sites. As the reaction proceeds, the
amount of substrate adsorbed on the catalysts surface will decrease until the substrate is
completely converted. In general, kinetic models are often formulated to describe
photocatalytic reactions with respect to the initial substrate concentrations. For the Langmuir
— Hinshelwood kinetic model, it is assumed that the reaction occurs on the surface and the

(24)

\aneunstant and C is the substrate
iluted, the term KC can be
A\ N muir-Hinshelwood Kinetics to

L
\a\ Langmuir-Hinshelwood kinetic

where k; is the reactioiT 1ot
concentration at any %
neglected. Previously s¢
first order by assuming th:
expression can be writteiTas il R 0% and K can be calculated from the

corresponding integrated e #

(25)

j In? TNy )= kl‘ Kt u-' (26)

e AU NN W AN T et

papers indicated ?Aat the photocatalytigrprocess is vgefﬁcient becalﬁg it often achieves a
complﬂnﬁﬁl‘rﬁn&ﬁﬁcﬁ.ﬂim ﬁqd% i%s&la(eq ﬁ p&iodegradation of
diuron frgm aqueous solution by UV irradiation in the presence of commercial TiO, (P25 and
PC500). The results of kinetic study showed that kinetic model for diuron photocatalytic
degradation follows the Langmuir — Hinshelwood model. At concentration of diuron 10 ppm
the pseudo — first order Langmuir — Hinshelwood rate coefficient were 1.787 and 0.576
ppm/min and the constant of adsorption equilibrium of Langmuir — Hinshelwood were 0.801
and 0.451 ppm™* for the use of TiO, — P25 and TiO, PC500 respectively [35]. The kinetic rate
constant of photodegradation of diuron depend on initial diuron concentration, catalyst

loading, pH, and temperature [35, 39, 40]. High catalyst loading produces great number of
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OH radicals and accelerates the reaction. In addition, it is media to the adsorbed diuron.
Amount of catalyst loading and particle size of catalyst affect on photodegradation rate such
that the degradation is increased when the catalyst loading is increased.

2.4.2 Diuron degradation products

The disappearance of the initial compound is not sufficient to demonstrate the

effectiveness of the photocatalytic hpcause the intermediate compounds formed

/"snt towards degradation than the parent

compound. It is hence of intge T Sy to i éegradation of the parent compound
but also to identify the interm mpC mdseneral, the oxidation of straight-

during the reaction could be evei

chained hydrocarbon is rel~ . 2afion of aromatic compounds has

been found to be harder, 12’ ) ' N ¢OWgie Tormation of many intermediate

\\ wly affected by photocatalyst
amount, initial concentra, ' 7_ ; ( \a temperature [18, 35]. For the
photocatalytic degradation e hich has been investigated in the
past, Klongdee et al. studie€'t! bl o 2 \ueous solution by photocatalyzed

oxidation, using synthesizec itai®fa was synthesized by the thermal

decomposition method. The res"' I,gj_ gonversions achieved from the prepared
titania were about 7.4 o LAY lamps, while about 99%
conversion was achies 5" A otocatalytic activity was the
result from higher cry:s '[ linity G — u[anla he presence of oxygen as an

s

electron scavenger in the s‘fstem was reqmred U the reaction to progress [6]. However, the

degradation ratﬂf ?\j eﬂw w ﬂﬂi e oxidation such as pH
value, light mtenq'y, and concentration of photocatalys mlnerallzatlon reaction (first
BCVRERN sl Inenas

CoH1CILN,O + 130, —» 2HCI + 2HNO; + 9CO, + 3H,0

The organic intermediates formed during the degradation of diuron could be
classified into two categories. One is the non-chlorinated intermediates, another is the
chlorinated and nitrated intermediates [2]. Most detected degradation products are constituted
by diuron de-methyl derivatives, such as DCPMU [3-(3,4-dichlorophenyl)-1-methylurea],
DCPU [3-(3,4-dichlorophenylurea)], and 3,4-DCA (3,4-dichloroaniline) [41] The structures
of the photoproducts are represented as follows: [1]
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Compound 1 or
Cl NH, HO NH,

Compound 2 cl NH,

Compound 3

Compound 4

The product ¢ : identified as the compounds
resulting from the eliming’ N \ \%: he product compound number 3
was found to be the prouuc O ADr T 4 % auded to benzene ring of diuron.

Therefore the possible de : i diut U&ed on the intermediate products

was proposed in Figure 2.3 [1% f&

-

N

ﬂuHQﬂﬂﬂsWﬂfﬂ‘: |

CH:COOH

| méwmzu%m By

COs, H20

%N

Figure 2.3 Proposed degradation mechanism of diuron by the photocatalytic system [1].
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The previous researches have reported that different conditions of degradation
produce different intermediate products. For instance, Carrier et al. investigated intermediate
products of photocatalytic degradation using titania as photocatalyst. The possible
degradation pathway for diuron was proposed in Figure 2.4. The reported steps of degradation
included dehalogenation of the aromatic ring, hydroxylation of the aromatic ring and of the
side chain, and demethylation [42]. Then they investigated the removal of diuron and thermal
degradation products under catalytic wet air oxidation condition, using Ru/TiO, as catalyst at
140 °C and 180 °C. During the thermal degradation of diuron, three main intermediate
compounds were formed, namely 3,4-3 iline (DCA), dimethylamine (DMA), and 3-
(3,4-dichlorophenyl)-1,1-methyli *'_ways of diuron by the catalytic wet air

- mdlalé _— of the reaction, was proposed in

| doT ad- s | into DCA and DMA. The next

step was a series of oxidaf'g ' 3 s\ eliminated chlorine, opened the
aromatic ring to yield sma!' ##5- ' " ganic species. Nitrogen in DCA
was mainly transforme@®iitc 4 e W "\\_ red (oxalic acid and acetic acid)

reacted with DCA y - \ '\:"“- 'orophenylamide and 3,4-
' \* temperature of the reaction was
necessary. At 180 °C, ine (MA), ammonium ions and

nitrates. The higher temg o of nitrates [43]. Oturan et al.
identified five kinds of int# l’f m Tectrochemical advanced oxidation
method called “electro-Fenton _,ﬁ)f"_ ,g' ymatic by-products, mainly formed by
oxidation of the N-lxii pLdqtion of the aromatic cycle
and/or side methyl 5" r‘ identified. Further steps
involved the oxidative ¢ i 1iNg O1 Lo TR adlng carboxyllc acids and inorganic

ions. ldentification of the‘dluron degradation &oducts was conducted by LC-MS and the

. B8y ?’FEJ NINEINT
Qéﬂ%ﬁa&ﬂﬁﬁ“&l waaN EJ@EI o

H O H
. Lo
3-(3,4-Dichlorophenyl)-1,1-methyl urea Cl @N C N,
CH,

3-(3,4-Dichloro-hydroxyphenyl)-1,1-dimethyl urea C N—C N

Cl on
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0
3-(Trihydroxyphenyl)-1,1-dimethyl urea . ‘?_@_ CH;
“CH,
Cl
3-(3-Hydroxy-4-chlorophenyl)-1,1-methyl urea Cl \CH3
HO
H O
3-(3-Hydroxy-4-chlorophenvi) 4 Lo ~CH;
N—C N\
CH,
Cl l
3)
CH,OH
j‘“\cu,
-cl)-|'I _g LCHs3
Cl—g\-_'-}}aiNH N,

Carboxylic acids: =

maleic, oxalic,

__— @kcetic, formic

QW']&\‘Iﬂ‘iﬂJ?JW]’WIEJ'laH

F gure 2.4 Degradation pathways of diuron by the TiO, as photocatalyst [42].
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CH3NH2 —— NH4

QN H‘C‘N H-CHj; Q MA

N02

'

cl NH; NOy — NO3-

Q
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ring opening
into carboxylic =

Figure 2.5 Degrar' o Nz ’“ % tic wet air oxidation [43].
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CHAPTER Il

EXPERIMENTAL

3.1 Preparation of TiO, and ZnO

3.1.1 Synthesis of titania particles

Titania (TiO,) was pre /_od, according to the method proposed
by Tian et al [5]. Tetrabuty 'BT_ 9/ Was used as the starting material.
First, 5 ml of TBT was F o tirred for 30 minutes to get the
precursor solution. Then. = ' f \ s 3.4 ml glacial acetic acid, 0.18

ml hydrochloric acid and 1% ncursor solution under vigorous

stirring. After stirring auu PR '\k nsparent yellow. Now, titania sol
was obtained. The tita, \ o : \atsl about 24 hours and dried at
80°C for 12 hours in an o . 4 : LoIU! \“ x ass fractions of 0%, 7% or 28%
was dropped into the gel ar % . perature. After that, the obtained
product was calcined at 505°C #Fr 2 . s “We with the heating rate of 1°C/min.

fiﬁ
L MIN
3.1.2 Synthesis ¢

i
Zinc oxide (Zr ) was prepaicu aevoruiiy 10 the n ] IOd proposed by Tian et al. [5]
as well. Zinc acetate (99.5% LINIVAR) was uggg as a precursor to prepare ZnO sol. At first,

3.29 g of zinc ﬂ uﬂ{}l% ﬂ&ﬂ ‘gaa‘w ﬁﬂﬂfﬁs min at 50°C to get the

precursor solutic@] A mixture of 0. 26 ml distilled water, 1.58 ml diethanolamine (98.5%,

B 1 i L0 1101

obtained. The ZnO sol was gelled at room temperature about 24 hours and dried at 80°C for

24 hours in an oven. Then, ammonia solution with mass fraction of 0%, 7% or 28% was
dropped into the gel and left to rest for 24 hours at room temperature. After that, the obtained
product was calcined at temperature in the range of 500°C for 2 hours in a box furnace with

heating rate of 1°C/min.
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3.1.3 Characterizations of photocatalysts
Synthesized photocatalysts were characterized by various techniques.

Phase composition of the powder was determined by X-ray diffraction (XRD) by a
Siemens D5000 X-ray diffractometer using Ni-filtered CuKa radiation. The measurements
were carried out in the 26 range of 20-80 degree at the scan step of 0.04 degree. The
crystallite size calculated from the halS & § § gvidth of the diffraction peak of XRD pattern

using the Debye - Scherer equati

(27)

where D is crystal sizc, width at half maximum, @ is

diffraction angle.

The particle morp' Maning Electron Microscopy (SEM)
model JSM-6400 at Scieriufi

Chulalongkorn University.

arcn Equipment Centre Foundation,

The surfacy~4< A7) asured by Belsorp-Mini Il

. : Y .
adsorption analyzer 'K : r of Excellence on Particle

Technology, Chulalong! l n University. e operaung condidtins are as follows:

ﬂﬂ%ﬁ’@%ﬂﬂ‘iﬂ Bana

Degas temperature

ﬂmwﬁwwﬁwmaﬂ

he thermal behavior was analyzed by Thermo-gravimetric analyzer (TGA) Model
NETZSCH STA 409. The operating conditions are heating rate of 10°C/min from room

temperature to 1000°C in air.

Finally, The ultraviolet—visible reflectance of all samples was analyzed by a UV —

vis spectroscopy (Lambda 650, Perkin Elmer, USA).
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3.2 Adsorption Studies

All adsorption equilibrium experiments of diuron on the TiO, and ZnO surface were
carried out in 250 ml pyrex reactor under strong stirring and in the absence of light. Studies
were conducted with suspensions prepared by mixing 550 ml of solution of diuron in various
initial concentrations (1-20 ppm) and photocatalyst concentration of 1 mg/10 ml diuron
solution at room temperature (27-30°C) for 3 hours. Changes of diuron concentration were
measured by (HPLC), model Class VP (Shimadzu) and C18 column (Phenomenex Luna 5 pm

particle size, 250x4.6 mm). The mobig ~pwas consisted of 70% acetronitrile and 30%

\ v /qction groups of diuron solution after

#using sterm Infrared Spectrophotometer
' | —

- . _Spectra were recorded between

deionization water with flow rg's

adsorbed by catalyst were G

wavenumber of 400 and 4002 . \ saucture of diuron after adsorbed by
catalyst was identified by - "”‘\- Magnetic Resonance (NMR, **C:
125.777TMHz, *H: 500,97 " 47 £ F 5 (T 8 ' ™ experimentals, CDs0D were

used as solvent. "\

3.3 Photocatalytic Degrac®i

The photocatalytic activitieg fﬁ_}'}' ,g; otocatalysts were determined from the

)
-0
e

A J ex reactor (the set up of the

photodegradation of {2k
irradiation. The photc Vf,

-dimethyl urea) under UV

reaction system is shdlh in” Figens pwicn 554ml of diuron solution (with

77

predetermined concentrati@)‘gld photocatalystiyere added. The content of the photocatalyst

was kept at 1 ﬂ ﬁﬁﬁgsﬁﬂm jtlﬂﬂﬁ]ﬂl diuron concentration 10
' i min to allow

ppm). The mixtugg was kept in"dark for 3 e complete adsorption of diuron on

the surface ;Lil S, prigL t edctio tl ﬁ Ig'jn ircadiated with six
UV-Aﬁn_ PhIﬁ‘iﬁl , lijl if:]di io ,ﬁtin aﬂaintained by a

magnetic“'stirrer to keep the catalyst uniformly dispersed within the solution. The suspension
was periodically sampled to monitor the concentration of diuron via a reverse-phase liquid
chromatography (HPLC), model Class VP (Shimadzu) and C18 column (Phenomenex Luna 5
pum particle size, 250x4.6 mm). The mobile phase was consisted of 70% acetronitrile and
30% deionization water with flow rate of 1.5 ml/min.The organic matter within the sample
was measured by Totoal Organic Carbon (TOC) analyzer model TOC-Vcpy (carier gas flow
rate 150 ml/min, 680°C catalytically-aided combustion oxidation/non—dispersive infrared

detection). ldentification of the reaction intermediates formed during the photocatalytic
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degradation of diuron was done by LC-MS analysis (LC/MSD SL, Agilent technologies) with
UV detector and MS detector (Single Quadrupole,Model G1956B, Agilent technologies). For
the LC-MS analysis, column was Phenomenex Luna, 3 um particle size, 150x2 mm, while the
mobile phase was 70% acetronitrile mixed with 30% water. The mass spectral data were

obtained in both negative and positive ion mode, using fragmentor potential of 120 V.

Reactor

UV-A lamp

Figure 3.1 Diag ' 01 (=i ocatalytic degradation.

AU ININTNEINS
IR TN TN



CHAPTER IV

RESULTS AND DISCUSSION

Photocatalytic degradation can be applied to remove many organic compounds from
wastewater. In this study, titania and zinc oxide were used as photocatalyst to eliminate
diuron from water. The photocatalysts were prepared by sol-gel method. Physical properties
F J ged by many techniques. Then, they were

compared in the photocatalytic
4.1 Properties of Synthecg
4.1.1 Synthesized zir

In this resear. Y 2 W (= Ntk el method and subsequently
N ' wing sol-gel process. The content
s, respectively. Characterization
techniques such as XRD, SEI ¥

the synthesized zinc oxide.

to investigate physical properties of

Phase com{i= == tified through XRD. XRD

) |~' J

patterns of the zinc oxi=q 3 et oWn in Figure 4.1. All of the
diffraction peaks could == indexed as zinc oxide in wurzite =*ucture. The crystallite sizes of
zinc oxide calcﬁed from&h@&cherer equatiofate shown in Table 4.1. No diffraction peaks

corresponding t ﬂuges’}e & @vww Ejh’ajﬂ if ammonia was added to

the gel.

Qﬁﬁﬁﬂﬂimﬂﬁﬂﬂmaﬂ
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e wurzite phase
\('U/ .
42‘ L] L] R
4083 ﬁ k e Re . . 28% NH3
k=
. 7% NH;
| ) ML 0% NH;
20 - 80
Figure 4.1 XRD patter#€0f e | i708ith the addition of ammonia
in the amoun, , — ' Sasolution. All products were

Table 4.1 Crystallite size and!

Condition of amn i ; verage pore Band gap

added in the soluti&! iameter (nm) (eV)

»

0% 104 4 5 3.16
o @

AUtInanINeIng: |

28% % 116 3.12

RN TUNAINGIAE

The specific surface areas of zinc oxide measured by nitrogen adsorption (Sget) are
also shown in Table 4.1. All samples showed Type - Il adsorption/desorption isotherm which
indicated the non — porous in the catalyst as shown in Figure 4.2. As the mass fraction of
ammonia was increased from 0% to 7%, the specific surface area of the ZnO powder
increased from 4 to 8 m?/g while the further increase of ammonia content 28% the resulted in
the decrease surface area to 6 m*g. However, the specific surface areas of zinc oxide are

similar, so that the ammonia content did not affect to the specific surface area of zinc oxide.
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Ammonia content

0%
%

Amount of gas adsorbed, V, (cm3(STP) g*1)
w

; 28%
0 ‘
1
Figure 4.2 Adsorption/c; fhewss %l synthesized with the
addition of am W, N6/ %ad 28% by weight of the
solution. All ) 11 < hours.
Figure 4.3 shows SENFZikZ/4 24 pesized ZnO powders ammonia treated

L 7 100°C for 2 hours. The ZnO

A a) were agglomerated with

with various mass frizids

powders synthesized W4

I nm. Thcee geamaonia ¢ ' Jent leaded to the decrease in

average particle size 1}

particle size as shown in F‘gure 4.3(b). The avajge particle size in the powder was 138 nm.

The p-artlcles wﬁ ﬂﬂ ? ww&&w m\ﬂ %;lomerated with average

size diameterl

ammnimumqwmaﬂ
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(©

Figure 4.3 SEM micrographs of the zinc oxide powder synthesized with the use of ammonia
at various content: (a) 0% NH;(b) 7% NH; and (c) 28% NHjs, after calcined at
500°C for 2 hours.
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TG/DTA results for the ZnO powder, after calcined at 500°C for 2 hours (heating
rate of 10°C/min), heated from 0-1000°C in flowing air are shown in Figure 4.4. It is clearly
seen that the TGA curve indicates no weight loss while neither exothermic nor endothermic
peaks are found in the DTA curve. This suggests that calcinations temperature of 500°C is
enough for complete combustion of organic. The results confirm that the synthesized ZnO

had no residual organics compound within the powder.

- 0.80

100 - - 0.60

g | E

% .............. r 0.40 ?
E I >
@ . =)
S 90 A - 020 &
= [ =
& ] ; e

- 0.00

80 41— L -0.20

0 1000

Figure 4.4 TG/DTA curves of th: E}_I:' A 2/

2 hours (hba:

7 —7]

ide powder after calcined at 500 °C for

ntent.

.!i
»

4.1.2 Synthesized titaru'ﬂ , Yy

ﬂ =y

Titaniawyﬁgenyﬂﬂlglutg.’lﬂg he synthesis, the titania
powder a: d with oni ufign at mass. fragriqn of 00’10/ 8% for 24 hours
foIIowﬁ;Maéﬂrﬁ‘ﬁf l r:ijsﬁ\e hage o} itirigoy tltania powder after
calcinatio11 was identified by XRD. XRD patterns of the titania are shown in Figure 4.5. It is

confirmed that the product obtained is titania in anatase phase without contamination of rutile

phases or other phases relating to nitrogen. The average crystallite size, calculated by the

Scherrer equation based on the anatase (101) diffraction peak are shown in the Table 4.2.
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¢ anatase phase

. A A rutile phase
— A A A A A A AAA AA A A A
: JL o Lo 28% NH
> AN m e P
= JL 7% NH;
0% NH;
20 80

Figure 4.5 XRD patter#€
at the mass fr
500°C for 2 hor

w2ated with ammonia solution

ollowed by calcination at

Table 4.2 Crystallite size and! rf zedMitania.
LMY A T

Condition of amg e — - "verage pore Band gap

added in the sol FaSdiameter (nm) (eV)

14 36 5 3.30

0% N

79 4

4 3.27

"= 'y
249 a ﬁj H 4 3.25

Qﬁﬁﬁﬂﬂimﬂﬁﬂﬂmaﬂ

%he analysis of the catalyst surface via nitrogen adsorption revealed type 1V
adsorption/desorption isotherm with a hysteresis loop for the synthesized titania, which
indicated the presence of mesopores in the catalyst as shown in Figure 4.6. The calculated
specific surface areas based on BET model are also shown in Table 4.2. As the ammonia
content was increased from 0% to 28%, the surface area of TiO, powder increased from 36 to

52 m%g. The results were in good agreement with SEM images.
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40 +

35 -

25
20 1

15

Amount of gas adsorbed, V, (cm3(STP) g?)
o

(6]
-

(e =

o

Figure 4.6 Adsorption/dec gfot AiCi%le powder synthesized with the
addition of ainm INTTONE /N ' L“a\ anu 28% by weight of the

E 1" 2 hours.

The syntheg:z4 A-rje and small particles with a

wide range of size d V. A wnders are consisted of non-
spherical particles that {[J> higi agg me aggredilion could be due to the high

viscosity of the sol, whlch‘reduces the dlspersw of partlcles [33] According to Figure 4.7,
the surfaces of nt of ammonia used is
increased. The thsfa!e high ﬂporous W?ﬂw surface area Whlch may have higher
adsorp fi play a role in
et ahRetabivaN )
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Figure 4.7 SEM micrographs of the synthesized TiO, powders synthesized using ammonia at
various contents: (a) 0% NHj; (b) 7% NH; and (c) 28% NHj, after calcined at 500

°C for 2 hours.
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TG/DTA results for the TiO, powder, after calcined at 500°C for 2 hours (heating
rate of 10°C/min), heated from 0-1000°C in flowing air are shown in Figure 4.8. The TGA
curve indicates no weight loss, while the DTA curve shows no significant thermal event. The
results confirm that TiO, powder had no residual organics compound within the powder.

- 0.80

100 A - 0.60

S o |

~ . [ —~
2 \ [ 040 &
@ - ==
£ S
2 N—r
S 90 - £ 0.20 <
E | =
(%2} [ o

DTA - 0.00

80 - " [ 0.20

1000

W oxide powder after calcined at

Figure 4.8 TG/DTA curves o ez ,
500°C for 2 hours (he

:.‘.7 7 min) without ammonia content.

-

v

1
i i
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4.2 Adsorption of Diuron onto the Catalysts

4.2.1 Adsorption isotherm

In this part, diuron was adsorbed onto the catalyst without illumination. Figure 4.9
and Figure 4.10 show the results of the adsorption of diuron onto zinc oxide and titanium
dioxide as a function of time at room temperature (27-30°C). The initial concentration of
diuron was varied from 1, 5, 10, 15, to 20 ppm respectively. The catalyst loading was 1 mg

with the adsorption equilibrium g g1 at low concentration of 1, 5, and 10
ppm while, at the concentratige ) éorption equilibrium is reached after
120 min. The amount of ' =i — increasing the concentration of
diuron, especially at 20 pnrg _;\k re chances to react with catalyst
when concentration of aiur- ) ed on the surface of the catalyst
better. It might be as®hues 7,7_. A ‘x,:_ orce of concentration gradient.
. : . ion ability of a surface can be
measured by the adsorptic #5 AN ."'\‘*-.\ is characterized by the amount
of diuron adsorbed per™gr: 1% : ") at equilibrium. The adsorption
isotherm of diuron on synt oS VAS: i ey
TiO, at room temperature \'_ -’

adsorbed at equilibrium increasessi-—ib? 4

D, .ommercial ZnO, and commercial

n ‘ngure 4.11. The amount of diuron

of diuron for all catalysts.

d

f @)on adsorbed (mg/l)

o

Amount of

0 50 100 150
Time (min)

Figure 4.9 Adsorption of diuron on ZnO at room temperature (27-30°C). The initial diuron
concentration was 1, 5, 10, 15, and 20 ppm, respectively.
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Figure 4.10 Adsorptior#®0’; 73 a1 27-30°C). The initial diuron

ctively.

0.007 ;
0.006 1
0.005 1

0.004 1

0.003 A

0.002 1

Adsorption capacity (mg/g cat)

0.001 -

50

Concentration of diuron at equilibrium, C, (mg/l)

—a— synthesized TiO2
—e— synthesized ZnO
- -® - commercial TiO2

- -o - commercial ZnO

ANLIRE

Figure 4.11 Adsorption isotherm of diuron onto synthesized ZnO, synthesized TiO,,

commercial ZnO, and commercial TiO, at room temperature (27-30°C).
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Several models have been developed to define the adsorption isotherm. Among them,
the isotherms according to Langmuir and Freundlich models have been often considered.
According to the linearized form of the Langmuir isotherm model [36, 45, 46]:

LI S S (4.2)

adsorption capacity (mg/g), Ce is /rtion (mg/l), and b is constant related to

energy of the sorption system ' )ﬂdel, its linearized form of isotherm

[36, 46, 47] is given by Eq -
4.3)

where % is adsorption Inte: Wt related to adsorption capacity

(mg/g(mg/l)™™. Figure \. muir isotherm and Freundlich

isotherm for the adsorptio urogg A 't"

Omaxs b’ P(h n, arujl?z value o !-i .fz:%;;;;!!;;i

in Table 4.3. LA

| ™anium dioxide while the value of

igure 4.12 and 4.13 are summarized

\ !FE . |;iii
12000 - =

O satdesized TiO2 %

o synthesized Ziud

8000

1/q,

4000

Figure 4.12 Langmuir isotherm for adsorption of diuron on synthesized ZnO and synthesized
TiO,.
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. ¢ synthesized TiO2
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Figure 4.13 Freundlich isotherm f s g.iron on synthesized ZnO and
synthesized TiO,!

Table 4.3 Constants of =% 2 i el for adsorption of diuron on

synthesized ZnO and sy,

Values

ZnO synthesized TiO,
0.0038
0.0277
0.9313

7.21x 107°
0.8237
0.9194

Model

Langmuir isotherm model

. _ i .‘_4 -':r‘:- _.__!-
Freundlich isotherm mode SN

AUYININTNYINT

Freundfdh’s parameter relates to the mean energy of adsorption. A very waek
adsorb e/ateract ‘tc a ﬁv ot lyes higher than 1
sugges%t, ﬂﬁmmu:ﬁ:t‘l@ eﬁnajg:a;ﬂassumed that all
sites are energetically similar [36, 39]. In our case, value of n lower than 1 for adsorption of
diuron on TiO; indicated a weak diuron and catalyst interaction and value of n equal to 1 for

adsorption of diuron on ZnO indicated all sites are energetically similar. This was confirmed

by the values of Freundlich’s constant, Ky, which also relates to the adsorption capacity.

For Langmuir’s parameter, to examine the progression of adsorption dimensionless

constant, sepearation factor r was calculated by following equation
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1
1+bC,

4.1)

Values r > 1 represents unfavorable adsorption condition, and values 0 < r < 1
represents favorable adsorption conditions [45]. In this case, r value is between 0 and 1
(0.7418 and 0.7829 for synthesized ZnO and TiO,, respectively), suggesting that the sorption
is favorable for diuron on ZnO and TiO,.

However, the experimental data were fitted well with Langmuir model as indicated
by the high R* value.

Figure 4.14 and / 4= B\ \\ om diuron solution in methanol
mixed with ZnO and _ 7 \ ha. 0l were 1360, 1396 and 1050
cm™ corresponding to t O 4 i - i X “" ching [50]. The characteristic
peaks of diuron were 165’ 7 l\"‘x ding, at 1527, 1490 1396 cm?
and 899 cm™ correspondir Y : _ ‘. : | C=C vibration, the benzene ring

stretching, and meta benZen: 07810 cm™ corresponding to C-N
stretching and C-CI [48, 51]. = viorations (1510 — 1470 cm™) towards
lower wavenumber after interagidi= st electrodonation reduction which add
electron density to a g ; 4=Jon poor system, to the ring
as consequence of the v, 4ace.
] |
According to Flgyr&él 14, absorptlon@nd of Zn-0O stretching was around 430-550

o 51 0 GBI HEIA o o o

observed. This isgthe result from the fact that diuron adheres to the surface of zinc oxide only
throug fij ﬁ ,ﬁl{ ion bands of the
Cc=C v’aaﬁpjva ﬁ/ﬂj ﬁﬁ ﬁT“l rﬂ:aop] ! toward lower
Wavenum ers of 1485 and 1513 cm™, respectively, while the absorption band of C-Cl shift

towards higher wavenumber (from 810 to 830 cm™).

In the diuron — TiO, system, only small band shifts are observed as well. In Figure
4.15, the broad band between 500 and 600 cm™ correspond to Ti-O band [53, 54]. The
shifting in the absorption band of C=C aromatic ring (from 1527 to 1515 cm™) and C=C
vibration (from 1490 to 1485 cm™) are similar to those observed in diuron — ZnO system,

which also indicates an electrodonation reduction to the ring as consequence of the molecule
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interaction with TiO, surface. Absorption band of CH; group was shift towards higher
wavenumber (from 1037 to 1048 cm™).

However, the results indicated only small shift, it should be noted that, the
adsorption of diuron on TiO, and ZnO are physisorption (Van der Waals and electrostatic
forces). The structures have not change. This suggest, the reaction could not be occurs
without UV irradiation.

(b)

Transmittance (a.u.)

Figure 4.14 FTIR spect: 4 obtained from (@) diuron solutio®& methanol, (b) diuron solution

in methanol mikaswith ZnO for 18Q/min.

AN Ng
MR TN TN
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(b)
E)
&
3
s ' ®
I=
2
o
|_

1600 600 400
Figure 4.15 FTIR spectrur; = Q0 in methanol, (b) diuron solution

4.3 Photodegradation of Diu

Conventionally, it has acatalytic system produces hydroxyl
radical during the recs ;+f ; that reacts with diuron and
causes its degradationy ' "ooed by the following reaction

[55]. ; i

ﬁu&wwww}o
RINITITINGTAD

C9H10C|2N20 + 130, — 2HNO; + 2HCI + 9CO, + 3H,0 (43)

In this work, the photodegradation of diuron aqueous solution was conducted in a pyrex
reactor. The content of the photocatalyst was kept at 1 mg of the catalyst per 10 ml of the
solution (initial diuron concentration of 10 ppm). The photodegradation of diuron solution
using zinc oxide or titania as a catalyst was achieved within 6 hours of UV irradiation. The
experiments under UV-light without catalyst, confirmed the absence of photolysis of diuron
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as shown in Figure 4.16. Figure 4.16 describe the relative decrease in concentration of diuron
as a function of irradiation time in the presence of catalysts, i.e. zinc oxide and titania are
shown in Figure 4.19 It can be inferred that, there is no appreciable degradation when the
aqueous solution is irradiated in the absence of titania or zinc oxide. Thedegradation of diuron
is less than 5% after 6 hours of irradiation without the catalyst, which is similar to the result
reported for self-degradation in the dark at room temperature indicating that hydrolysis of
diuron can be neglected [56]. The enhanced degradation by the UV/photocatalyst suggests
that both UV light and photocatalyst are required for efficient degradation of diuron.

4.3.1 Photodegradation of ¢is

Diuron is degracr : ==in the presence of zinc oxide.
Concentration of diuron w: \‘ ';X 20, concentration (C/Co) during the
photocatalytic degradation - ) us mass fractions of ammonia is

2inc oxide increases when the

higher amount of amm ' _ = A\ slionversion obtained from zinc
oxide powder ammonia-tr q 5 \ '\"‘x is evidently the highest value,
while in the case of zinc'ox? : \ the lowest conversion is achieved.

Thus, the photocatalytic b .a‘ f-'- a&pends upon the ammonia treating

process. It is found that dluro IS @
with ammonia at the fraction of CZ=ZRZJ4 2 4] espectively.

12,26, and 98%, when zinc oxide treated

'
-

According tsds A dation of organic pollutants

is described by the pseu {} first Grocre

¥

ﬂuﬂﬂﬂﬂﬂ%ﬂﬁﬂﬂi "
e ARANIATHI I YA« = o

|rrad|atloﬂ time, k,,,is the apparent rate constant of a pseudo first order reaction [37, 57].

app

After integration, Equation 4.4 can be simplified to Equation 4.5 where C, is the initial

concentration of diuron.

|n(&j Kyt (4.5)
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Kinetic studies were assessed by monitoring the change in diuron concentration at

certain interval of time (C) . The apparent first order rate constants (k,,,) were determined by
employing Equation 4.5 using the plot of In(C, /C)versus irradiation time t as shown in
Figure 4.17. The k,,, was determined by calculating the slope of the line obtained. The

resulting first order rate constant for each catalyst is shown in Table 4.3. The R® values are
between 0.9878 and 0.9983. The degradation curve can be fitted reasonably well by an
exponential decay curve suggesting the pseudo first order kinetics.

300

. y.

SU

Figure 4.16 Concentration .gf diuron with respect to the initial diuron concentration (C/Co)

P00 (35 11 100 S
YoIN M, % MM fartd O : without catalyst.
The reaction was conducte® using 1 m’ﬁoﬁlnc oxide per 1@l of solution and

q W}fﬁ RIUHBAIRI A Y
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Figure 4.17 First —orde; Y 4 ASE Y “degradation on zinc oxide at
M1 7% NH3, and <: 28% NHs.

oxide per 10 ml of solution and

The Langmuir-Hinshe!y T 2cs is the most commonly used kinetic

expression to explain g ki il tigmrocesses.

SU

(4.6)

dt " 1+KC =

‘a W
whereK, is the tﬂ ru(ﬁjstg m ﬂmﬁnmt&’a&mo‘rﬁequilibrium of Langmuir

— Hinshelwood E!?]. When the solutign is highly diyted, the term g can be neglected.

i@ T RN SUHN GBI B o0 s

order by“llssuming the term KC << 1 [37, 38]. Thus the Langmuir-Hinshelwood kinetics
expression can be written as Equation 4.7. The constants k. and K can be calculated from the

corresponding integrated expression in Equation 4.8.

r=-9C ke (4.7)
dt
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|n(CC )+ K(C, —C) =k Kt (4.8)

The data shown in Figure 4.16 were fitted against the Langmuir — Hinshelwood

kinetics model (Equation 4.8). The predicted k, and K according to the Langmuir-

Hinshelwood Kinetics are shown in Table 4.4. The results show that describes a linear
behavior and the R? values are comprised between 0.9968 and 0.9976. This clearly indicates
that the photodegradation reaction of diuron follows the pseudo first order Kkinetics.
Experimental data show that the photodegradation of diuron by using zinc oxide as the

% muir-Hinshelwood model
%NH;
K (min™) R?
0% 0.0439 0.9976
7% 0.0656 0.9976
28% 0.0634 0.9968

e RSB VRIS I B V) Frivstsiont

was also observeﬂldurlng the degradatlgn process. Flgure 4.18 shows the depletlon inTOC as
B VAN PV RPN 813
presence nd'th 0% %0 mineralization

of diuron takes place after 360 min of irradiation by zinc oxide with ammonia mass fraction

of 28%, 7%, and 0%, respectively. The plot between TOC vs. reaction time, indicates that
organics intermediates are produced in the course of the photodegradation process. After the
reaction time of 12 hours, it is found that the total organic carbon of the solution is lower than

the detection limit of the TOC analyzer.
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TOC/ITOC,

Figure 4.18 Total orga®< c: Whal TOC of diuron solution
_ - . &% on zinc oxide at various

mass fractior fin * % %% NH;, and ©: 28% NH;. The
reaction was cc ' ide per 10 ml of solution and using

the initial con#en

@
..-—'“:.:! : -‘;" =~:
4.3.2 Photodegrizati _— -

Figure 4.19 st i 's the UisEe™ maon by \otocatalytlc degradation using

the synthesized titania as tﬁe catalyst, concentrzﬁg;\ of diuron with respect to the initial diuron

concentration (ﬁ ul ﬁ ﬂm at various mass fraction
of ammonia. esults Indicate that the activity Itania is increased when the ammonia
mass fr se % und that diuron
is degr ﬁi&éﬁ?ﬁlﬁﬁnﬁ%y ﬁﬁ’ ﬂorst order plots

(Equatlon'4.5) are giving in Figure 4.20. The apparent rate constant can be determined from
the slope of curve in Figure 4.20, obtained as shown in Table 4.5. It is observed that the first
order kinetics does not provide good fit to the experimental data for all condition of ammonia
mass fraction. The data shown in Figure 4.19 are fitted against the Langmuir — Hinshelwood
kinetic model (Equation 4.8). The results are shown in Table 4.5. Experimental data show that

the photodegradation of diuron on titania is inconsistent with the Langmuir-Hinshelwood
model because R* value does not approach to 1.
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ial diuron concentration (C/Co)
wvarious mass fraction of
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Figure 4.20 First—order linear transforms of the photocatalytic degradation o titania at various
mass fraction of ammonia: A : 0% NHs, O : 7% NHs, and < : 28% NH;. The
reaction was conducted using 1 mg of titania per 10 ml of solution and using the

initial concentration of diuron is 10 ppm.
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Table 4.5 The apparent rate constant (k,,,), reaction rate constants (k, ), and the adsorption

app
constant (K) for the photocatalytic degradation of diuron using titania at various mass

fraction of ammonia.

Pseudo first-order model Langmuir-Hinshelwood model
%NH;
kapp(min'l) R2 k, (ppm/min) K (min™) R2
0% 0.0010 0.9992 0.0048 0.7716
7% 0.0013 0.0470 0.7405
28% 0.0021 0.0080 0.9178
Figure 4.21 snow: PR Y ) Organic Carbon) as a function of

of diuron in the presence of
: \ mineralization of diuron takes
place after 360 min of irrad’ e ) '"'~._ ass fraction of 28%, 7%, and 0%,
. . ' . WA . . .
respectively. Variation of am: Al n s; Whesized titania does not much affect
F Jias ) - " o

the TOC removal. TOC values ‘-& uring illumination, which indicates that
organics intermediates were p - dagradation process. The plot between
TOC vs. reaction tinggee—————— ';.‘[ oduced in the course of the
V. "y

photodegradation proL Mels found that the total organic

carbon of the solution is. I wer than the uctccuun imit of the3LDC analyzer.

AULINENTNEINS
PRI TUAMINYAE
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TOC/TOC,
o
(o))

250 300 350

e.al TOC of diuron solution
TOC/TOC £ - " on titania at various mass

( , )

\ \ "Wand O: 28% NHs. The reaction

\ 8\, per 10 ml of solution and using

fraction of ar
was conducied

the initial con' n

Both zinc oxide =4 : g4.0)° producing of radicals upon
the exposure with UV W) activities of zinc oxide and
titania, in regard of the {{J-rease 11 oes Centraticfffind the total organic carbon in

the solution, clearly mdma‘es the difference m.lge degradatlon efficiency. It was found that
the synthesized mlnerallzatlon of diuron
than titania, re ﬂless oﬂ?lower summue tﬂe amount of diuron adsorbed at
equilibr ﬂi It sorption isotherm
showedﬁ:ﬁyicﬁ ﬁﬁ ﬁ ﬁﬁ ﬁ‘n@ﬂ’ﬂﬂm n adsorbed at

equnlbrlu using zinc oxide as a catalyst larger than using titania as a catalyst.
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4.4 Intermediate Products of the Photodegradation

During the photocatalytic reaction, radicals formed from the photocatalysts react with
diuron to generate the intermediates. Structure of functional groups attaching to aromatic ring
of diuron is mainly responsible for the structure of the intermediates formed. Diuron clearly
offers two sites for the reaction, i.e. the aromatic ring and the aliphatic side chain [58].

4.4.1 Photodegradation on zinc oxide

was studied. The pH value iysted to the desired value in the
range of 3 to 10 by using *; 15 9 SR parameter, the amount of zinc
oxide powder added in®% ] -, o2 mg of zinc oxide to 10 ml of

the solution. Intermediz y , — \ S e photocatalytic treatment. In
Figure 4.22 - 4.23 and Ta' . 7 , l'-.\ &fion of diuron is reported for the
reaction at pH 3, 7, and 0. 3 usLed before irradiation and it was
not controlled during the c#r

in Figure 4.22. The transforn# ir‘

rate constants are shown in Tablzzibs i 2.4

[t&for the degradation are illustrated

verdin Figure 4.23 whereas the apparent

0 in Figure 4.22 were fitted against the

Jjable 4.6.
)

ML calcuffled reaction rate constants and

Langmuir-Hinshelwgcdi4
Vi

Table 4.6 shol{|} the appares

the calculated adsorption cprlsnltant based on the.&angmmr-Hmshelwood kinetic model of the

s EHIRBN TNEIN G
RN TAUNIINGIAE



OU
¢ Irradiation tinggymin)

QW?@\‘Iﬂ‘iﬁHNW]’mﬂ']ﬁﬂ

Figure 433 First order linear transforms of the photodegradation efficiency of diuron at

various pH values. The pH is adjusted at pH 3 (m), pH 7 (®), and pH 10 (A).
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Table 4.6 The apparent rate constant (k,,,), reaction rate constants (k, ), and the adsorption

constant (K ) for the photocatalytic degradation of diuron using zinc oxide at various pH of

solution.
oH of Pseudo first-order model Langmuir-Hinshelwood model
solution Kypp (Min™) R? K, (ppm/min) K (min™) R?
3 0.0068 0.0264 0.8246
7 0.8097 0.8916
10 0.1568 0.7612
The results in&icat 7 a on is increased with increasing

pH up to pH 7, beyond v
diuron is degraded by abc /. Generally, the effect of pH on
organic degradation assiste g0V = ' oxides has been related to the
establishment of acid-base equirll !_! : e surface chemistry of metal oxides in

water, as shown in thefollows

(4.9)

ﬁ u?nws‘ﬁsﬁ%ﬁﬁ*s

The pH twhlch the surface gf an oxide is L&harged is deflnbas the point of zero
chage @ ﬂ Wﬂ%q&g ﬂgﬂq ﬂﬂ is about 9 [18].
The effeq of pH e p otocatal ic performance can be explained in terms of electrostatic
interaction between the catalyst surface and the target substrate. It is expected that this
interaction affects the encounter probability between hydroxyl radical and diuron. The
reaction would be enhanced or hindered depending on whether attractive or repulsive forces
prevail, respectively. Diuron is negatively charged above its pKa (2.68), whereas catalysts are
positively charged below pH ~ 9. Optimal conditions were found at pKa < pH < pHy, at
which the positive charged zinc oxide and negative charged diuron should attract each other
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[18, 29, 59]. Other concomitant effect can come into play. For example ZnO can undergo
photocorrosion through self-oxidation.

ZnO0 + 2h" — Zn* + 050, (4.12)

In particular, ZnO powder exhibit tendency to dissolve with decreasing pH (Eq.
4.12) [18].

Zno + 2H" — k- (4.12)

Zno 1.l (4.13)

Moreover, the S inert Zn(OH), surface layers

upon UV irradiation (Ec 0 Ssleous media [18].

2zn0 *+ W rAe) AN+ O + 4H' (4.14)

Therefore, the reduc#on JEEE4< <%

high pH values can originate froZiig i 2.4

tivity of ZnO at exceedingly low and

hemical corrosion of the catalyst from
alkaline dissolution aiz A )

v ¥

The results redJding Tic e Siied ardlhown in Figure 4.24-4.26. The

total number of intermediaaes are detected by Iﬂ_c from the reaction at pH 3, 7, and 10, are

8,9, and 9 kirﬁu rﬂm ﬂﬂ ‘ithese intermediates are
expected to be vglly low, since the Intensities 0 C signals for the intermediates are
much | ification of the
a1t} RE a4 atak v v i

quantltatl%e results of the intermediates were not obtained. Nevertheless, based on the

intensity of the signal, it was found that the concentration of the intermediates also changes

along the course of the photodegradation.
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Figure 4.24 HPLC peak b
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“Nring photocatalytic degradation
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Figure 4.25 HPLC peak height of intermediates generated during photocatalytic degradation
on diuon on zinc oxide and the initial pH of 7.
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20000 +

16000 -
12000 -

8000 :
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4000 -

—e—Int_A:RT=1.1
- Int F:RT=1.7 mi
--o- Int J:RT=2.3

---a--- Int_ D : RT=1.5min
—e—Int H:RT=2.1min
—e—Int M : RT=2.7 min
Figure 4.26 HPLC peak he’ Jring photocatalytic degradation

on diuon on zinc

Concentrati® ;_—* ; tion time, although the data
show some fluctuatiol ™24 =3 = witermediates are presented at
very low concentration. =#wever these small molecules are & detectable by HPLC analysis.
The effect of different pH‘Qﬂiiiuron solution @gfing zinc oxide as catalyst and behavior of

ermetiees SLLBEF DI BN P& DR mos srotocepacion

intermediates aré“formed after 30 m putes of |rrad|at|on time. Several intermediates are
ﬁmmmﬁ;mmma g
remain s nc ur

Comparison of the intermediates formed from the reaction at different pH, reveals
common intermediates as well as different intermediates. The fact that different pH of the
solution produces different combination of reaction intermediates might be the result of
charge on the surface of catalyst. Attempts were made to identify the intermediate products

through analysis using LC-MS.
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Samples collected at different irradiation time were freeze dry for the purpose of
concentrating the intermediates. These powders were resuspended in 70% acetronitrile per
30% water and injected into LC/MS. Diuron peak was observed as reported in literature at
231 m/z and 232 m/z in negative and positive detection mode respectively.

Two assumptions were made for the identification process. First, m/z values that
were not observed in the mass spectrum of standard diuron were considered to belong to
intermediates products derived from diuron. Second, peak of all m/z values reported were

considered as pseudo molecular ion pexa Wl § 3t fragmentator voltage of 120 V was used for

structural determination of interr;

Table 4.7 Possible intermec. : Ssszadation of diuron on zinc oxide at
pH of 3, 7, and 10.

Compound

pH7 pH10

[61] ﬁ H




Table 4.7 (continued)

Compound

Propose structure

pH3

pH7

pH10

[44]

10

[1, 60, 64]




Table 4.7 (continued)

56

Compound Propose structure pH3 pH7 pH10
11
L 4 L 4
[42, 61,
64]
12 4
13 L 4
14
ﬂuﬂ ININTNENAT
[60, 62,

6“%Wﬂa

9

zﬁ&awqwawaa




Table 4.7 (continued)

Compound Propose structure pH3 pH7 pH10

15

[42, 60,
66]

16

17
[60, 64]

HO OH

H
cl N

18 ﬁ *
c O\( \CHO
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Table 4.7 shows representative of all intermediates appeared in LC/MS spectrum,
which includes the structure of each unknown intermediates evaluated. Products were
identified based on the molecular ion and mass spectrometric fragmentation peak. The results
reveal that different pH of solution has different adsorption properties, which affect the
reaction between diuron and the catalyst surface.

The addition of hydroxyl group onto the molecule, which supports the previous
reports about the attack by hydroxyl radicals during the photocatalytic reaction, is also

evidenced. The sites for hydroxyl radizg: tack can be divided into two positions, i.e., the

on zinc oxide and on titanig otocatalytlc degradation pathways
remained the same. They I 2t10 — matic ring and of the side chain

(resulting in compound 4. 12 - or dechlorination of the aromatic

The sites for hyr / % NI %ad into two regions, the aromatic
ring and the alkyl group. s the aromatic ring, it is more

energetically favorable to!

identified intermediates, a po ntl

is shown as follows: _ ,.1 4

¥ chlorine atoms [42]. From the

Vil the reaction with the aromatic ring
7 R " cl
.,i NI

f uﬂmsfnswé%%f
ammﬁ%ﬂiﬁ%ﬁtﬁﬁmaﬂ

Figure 4.27 can continue with the reaction with another hydroxyl radical and O, to

add another hydroxyl group to the aromatic ring [67] as shown in Figure 4.28.
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OH /O.ﬁ

C 0=o0 S ¢ OOH
HO HO K OH HO CW S H HO OH
~ e XX
o] % cl % cl % Cl %

Figure 4.28 Hydroxylation reaction.

The attack of hydroxy; /"m of methyl group through hydrogen
atom abstraction in energetig é@dation of methyl group yields an

alcohol, and subsequently 6+ OXi - _ehyde and carboxylic acid, which

/ HOO* CHZ0H
—N — %—N
“cH H20
3 CH3

;

The aﬁ/ﬂﬁﬂmﬂﬁlﬁﬁ:ﬂtﬁjﬁﬁsubstitution of chlorines
and hydroxylat oy X t a graddtibn®@rocess of diuron before
opening of the aromatic ring. Primary gittack of diurgg,molecules by tieshydroxyl radical is

QT ARAPTOUHANLAIARE ot

attack ardfexpected to be located on atoms with largest electron density [42].
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4.4.1.2 Effect of UV Light

Photodegradation of diuron used zinc oxide as catalyst, for investigate the affect of
UV-lamps to intermediate products. In this work, UV-lamps used were UV-A and UV-C.
UV-Ais a long wave (wave length ~ 360 nm), of which the energy is around 3.10 — 3.94 eV
per photon. UV-C is a short wave (wave length ~ 254 nm), of which the energy is 4.43 — 4.40
eV per photon [68]. Both of UV-lamps were 1.5 Watt in power. In this process, the catalyst is
activated by UV radiation. The photocatalysis can be defined as the acceleration of a

t that can be activated by the absorption of light of

photoreaction by the presence of a catalys
2\ 2ide). From the research, it was found that
the use of UV-A irradiation Vi 7 .ya, , é sis can degrade diuron by less than
5% even after 6 hours of s e D) W2 Ol =i photolysis by UV-C irradiation

r

UV-C irradiation with ces# AR ‘ catalyst.

can degraded diuron up @ ;s intermediates generated from

1.2 -

0.8 1

0.6 1

cIc,

0.4 1

0.2 1

AU NN
SQRARHVIUNIA AR

In Figure 4.31 shows the effect of UV-irradiation on degradation of diuron using
zinc oxide as catalyst. The results reveal that diuron is degraded by 98% and 95% from the
use of UV-A and UV-C respectively. The first orders plots are shown in Figure 4.32 and the
apparent rate constant are shown in the Table 4.8. The reaction rate constant and the
adsorption rate constant of diuron in the investigation of the effect of UV lamps based on the
Langmuir-Hinshelwood model are shown in the Table 4.8.
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o
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Figure 4.31 The effect 0 R S the degradation of diuron

In(C,/C)
!A
= o

o
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o
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R8N IafrIneay
Figure 4%2 First order linear transforms of the photodegradation efficiency of diuron, (e)

UV-A, (m) UV-C on the degradation of diuron using zinc oxide as catalyst.
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Table 4.8 The apparent rate constant (k,,,), reaction rate constants (k, ), and the adsorption

constant (K') for the photocatalytic degradation of diuron using zinc oxide at different UV

lamp.
Pseudo first-order model Langmuir-Hinshelwood model
Lamp
Kapp (Min'™) R? k, (ppm/min) K (min™) R?
UV-A 0.0106 0.2073 0.0634 0.9968
Uv-C 0.0081 0.0031 0.9991
The results show = n follows the pseudo first order
kinetics and consistent Wit
Figure 4.33 an 4.~ o \ enerated during photocatalytic
degradation of diuron 7 siamps. It was found that 10

Peak height (a.u.)

0 100 200 300
Irradiation time (min)

-—-e---Int A:RT1.17min --or- Int B: RT15min —=a—Int C:RT 1.8 min
- -Int D: RT19min —a—-Int_ E:RT 2.1 min —e— Int_F: RT 2.3 min
—0—Int G:RT25min  —o—Int H:RT2.7min —e—Int | :RT 3.6 min
—o—Int_J:RT 4.9 min

Figure 4.33 HPLC peak height of intermediates generated during photocatalytic degradation
on diuon on zinc oxide using UV-A as light source.
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Figure 4.34 HPLC pea#®ci-

on diuon on

g photocatalytic degradation

It was found that the (e e intermediates also changes along the

course of the photodearadatig mocnerated and consumed within the

short time. The UVaiee———————————— <43, The use of UV-A, most

intermediates are for . . 1.. e whereas the intermediates
1 . .

from UV-C are generat==after 30 minutes. I he structures ¢=#he intermediates product were

identified by LC-MS as sflama in Table 4.9. @#was found that the result is contrary with

pLc ey} ) BLAIBELINS N &1 TS be sogesc it cac

unknown intermf¥liiates are presentedfat very low concentration. However these small
=9

"ERRTAIRTRATINEN Y
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Table 4.9 Possible intermediates generated from photodegradation of diuron on zinc oxide
using different kind of UV-lamp.

Compound Propose structure UV-A uv-C

[60]

[61]

[1, 60, 61,
65]

[44]

ATMTENUUING WY

CHs
cl

Iz
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Table 4.9 (continued)
Compound Propose structure UV-A uv-C
HO
NH,
| N
8
L 4
[62] o Z
Cl
C'\f
5 ol
4
[69]
10
*
[62]
11 L 2 L 2
12
* *
[70]
13
[66] ¢

AU NS

na

14
[1, 60, 64]

HO

qma@@yyﬂmm

QL
-

Y18 Y




Table 4.9 (continued).
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Compound Proposed structure

UV-A

uv-C

15
[42, 61,
64]

16

17

18
[70]




Table 4.9 (continued).

67

Compound

Proposed structure

UV-A

uv-C

19
[60, 62,
64, 65]

20
[60, 64,
65]

21
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Table 4.9 (continued).
Compound Proposed structure UV-A uv-C
Cl
PO
Cl H N/
22 |
al OH COOH ’ ’
[42, 60]
Cl
23
L 4
[42, 62]
o T .
Cl
18N INGINT
; Ok ‘
24 0
O L it
Y WANIAIUWHRTING 1A L
q _ ° / OH

Several transformation products were detected. They correspond to the following

reactions: the hydroxylation occurring on the aromatic ring (compounds 5, 8, 13, 16, 18, and

20), dechlorination (compounds 1, 2, 6, 10, 14, and 17), demethylation (compounds 2, 5, 10,

12, 15, and 19) and condensation (compound 19).
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Diuron is degraded into smaller compounds during photodegradation process. At the
same time, these radicals generated during photodegradation can form conjugates and resulted
in a larger molecule. Larger molecules were observed in this experiment. For larger
molecules, more complex combination of radicals and rearrangement can occur. More

information is needed to determine the structure.

4.4.2 Photodegradation on titanium dioxide

; atalyst, intermediates were also
detected by HPLC during thg ' SWSiire 4.35-4.36 and Table 4.9 shows

are illustrated in Figu#® ad prets are giving in Figure 4.36
.- % he data shown in Figure 4.35
%, The results are shown in Table
4.10, including the appaient wn iate constants and the calculated
adsorption constant based it “netic model, of photodegradation

of diuron at various pH.

1.2

1

0.8 }\\'Hn

0.6

{0 ANV

Irradiation time (min)

Figure 4.35 Effect of pH of the solution on photodegradation efficiency of diuron on titania.
The pH is adjusted at pH 3 (m), pH 7 (@), and pH 10 (A).
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Table 4.10 The apparent ri

constant ( K ) for the photoca £iyt4, _ﬂ
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ation efficiency of diuron on
vPH 3 (m), pH 7 (e), and pH 10

& onstants (k,), and the adsorption

JrGi¥ using zinc oxide at at various pH of

solution. LM A T
oH of Pseu = i -Hinshelwood model
solution kapp(min}) 7 R2 &(ppm/min) K (min—l) R2
3 4 I d0.2450 0.7069
¢ o el
7’4 W] NN TINEINY | =
0.0012 0.9672 0.9512 0.6677 0.8404

The results indicate that the photodegradation is increased with decreasing pH down

topH 3. At pH 3, 7, and 10, it was found that diuron was degraded by about 46, 46, and 41%,
respectively. It can be seen that the pH has a weak effect on the degradation of diuron.
However an acidic condition seems to accelerate the degradation kinetics of diuron in the
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aqueous solution. Since the reaction mainly occurs at surface of the catalyst therefore, the pH
effect should be explained by differences on adsorption with pH [71]. It has been reported
that the point of zero charge for titanium dioxide is about 5.6-5.8 [72]. In neutral solution, the
surface charge is neutral, whereas at pH lower than 5.6, the surface charge is positive. As a
consequence, in acidic solution, molecules are attracted to the surface by their electronegative
part [71]. For pH higher than the point zero charge, the surface becomes negative charged. At
pH < pH,, the surface is positive charged according to the following equilibrium:

Ti— OH +H' w} (4.15)
Ti~ \ (4.16)
S —
When titanium dicig %:‘\\\ alyst and the solution was adjusted
to different pH, various e \ etected by HPLC during the

photocatalytic treatmer#® d.5™4.39.There are 12, 13, and 16

kinds of intermediates A\ Snd 10, respectively. Although
:"a intermediates are expected to be
very low, since the intensiti ntermediates are much lower than

that of diuron. The conce# Pt AISY change along the course of the

photodegradation.

14000
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o
o
o
o
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--o-=|nt B:RT=1.0min - 4~ Int_E: RT=1.4 min —o—Int H:RT=1.7 min
— & —|nt_|: RT=1.8 min —o—Int K:RT=2.0 min —eo—|nt L:RT=2.1min
—e—|nt_ N:RT=2.3min —e—nt_ O:RT=2.5min ---¢--- Int_ P : RT=2.7 min
—&— |nt_R: RT=3.8 min —2— Int_ W : RT=5.1 min --0--Int Y :RT=5.4 min

Figure 4.37 HPLC peak height of intermediates generated during photocatalytic degradation
on diuron on titanium dioxide and the initial pH of solution 3.
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Figure 4.39 HPLC peak height of intermediates generated during photocatalytic degradation
on diuron on titanium dioxide and the initial pH of solution 10.
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The intermediate products are presented at very low concentration, the data show
some fluctuation. Concentration of intermediate increase with irradiation time, and
intermediate can be disappear even after 6 hours, some intermediate remain stable even after

6 hours of the reaction.

Comparison of the intermediates formed from the reaction at various pH of solution,
reveals common intermediates as well as different intermediates. The attempts were made to
identify the intermediate products through analysis using LC-MS. The structures of all

intermediates detected are proposed in

Results obtained ' '(éd as photocatalyst show that the
distribution of products det:” > pks SN0 neutral solution, the attack of
the hydroxyl radicals is loc22 N Sssand on the methyl groups. In acidic

Table 4.11 Possible in’ 4 [N Sadation of diuron on titanium

Compound pH7 pH10
1
[60]
ﬂuEJ |
i .

hmaﬁﬁ@wnﬂmaﬂ

(]
3 )}\ "

L 4 L 4 L 4
HO/ = NH N<CH3

[44]




Table 4.11 (continued).
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Compound

Structure

pH3

pH7

pH10

Cl

Cl N
H




Table 4.11 (continued).

Compound Structure pH3 pH7 pH10
11
[66] ¢
12
4 L 4
[42, 61,
64]
13 L 4
14 L 4 L 4
o

qmaj@ﬁuiwm ngae
v Q%




Table 4.11 (continued).
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Compound Structure pH3 pH7 pH10
Cl
(6]
)J\ /CHZOH
Cl N N
" |
Cl \/\OH o CH
16 [60, 64, 4
65]
17
[60, 64]

18

[42, 62]

zﬁﬂﬁﬂﬂﬂéﬂt
ARIRNTULNING

jf/\ )L e
D\ )J\ / oM

n7
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Table 4.11 (continued).

Compound Structure pH3 pH7 pH10

HO OH

19

Different pH

reaction between diurc:

&, properties, which affect the
ible degradation pathway is
proposed in these steps. _ ring by OH’ radical without
dechlorination or alky: \ Yies of oxidation process that
eliminated alkyl groups \ olved the oxidative opening of

aromatic ring, leading to sn: e ~Mcies.

4.4.2.2 Effect of

Ir‘d

Figure 4.40 si '_ / 1 = dluron using titanium dioxide

as catalyst and the UV # adlatlon source is either UV-A o=JV-C. The results indicate that

photodegradatio i ir h 90 h|n 6 h, while the use of
UV-A results u‘ﬁw o Jde a c&i—( ate achieved with UV-C

is partly due to pm)tolysw of diuron byéJV -C. The f|r t orders plots areﬂown in Figure 4.41

and th (Tm ﬁm y%ﬁrﬂg{wﬂﬂﬁ ﬁ” constant and the
adsorptloq rate constant of diur vestigation ct ps based on the

Langmuir-Hinshelwood model are shown in the Table 4.12.
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Figure 4.40 The effect 0 i degradation of diuron using

titania as c#”

.‘ L] ‘ -
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Figure 44 er linear transforms of the photodegradation efficiency of diuron, (e)

:-l?ﬂ

0'
0

V-A, (m) UV-C on the degradation of diuron using titania as catalyst.
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Table 4.12 The apparent rate constant (k,,,), reaction rate constants (k, ), and the adsorption

constant (K ) for the photocatalytic degradation of diuron using titania at different UV lamp.

Pseudo first-order model Langmuir-Hinshelwood model
Lamp
Kapp (Min'™) R? k, (ppm/min) K (min™) R?
UV-A 0.0021 0.8847 0.0025 0.1218 0.9979
Uv-C 0.0041 0.0952 0.8866
The results show 2 J n on titania is inconsistent with
the Langmuir — Hinshelw~ and UV-C because KC is close
to 1.
Figure 4.42 ar Sntermediates generated during
photocatalytic degradation Py S N \using different UV-lamps. It was

found that 11 and 9 kinds™ o
respectively. The intermediat®s
LC-MS as shown in the Table Az 82/t 24

wnen UV-A and UV-C was used,
°LC and identified the intermediates by

¢

r
1
- i¥

AULINENTNEINS
PRI TUAMINYAE
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Figure 4 3 HPLC peak height of intermediates generated during photocatalytic degradation

—e—Int F: RT=1.8 min —o—Int G:RT=2.0 min

on diuon on titanium dioxide using UV-C as light source.

The intermediates are produced and degraded fast during the reaction and some

intermediates remain stable even after 6 hours of the reaction. It was found that the

concentration of the intermediates also changes along the course of the photodegradation. The

structures of the intermediates product were identified by LC-MS as shown in Table 4.13.
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Table 4.13 Possible intermediates generated from photodegradation of diuron on titanium

dioxide using different UV-lamp.

Compound

Proposed structure

UV-A

uv-C

[60]

[1, 60, 61,
65]

[44

Qv
d

[62]

Cl




Table 4.13 (continued).
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Compound

Proposed structure

UV-A

uv-C

[69]

CI: :
Cl N=—/C=—7=0

[64]

10

[66]

11

12

[70]

13

[66]




Table 4.13 (continued).
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64, 69

Compound Proposed structure UV-A uv-C
14
L 4
[1, 60, 64]
15
[42, 61, L 4
64]
16 TS
. (AU
= QR ‘
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cl CHs
o}
)J\ /CH(OH)2
cl N N
S

CHj

Compound Proposed structure UV-A uv-C
Cl .
al \ OH CHs
19 K
[60, 64, c *
65]
19 L 4
20
[60, 64] HO *
= /
> N
AUINININYINT
v 7CI S € o o o/
MARINARINGIAE
cl \/OH (|:H3
21 h i
j@ A e .
[42, 62] “ N T




85

UV-light also affects the generation of intermediates Diuron is degraded into
smaller compounds during photodegradation process. The degradation rate when using UV-C
on titania was faster than using UV-A, the formation of intermediates when using UV-C was
also rapid. The possible degradation mechanism of diuron on titania is proposed in Table 4.13

are similar to the mechanism of diuron on zinc oxide.

4.4.3 Effect of type of photocatalysts

) _ g from the reaction using different
photocatalysts, i.e., titanium.z. N i ' ZS common intermediates as well as
i i ' : e intermediate products through
analysis using LC-MS. The - “Sssadation of diuron generates lots of
intermediates. According f- 4#C e med mass spectrum, it indicates
wediate presented in Figure 4.30
Ndiates. The structures of all
intermediates detected are 0 :i N1 %ecular mass of each product was
confirmed by its detection ir JF JF - add < il ~ % % 1'ne results confirm that diuron is

degraded into smaller cor# e N. While some intermediates are

further degraded by the photo#ata %

molecules is also observed. e ,1-

njugation of intermediates to form larger

—

Table 4.14 Possible int j 1ediates y o avii[y ode jatlon of diuron on zinc oxide

and titania.
ﬂummmwa' N3
Compound | Proposed sﬁ;ucture - Znou TiO,
2
) cl
[1, 60, 61, L 2 L 4
65] cl NH,
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Compound

Proposed structure

Zn0O

TiO,




Table 4.14 (continued).

Compound Proposed structure ZnO TiO,
11 *
12 'S
[70]
13 TS
[66]
14 TS
[1, 60, 64]
2
16 L 2 L 2
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AT NE Y

cl
O
)J\ "
/
cl N N
A

COOH

YN Y

Compound Proposed structure ZnO TiO,
OH
Cl N
] ]
CH
P )J\ ah
Cl H N
17 | .
[70] cl
Cl
18
[60, 62, L 4 L 2
64, 65]
Cl ™
v
Cl :; H | Ixr
¢ a QW
fl Emi WEIN°?
L 4
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22

QWMWW?ﬂH

N 0
|// )‘\AH/H \TH “
Cl HO H | N

Compound Proposed structure ZnO TiO,
cl
O
)J\ /CH3
Cl N N
"
20 L 4
[60, 64]
21
[42, 62] ¢
:’-’ ¢
CH(OH),
ATEIN ﬂﬁ%"ﬂ ke
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Different type of catalyst has different surface properties, which affect the
interaction between diuron and the catalyst surface. The dissimilarity in the degradation
mechanism arises from the difference in interaction between the catalyst surface and the
adsorbed diuron. As many of the intermediates listed in the Table 4.7, 4.9, 4.11, and 4.13 are
common with those reported in other researches, it confirms that the main degradation
pathway of diuron using zinc oxide and titanium dioxide follows the mechanisms previously
proposed. They included hydroxylation of the aromatic ring and of the side chain (resulting in
compounds 17, 19, 20, and 21), dehalogenation or dechlorination of the aromatic ring
(resulting in compounds 1, 4, 14, anc'y' & § fojnethylation (resulting in compound 12), and

condensation (resulting in compg

According to f : N — npendix C, some intermediates
We/MS (MS/MS  detector, mass
spectrometric detector) wh ## ) % intermediates. In this study, the

product identified from
investigation of interms "pendix D. It can be the result
from the fact that the cc “diates are very low. Therefore,

signals from unknown inter Aot explicit.

. y.
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CHAPTER YV

CONCLUSIONS

5.1 Conclusions

3. The photodegr«# f [ " \ W do first order kinetics and the
) Wconsistent with the Langmuir-
Hinshelwood mor'4 .= e ' N “\diuron by titania was inconsistent
: ~ proximately 1.

re detected, suggesting that

conjugation of rad #al :‘%

are formed during the "k ,{ an.

aGdtion occurrs. Many intermediates

5. When com g2 457 photocatalysts, i.e., zinc

; ;
oxide and t. - . #lilar to one another while

some are dif l 2nt. This suggests the involvefdnt of catalyst surface with

dluro dr<5< adlcals durln otodegradation.
6. The st c&j G'tﬂpﬁtodegradatlon process

is affect?d by photocatalyst‘pH of solutiga, and UV irradiggjon.

ammmmumwmaﬂ

5.2 Recommendatlons
Recommendations for the future work, based on the results of this work, are following.

1. Further identification of the adsorption of diuron on the catalyst surface by using
NMR analysis (solid).
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Investigation of the reaction for long period of irradiation time for photocatalytic
degradation of diuron, to achieve 100% conversion and 100% mineralization.
Monitor the concentration of the radical such as CI°, OH".

Identify adsorption isotherm type by sum of error method.

Quantity concentration of the intermediates.

AULINENINYINS
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APPENDIX A

NMR STUDIES

BC NMR analysis was conducted on the diuron solution to determine its chemical
structure. Figure A.1 shows C NMR spectra obtained from diuron solution in methanol
i 3. (CD;0D) with the presence of TiO, and ZnO
in the range of chemical shift frox: \ ' (b) 110-240 ppm. In general, all spectra
show peaks in the resonance 2 ; é pm), o-alkyl carbon (50-110 ppm),

(CD;0D) and from diuron solution in

aromatic carbon (110-16(ws | c&on ilSO 220 ppm) [73]. The signal
corresponding to carbon 110t r sulvent appears at 48-49 ppm. For
diuron, it has 9 atoms o¥*Car", \ Lhe " 'C NMR results also indicate 9

atoms of carbon in the 4#cc 4 e F "' \rUScorresponding to the chemical
| ' 7_ %%31.107 ppm, respectively. The
chemical shift of C; appe? 7 ) I %, i\ alkyl carbon of which the signal
' ' nd ZnO had not chemical shift

™ spension had to filter the catalyst

appears at 36.732 ppm.
compared diuron. Due to t,

from the diuron solution befoj ar
light and catalyst. ]

"L t, the reaction can not occur without

LT T

'TJ ution in methanol (CD;0D)
and diuron solution in i tharic: L] lin the range of chemical shift

¥

from (a) 2.5 — 3.5 ppm, (b)‘3 .5 - 6.5 ppm, and (c) 7.2 -7.8 ppm. In the Figure A.3, the NMR
lines in 3.39 tg Eﬂﬁﬂﬂﬁlﬂg tlc protons appeared at
7.29, 7.31, and%u‘ﬂ em p was observed at 2.99
ppm as a sin Iet’ﬁvaj The condition offliuron with Ti@s and ZnO also@ad not chemical shift

comparﬂ NFbadiddER g V1B 18 &

Figure A.3 sho 'y'
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Figure A.2 Chemical structure of diuron.
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Figure A.3 'H NMR spectra from diuron solution in methanol (CDsOD), diuron solution in
methanol (CD3;0D) with TiO,, and diuron solution in methanol (CD;OD) with
ZnO in the chemical shift from (a) 2.5-3.5 ppm, (b) 3.5-6.5 ppm, and (c) 7.2-7.8
ppm.
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APPENDIX B

DIURON CALIBRATION CURVE
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APPENDIX C

LC/MS MASS SPECTRUM

All samples were sent for analysis at Central Laboratory (Thailand) Ltd. Co. During a
sample injection, three types of diagrams were obtained: chromatogram from UV detector,

chromatogram from mass detector, and mass spectrum. Chromatogram from UV and mass

detector spanned the LC runtime. Th “#m is obtained at a specific retention time

C.1 Mass spectrum of diur

1 frg pé ation by ZnO.

C.1.1pH3
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mAU T
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Figure C.1 Chromatogram of diuron solution photodegradation at pH3 obtained from UV
detector and mass detector are displayed in (a). Mass spectrums were obtained
using fragmentator of 120 V at various retention times as sown in (a)-(p).
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Figure C.2 Chromatogram of diuron solution photodegradation at pH7 obtained from UV
detector and mass detector are displayed in (a). Mass spectrums were obtained

using fragmentator of 120 V at various retention times as shown in (a)-(q).
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Figure C.2 (continued).
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Figure C.3 Chromatogram of diuron solution photodegradation at pH10 obtained from UV

detector and mass detector are displayed in (a). Mass spectrums were obtained

using fragmentator of 120 V at various retention times as shown in (a)-(n).
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Figure C.4 Chromatogram of diuron solution photodegradation by UV-C obtained from UV
detector and mass detector are displayed in (a). Mass spectrums were obtained

using fragmentator of 120 V at various retention times as shown in (a)-(n).
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Figure C.4 (continued).
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Figure C.4 (continued).
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C.3 Mass spectrum of diuron solution from photodegradation by TiO..
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Figure C.5 Chromatogram of diuron solution photodegradation at pH3 obtained from UV
detector and mass detector are displayed in (a). Mass spectrums were obtained

using fragmentator of 120 V at various retention times as shown in (a)-(p).
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Figure C.6 Chromatogram of diuron solution photodegradation at pH7 obtained from UV

detector and mass detector are displayed in (a). Mass spectrums were obtained

using fragmentator of 120 V at various retention times as shown in (a)-(r).
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Figure C.7 Chromatogram of diuron solution photodegradation at pH10 obtained from UV

detector and mass detector are displayed in (a). Mass spectrums were obtained

using fragmentator of 120 V at various retention times as shown in (a)-(n).
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using fragmentator of 120 V at various retention times as shown in (a)-(r).
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APPENDIX D

LC/MS/MS MASS SPECTRUM

D.1 Set mass spectrum of intermediates for analyzed by MS/MS detector

T T T T T T d
270.0 280.0 290.0

Figure D.1 Chromatogram of diuron solution photodegradation (set mass ~ 213) obtained
from LC/MS/MS displayed in (a) (f).
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Figure D.1 (continued).
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104.4 104.6 104.8

Table D.1 Mass spectr
LC/MS/MS.

ion of diuron as analyzed by

m/z

H (i ——— -

Y )
{1} 213 (parent ion)

ANUAALY.

CH,OH

|| 104 (daughter i
OH—C—N/ (daughter ion)

CHj




diuron concentration (ppm)

APPENDIX E

ADSORPTION OF FILTER TEST
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F.1 3,4-Dichloroaniline

11. TOXICOLOGICAL INFORMATION

Acute toxicity
LD50 Oral - rat - 545 mg/kg

Skin corrosion/irritation
Skin - rabbit - Severe skin irritation

Serious eye damage/eye irritation
Eyes - rabbit - Severe eye irritation

Respiratory or skin sensitization
May cause allergic skin reaction.

Causes sensitization.
Germ cell mutagenicity

Genotoxicity in vitro - Human - lyr»
Sister chromatid exchange

Carcinogenicity

Reproductive tox:
no data available g

Specific target o/
no data available

Specific targ ™ T
no data available

'12. ECOLOGICAL INFC

Toxicity
Toxicity to fish W Maow) -7-10 mgll -96,0 h
Toxicity to dap’ 20 mg/l -48h
and other aq|
invertebrates.

Toxicity to algae

mg/l -28d
Persistence and degra Sbilit’y
Biodegradability

B
Bioaccumulatiyve pof Y

Bioaccun| uli §n
o —

Mobility in sGit =
no data available | |

PBT and vPvB = :ssment
no data available

Other adverse effe

Wi ’B“W‘Em‘? wENI
PRI TUAMINYAE

een algae) -4,9mg/l -72h
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F.2 3,4-Dichlorophenol

11.
111

12.6

TOXICOLOGICAL INFORMATION
Information on toxicological effects

Acute toxicity
Skin corrosionfirritation
no data available

Serious eye damage/eye irritation
no data available

Respiratory or skin sensitization
no data available

Germ cell mutagenicity
no data available

Carcinogenicity

IARC: reater than or equal to 0.1% is identified as
| _db IARE.:

Specific targe
no data availab!~
Specific targ=.
no data availah'

no data available
Potential he-

resps atory tract irritation.

Ingestlon
Skin
Eyes

¢in. Causes skin irritation.

Signs and Symp’ :
Cough, Shortnes. iti «"8 s, Central nervous system depression,
prolonged or repeater ; : /es., To the best of our knowledge, the
chemical, physical, a | thoroughly investigated.

Additional Information
RTECS: SK8800000

ECOLO( i g

Toxicity -

Toxicity td ?’1 bt
Toxicity to deTTgia aie 05 -2, kgl -24h
other aquatic 1§
invertebrates?

dF

Toxicity to algae ‘ =% Growth inhibition EC@fPseudokirchneriella subcapitata - 3,2 mg/t - 96 h

REINENINEING

cumulative potential
a available

iﬁ%ﬁﬁmzuum'mmaﬂ

o data available

Other adverse effects
Toxic to aquatic life.
no data available
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F.3 1-Methyl-3-phenylurea

11.  TOXICOLOGICAL INFORMATION
11.1  Information on toxicological effects

Acute toxicity
LDS50 Orat - rat - 3.440 mg/kg

Skin corrosionlirritation
no data available

Serious eye damagel/eye irritation
no data available

Respiratory or skin sensitization
May cause sensitization by s'sin .|

Germ cell mutagenic

Genotoxigity in vivo,
DNA inhibition

Carcinogenicit:

IARC:  procy t pre. er than or equal to 0.1% is identified as

onfifned s - !ARC.
no data av, J
Specific taro- F &

no data av.

!

[
-
l‘ .A_
"N
auC:z respiratory tract irritation.
:,r ig . 3h skin. May cause skin irritation.
A
Signs and Sympt § - r_r E
To the best of our .wl e and toxicological properties have not been thoroughly

investigated.

Additional Informatioz. fi:’_;: b 24
RTECS: (784704 =

12. ECOL%

121 Toxicit 4
no data a.. =g

12.2 Perslstemt | |d degraga
no data ave'le

12.3 Bioaccumuiat potentlal
no data availa

‘“ﬂ?%&l?"{lﬂﬂ‘iw BINT
ama\mimumwmaa
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F.4 3,4-Dichlorophenyl isocyanate

11. TOXICOLOGICAL INFORMATION
11.1  information on toxicological effects

Acute toxicity
LD50 Oral - rat - 91 mg/kg

LCS50 Inhalation - rat - 4 h - 2.700 mg/m3
Remarks: Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Eye:Lacrimation.
Behavioral:Ataxia. Gastrointestinal:Changes in structure or function of salivary glands.

Skin corrosionfirritation
no data available

Serious eye damage/eye irritation
no data available

Respiratory or skin sensitizatio
Prolonged or repeated exposu g -j) reactions in certain sensitive individuals.

May cause allergic respi

Germ cell mutageni
no data available

Carcinogenicity,

than or equal to 0.1% is identified as
‘RC.

no data avauau:

Specific tarr
Inhalation -
Specific target
no data avai'

Aspiration®
no data availab!

Potential hez 4

Inhalation
Ingestion
Skin
Eyes

W 'ory tract irritation.

‘ ‘oug | skin. Causes skin irritation.

Signs and Symptor & of ¥,
burning sensation, Cough, w
Repeated exposure may ¢,
toxicological propertie

Additior 1 0
RTECS R

ess of breath, Headache, Nausea, Vomiting,
gur knowledge, the chemical, physical, and

12, ECOLOGRML

121 Toxicity mn
no data avai £ 1§

12.2 Persistence and degradability
no data avaulabl

ﬁﬁﬂﬁﬁﬂﬂﬂiﬂﬂﬂﬂi

a available
12.5 Results of PBT and vPVB asuss‘en

QMEEM?CUNWI"MHW@H
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F.5 1,2-Dichloro-4-nitrobenzene

11. TOXICOLOGICAL INFORMATION

Acute toxicity
LD50 Oral - rat - 953 mg/kg
Remarks: Nutritional and Gross Metabolic:Weight loss or decreased weight gain.

LC50 Inhalation - rat - 4 h - 10.000 mg/m3

Remarks: Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Olfaction:Other changes.
Behavioral:Somnolence (general depressed activity). Nutritional and Gross Metabolic:Weight loss or
decreased weight gain.

Skin corrosionlirritation

Skin - rabbit - Mild skin irritation - 24 h
Serious eye damage/eye irritation

Eyes - rabbit - Moderate eye irritation - 24 h

Respiratory or skin sensitizatio
May cause allergic skin reacti~

Germ cell mutagenicity
no data available

Carcinogenicity

Z

pres & atle
d hulf an c2

IARC: No compor!
probable, r= g

B or equal to 0.1% is identified as

Reproductive toxicin:

Reproductive t
Maternal Effecis.

Specific targe’
no data avail;

Specific target o
no data availat

Aspiration h
no data available

Potential healt’

Inhalation P Wopiratory tract irritation.
Ingestion \ "

Skin g throll Wski™ May cause skin imitation.
Eyes

"

Signs and Symptome/Tr Ex #3150

Absorption into the body leads “=moglobin which in sufficient concentration causes
cyanosis. Onset may be delaz* 7 400 o the best of our knowledge, the chemical, physical,
and toxicological propertias g ed.

Additiona| 1 n

RTECS: (R8N

12, ECOLOGIC selld
Toxicity i |

1
no data availai=u

Persistence and drradability

AU nanIngIng

Bioconcentration factor (BCF): 130

AT INYAE

Other adverse effects
no data available
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