CHAFTER II
PRELIMINARIES

In this thesis, we assume a basic knowledge of topological vector
space, However, this chapter will give some definitions and theorems which

will be a basic tool for our investigation,

The conjugate space

2,1 Definition. Let T be a topological space, inparticular a metric space,

Then by a real function on T we mean a mapping of T into the space R

(the real line). Suppose T is a function space, i.e., a space whose elements

are functions, Then a recal function on T is called a functional,

2,2 Definition, Let f and g be two functionals defined on a topological
vector space E, and let ofbe any number, Then by the sum of f and g denoted
by (f+g), is meant the functional whose value at every point x€E is the
sum of the values of f and g at x, while by the product of o6 and f, denoted
by (&f), is meant the functional whose value at every point xgE is the

product of e¢ and the value of f at x. More coincisely,

£(x) + g(x) ,
o(f(x)) sy (xEE)

1

(f+g)(x)
(oef)(x)

i

Clearly, if f and g are linear functionals, then so are (f+g) and

(eef), since



(f+g)(ax+by) =  f(axtby) + g(axtby)
= a(f(x)) + b(£(y)) + a(g(x)) + blg(y))
= a(f(x) + g(x)) + b(£(y) + a(y))
= a((f+g)(x)) + b((f+g)(y)) ,
and
(ef)(axtoy) = o(af(x) + bf(y))

=  a(®f(x)) + b(etf(y))
= a(ef)(x) + b(f)(y)
for all x,y& E and arbitrary numbers a,b, Moreover, if f and g are bounded

(and hence continuous), so are (f+g) and (e f).

2.3 Definition, Let E be a topological vector space. The space E*, called

the conjugate space of E,is the set of all continuous linear functionals

on B,

It is clear that the space E* is itself a vector space, when equipped
with the operations of addition of functionals and multiplication of

functionals by numbers,

Next, we shall introduce a topology in I*, We first consider the

particularly simple casc where the original space E is a normed vector space,

Let f be a continuous linear functional on a normed vector space E,

The norm of f equal to

= su 1f(X)i
Hf” }:#8 W



or equivalently

sup ]f(x)*'

f
vk x st

Hence the space E* conjugate to E can be made into a normed vector
spacc by simply oquipping each functional f€ E* with its norm ||f}. The

corresponding topology in FE* is called the strong topology in E*,

2.4 Theorem, If E is a normed vector space, then the conjugate space E*

is complete,

Proof, Let {fn} be any Cauchy sequence of functionals in E*, Then

for any given £ $0, there is an integer N such that for all n, n'>» N implies

[E AP, — —. 3

Since ”fn pe fn'” . sup ‘fn(}()*fn'(lﬁ)l'
#0 x|

| fat0-tec | o eyl o lixll < g hxl

for every x& E, Therefore the sequence {fn(x)} is Cauchy and hence convergent
for every x€E, Lot

1lim fn(x) 2 - PEk)
Ny 0O

Then f is linear, since

f(ax+by) lin £ (axtby)

n-» oo

lim ( af, (x) + bf (y) )

N—y oo

af(x) + bf(y) .



Morecover, choosing n so large that “ fn-fm_p H < 1 for all p > 0, we have
I it
”fn.p.p “ <|Ifnll + 1 for 211 p > 0, and hence

ltmpal < Clie ll+ Dl

It follows that

lim {fmp(x)l - il < (e 1)y
P> 0

so that f is bounded and hence continuous.
To complete this proof, we now show that the functional f is the limit
of the sequence {fn}, i,e., that
11m ”f -fl' = O‘ EEEEEE) (1)
n—of
Given any € >0, lot n be so large such that
- ’E LA B ) 2
| £ -2 JFoRerTe (2)
for all p 2> 0, By the definition of norm in E*, there is a nonzero element
X, ‘6 E such that
| U
;¥
=, i

= |t -] + €3

x
where u = _M&E
i,
M e ‘ i
Thenefore Ilfn £] ‘f (u) - (u)l lfm-p(u) - f(u)l + £/3

oo el be ) - cr] + &1

e e B e -swls &3



Tho He - s lf -
n & f“ i n+p(u) f(U)l + 28/3 0'.'0(3)
after using (2) and the fact that |juj] =1 . But

1lim f

g n+p(u) = ),

Hence, by taking the limit as p—» o0 in (3), wo get

he-£fl <€

which implies (1), since £ is arbitrary. Thus the thcorem is proved,

The strong topology in the conjugate space

Let E be a normed vector space. Then we have seen that, the conjugate
space E* is itself a normed vector spacec, and a neighborhood of zero in E*
means the set of all continuous lincar functional on E satisfying the
condition || £l < & for somc € >0, In othcr words, for a neighborhood basc
at zero in E* we can takc the sct of all functionals in E* such that {f(x)l <€

when x ranges over the closed unit sphere || /|1 in the space E,

Supposc E is a topological vector space, but not a normed vector
space, Then in defining the topology in E* it seem natural to start from

an arbitrary bounded set AT E, since there is no longer a "unit spherec.”

2.5 Definition, Let E be a topological vector space, with conjugate space

E*, Then by thc strong topology in B* is meant the topology generated by

the neighborhood basc at zcro consisting of all sets of the form

UA,E. = {f : {f(x)T<g for all xg A }

for some number § >0 and bounded set ACE,



The second conjugate space

Let E be a topological vector space, and E* be the set of all continuous
linear functionals on E, Since E* itsclf a topological vector space, we can
also talk about the "second conjugatec space" E** = (E*)*, i,e,, sot of all

continuous linear functionals on E*,

2.6 Theorem, Given a topological voctor space E with conjugate space L*,
let x be any fixed element of E, Then
Fx(f) = f£(x)

for f@E*, is continuous lincar functional on E*,

Beforc the proof of this theorem, we necd the following definition
and lemma
Let E and T be normed vector spaces, and 1 a map from E to F, then

the norm of T is defined by

p e )l
i 0 T

2.7 Definition, The mepping T is said to be bounded if there exists a

number B>»0 such that H7(x) || < Biix|| for all x&E,

2,8 Lemma, Let E and F be normed vector spaces, and if T is a linear map
from E to F, Then the following statements are equivalent:

(1) T is continuous at some point x€E

(i) T is continuous through out E

(1ii) T is bounded on E,



Proof, (i)==»(ii) Suppose that T is continuous at xer.
Given £>0, there exists 8>0 such that
lrz) -1l < €
whenever on- v ”(8. Let x be any point in E, Then for all yg E with
flx = yll< §, ve have lx - (y=xtx )l = flx-yli< § . Then
I T(x,) = T(y-xﬂco)ﬂ < g ,amdso l7x) -1 < ¢ .

Hence, T is continuous at x, and then on E , since x is arbitrary.

(1i) ==(iii) Suppose by contrary that T is not bounded

on B, Then for any n=1,2,3,..., » there exists Xy such that

Ve ll > Cndix
Set Yn = (1/n)”—3}::;-1_n— « Then ”'ynﬂ= 1/n and {yn} converges to 0,
while
ey = Mel o ngxgy - .
n-“'xn f n Hynﬂ

Then {T(yn)} dose not converge to 0, Consequently, T is not continuous

at 0, a contradiction,

(111) = (1) Suppose T is bounded on E, Then there exists
a number B » 0 such that
fell < Blx¥ .
Then T is continuous at 0, In fact, for any given £ »0 , we choose 3 = £/B,
Then whenever [[x|| <« § » we have BTl <« ¢ R

This proves the lemma,



Proof, (of Theorem 2,6) The linearity is obvious, since

Fx(af + bg) (af + bg)(x)

af(x) + bg(x)

aFX(f) + be(g) f
for all f,ge E* and arbitrary numbers a,b,
Next, to show the continuity, giveng» 0, let A be a bounded subset
of E containing x, and let UA, ¢ be the neighborhood defined as definition 2.5 .
Then

lr )b =,  Jel < ¢ ar reU, .

Then the functional Fx is continuous at 0, and hence by Lemma 248 5

Fx is continuous on E, Thus the theorem is proved,

From the above theorem, we have the mapping
Al = FXP) & (x).,
called the natural mapping of E into E**, is the mapping of the whole space
E onto some subset T((E) of the second conjugate spacc E**,

Clearly 9% is linear, in the sense that

i}

7 (ax + by) Fa.x+by(f)

=  f(ax + by)
af(x) + bf(y)

= af(£) + bF (1)
= afl(x) + bil(y)

for all x,y€E and arbitrary numbers a,b,
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2,9 Definition, If Tf(E) = E**, the space E is said to be semireflexive,

If E is semireflexive and if 7( is continuous, the space E is said to be

reflexive and q{ then establishes a homeomorphism between the space E and E**,

In the case of reflexive, each element x€E can be identified with
the corresponding clement 'ﬁ(x)EE**, and hence it is convenient to denote -
thé value of a functional fg& E* at the point x£€E by the more symmetric
notation

£f(x) = (f,x)

Thus (f,x) can be regarded as a functional on E for ecach fixed f& E*,

and as a functional on E* for each fixed x¢ E ( in the latter case, x also

acts like an element of E**),

2,10 Theorem, If E is a normed vcctor space ( so that in particular E*
and E** are also normed wvector spaces), then the natural mapping of E into

E** is an isometry,

Proof, Given an element xe E, Let llx || denote the norm of x in E,
and ||xﬂ** denote the norm of its image in E**, We want to show that
hxt = lxlp*

Let f be any clement of E*, Since

{£(x)]

| - b o
i 0 TN
It = |0l < el
i-G-l l ‘
ey » 15X (£#0),

\

el
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and since the left~hand side is independent of f,

|(fnx)t = kok
x| = ;ZPE* o - i sis 1)

On the other hand, by the Hahn-Banach Theorem, for every X € E there is a

linear functional fo such that
(g ) = N Eohfixol] « sie {2
In fact, to construct such a functional, we need only set fo(x) =.3

for all x¢& Eo where

7/ R AN S IR
Then
e b, = Bl 1Al
oM 7R T S EEX]
= /et L .—.._,_1',___
X T gl

and then extend f  to a functional on the whole space E (without changing

its norm) , i.c4,

1
1By =
of fx |l
el = 1 = le@x) ] = (e ix ), wmplies (2).
Tt follows from (2) that
llx#** =  sup I_E:’_‘_)_i ' B2l ven (3)
fe Ex ||IfY

Comparing (1) and (3), we get
xil

” X“** ’

and proves the theorem,
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2,11 Theorem, Every reflexive normed vector space is ccmplete,

Proof ~ If E is reflexive normed vector space, then E = E**,

But E** = (E*)* is complete , by Theorem 2,4, This proves the theorem,

The weak topology

Let E be a topological vector space, with conjugate space E*, Given

any € > 0 and any finite set of continuous linear functionals f,, o

in E*, the set

U=1U
fivfzp-oopfnia

{x : lfl(x)'( B siini ‘fn(x)"(&}

n
N {= It lce} von @)

is open in E and contains the point zero, i.e,, U is a neighborhood of zero,
Let }1{, = {Uu} y be the system of all sets of the form (1).
Then Dfo is a neighborhood base at zero , generating a topology in E which
is again the topology of a topological vector space, This topology is called
the weak topology in E, |
We note that every subset of E which is open in the weak topology
is also open in the original topology of E, (In fact, if O is any open
set in the weak topology, then O can be represented as a union of sets in
\"po which is open in the original topology.) But the converse may not be
true, i.e., :z’oo may not be peighborhood base at zero for the original
topology in E, In other words, the weak topology is weaker than the original
topology, and the weak topology in E is the weakest topology T with the

property that cvery linear functional continuous with respect to the original
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topology is also continuous with respect to T

Weak convergence and weak compactnees

: N\ 20 gy A0
2.12 Definition, Let E be a topological vector space. ~A vggauence X tin B
A ———————- n

is said to ke weakly convergent if there is an x in E with 1lim f(xn) = f(x)
N~ o

for every f& E*, The point x is called a weak limit of the sequence {xn} &

and the sequence {xn} is said to converge weakly to x, denoted by xn.....a. X

Clearly, convergence implies weak convergence, since if {Xn} is a

sequence which converges to x, i.e., lim X, = X, Then for every f& E*¥
n-—->o

we have f(lriir‘r}’wxn) = lri;riq‘f(xn) = f(x) , and hence x, —>x ., But

the converse may not be true,

2.13 Example, Consider the Hilbert space 12 of square, summable sequences,
24

The sequence {X N ng sy } = {(1'0,0’000) 9 (0'1'0’000) P eee }

converges weakly to O because if wé identify functionals f in 1; with

points in 1, of the form (fq, £os vee ) ,» we must have that 1lim fn = 0,
N-»0a

0
(Ctherwise E - f% would diverge.)
1=
Thus for each f& 1’; , £(x?) = [f,xn] , Where [f,xn] is the inner
procuct of f and x", Thus

1lim £(x") = 1lim f,. = 0 = £(0)

for all f& 1; , and consequently xn._.-n 0.
However, we have ﬂxn" = 1 for all n, This shows that the weak

convergence does not imply convergence,
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2,14 Dofinition, A set AL E is said to be weakly sequentially compact

if every sequence ixn} in A contains a subsequence which converges weakly

to a point in E,

N
2,15 Remark, The Etelein-Smulian Theorem in [ 53 on page 430 has shown
that, A is a woakly sequentially compact if and only if K, the closure of

A is weakly compact,

2,16 Theorem, Bounded subsets of a reflexive Banach space E are weakly

compact.,

To prove this theorem we need the following lemmas:

2,17 Lemma. Let M be a subspace of the normed lincar space &, and x, a
point of E not in the closure of M. Then there exists a point fg E* such

that f(xo) =1 and £f =0 on M,

Proof Let My denote the linecar hull of MU { Xote An arbitrary
element z is uniquely represented as y + tx, , where y ¢ Y, telRl.

Set £'(z) = t, clearly, f' is linear on }y. In fact,

fl

£*(azq + bzz) f'[a(yl + tlxo) + b (y2 + tzxo)]

i

e [(ayl + byz) - (a’c1 + btz) on

= atl + btz
= af'(z;) + bf'(z,)
for all z(, Zo EMy with zq =y + ZEY) Zo = Yo + tpxo, and arbitrary

numbers a, b,



15

It is also bounded, for if t # 0,

Hzll = Ny + tx | lt!.n% +x. 0 > Itfa.

¥ , ,.
(1t A3) =y'en, thet Iy xoll = f=F =%l = IE+ %0, ong

hence || 3 + x fizty*ll - lx )l = 4 .)

Tms {£'(2)| = |jt] £ -q-s-"- + Therefore f* 1s bounded
" and hence continuous; Hence f£'€ M: .
That is there exists £'€ M; such that £'(x)) =1 and £' = 0 on M,

To complete the proof , we extend f* to f on E*, by using Hahn~Banach Theorem.

2,18 Lemma. If the conjugate E* of a normed linear space E is seperable,
so is Eo

2,18 Definition, A subset S of 2 metric space M is said to be dense or
dense in M if the closure of S (written S)is M, A metric space is

seperable if it contains a countable dense subset,

Proof, (of Lemma 2,18)
Let {fn} be dense subset of E* ,

Choose x, € E so that || x,} ¢ 1 and £ (x,) 2> '“f,ﬁz.

Let M be the set of all finite linear combination of elements out
of {xn} with rational coefficients, Then M is coutable, and the closure

ﬁ' is a suhspace,

Suppo se that M :.s not dense in E. there exists X, ¢. E such that
{llxb-xllc xgn ] > 0.

000003
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By Lemma 2,17, there cxists f& E* such that
f(xo) = 1 and f(M) = O,
Since {fn} is dense in E*, take a sequence {fni} converging to f,
Then

f =71 = ] '(f -f I
oo, £ H;ﬁ!‘l n,"0)0x,)

>, 00, ) |

= 'fni(xni) l
s Il
2

Since {fy} s 1, ﬂfni- el —>0'as 1 —> 00 . Then |, |— o
3

as i-—— oo ,i,0.,, f =0, a contradiction,

2,20 Lemma, ( Banach = Steinhaus )
Let E be a normed linear space and ¥ a Ranach space,
Let {An} be a séquence in B(E,F), the sot of bounded linear mappings
from E to ¥, Assume that for all n, ’Anu £ M, and limm{Anx} exists
n—s

for all x in any set that is dense in E. Then there exists A € B(E,F)

such that {Anx} —x Ax for all xg B,

Proof. Suppose D is dense in E, Given an arbitrary x€E, choose
x'& D such that llx - x'R <&,

For sufficiently large m and n, we have

"Am:{' - Anx' € I1Ax =X jj+|| X¥- An}-:' | y when X is the

limit of {An:/:}. Hence



1y

Ha = a o Bl = Bl | Agx = A |4 e = A"
< E+ (Al + 1A ) ===y
< E+ME  « (M+1)E ,
Then {Amx} is a Cauchy scquence in T,
Since ¥ is complete, there exists Ax €F such that {Anx} ————y
To prove that A € B(E,F),

The linearity is obvious, since

Alex + by) = 1lim A (ax + by)

N —> o4 R

= alim Ax+blim Ay
n-sa 2 R

= a(Ax) + blay).

Morcover,
I axc 1] lim A x| »  lin [|JA_ |4 COM.Ix
=l e L PAx RO LI, (I3 £ I

i,e.y A is bounded, Then the lemma is proved,

2,21 Lemma, A closed linear subspace in a reflexive Banach space is a

reflexive Banach space,

f}‘_gc_)_f:. Let M denote the subspace, let M* and M** be the conjugate
of M and M*', respectively, We take the following for typical elements in
the various space we shall discuss : x& E, f € E¥, ga E**, x'& 1,
f'& M*, and g'E M¥*, We write f(x) = (f,x) , g(f) = (g,f), ete,

Let % be the map that sends an element f in E* to its restriction
f' in M*, Specifically, take g,(f) so that (%(f),x') = (f,x") for all
x'€ M, Since HZ(I‘) g e, Z(f) belongs to M*, Moreover 3(.)

is linecar on E*,
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Since %is linear on LB* and g' is linear on M*, the composition g'é
defined by (g*, %(f)) = g'j(f) for all f € E* is linear on E*, Moreover,

i'g'§ | < |&" so that g's € E**,

Set VJ(g') = g;} ’A. Thus, if f & E*,
(' §(0) = g'5 (1)

Clearly, \7: MWk 5 Fk*,

(Y?(g'). £),

Now take g(') arbitrary in M** and set g, = ?i(g(;). Given f'g& M*,
§(£).

let f be any extension of £' to E*, so that f°'
For some x, € E and all '€ M*, we have
(C(XO)’ f) - (flxo) ---(*)

0
it

(g(') ’ f') & (g(; Ig(f))

where C is the natural mapping,

( v(g') o,

If x, € M, then (f,x ) = (£, %,), and thus
(g(') y £') = (£, Xo)a
and we are done, since gé was arbitrary on M**,

Suppose , then, that xo(’& M, By Lemma 2,17, there exists f € BE*
such that (f,x,) # 0 and (f,x") = 0 for all x'€ M, Since
(g(f).X') & (Ext) om B,
. ;(f) = 0, Then

0 = (gj» g(f)) (:) (f,x,) , as above,

This contradiction establishes that xoe M.

Hence the lemma is proved,



1g

Proof, (of Theorem 2,16)

Let S be a bounded subset of E, and let {x(j)} be a sequence in S,
Let M denote the linear hull of {x(j)} , namely, the set of all possible
finite linear combinations of {x(j)} « Then l\-d-, the closure of M, is closed
subspace of E, :

Let Mo denote the set of all finite linear combinations of {x(j)}
with rational coefficients. Then M, is a countable dense subset of M ,
Hence M is seperable ,

Since M is closed subspace of E and by Lomma 2,21, M is also refloxive
Banach space,

Since M is seperable and reflexive, M**,the second conjugate space
of _ﬁ, is also seperable,

Then by Lemma 2,18, F’I* is seperablec,

Let {fi. - P } be a dense subset of .l'{.*. Choose a subsequence
{x(j(i,l))} such that '{(f{, x(j(i,l)))} converges.

Let {x(j(i.z))} be a subsequence of {x( 3( i,l))} such that
i(fé j X(j(i,Z)))} converges ; and let {x(j(i,n))} be a subsequence of
{x(j(i.n—l))} such that {(fr'l, x(j(i‘,n)))} converges.,

The sequence {Xi} * iX(j(i,i))} has a property that {(fl"l' Xi)}
converges for every ne 1, 2, see s because for i >0, we have{x(j(i,i))}

is a subsequence of {x(j(i,n))} . Then

lim (£', x3) = lim (£'s x(3(3,n)))
i—» co i—»o 1
=  lam (g', 1)
s 1 T

exists for each n,, where gie M** for all i,



Since {f;l s n= 1, 2, ses } is dense in M* and because g:.'L is
uniformly bounded, by Lemma 2,20, therc exists g& W** such that
lim (gl DR R o S A

i—og i-—»0n
) (g.f')

for all f* in ﬁ*.

Then the limit of (f',x.l) exists for all £' in 1%, and hence a
Cauchy sequence, Since ‘1\7 is reflexive , by Theorem 1.11, YVY is complete.
Then there is a point x' & M such that

1lim o705 NN - & x")
i—»> a0

for: all £!'4n E*.

Finally, because x; € M, then for every f @& E* there corresponds
an f'¢ M* such that (f , xi) = L EP¥ xi) and (f , x*) = (£',x).
Then

}im (f, Xi) T AV, x')
1—=>00
for all f € E*, Hence by definition of weakly convergence, {xi}—-—-\x'o

which show that S is weakly sequentially compact, and then S is weakly

compact, This proves the theorem,

The nested sphercs theorem

A sequence of closed spheres
S [Xl, ri] ’ S [Xé, r2] peoe g O [Xnv rn} 3 ees

in a metric spacc R is said to be nosted ( or decreasing ) if,

Ei [Xl’ rl] =5 S{:xz. rZED' i S[Xn. I‘n]'_j. . .

20.



2,22 Theorem, A metric space R is complete if and only if every nested

sequence {Sn} = fS Exn. rnj} of closed spheres in R such that rr;-.-) 0

as n —> 00 has a nonempty intersection
0o

S
el D

b
!')’\

m ~
Ui g VA

Proof, Assume that R is complecte,

Let {Sn} be a sequence of nested closed spheres in R such that Pl 0

as n—>» o0, To prove that - Sn # .

Consider the sequence {Jrn} of centers of the spheres Sn. For any

given & >0, there exists N such that

2.rN < & 3

Since S {:KN' rH] contains all centers x, for all 1> W, for all
n, n'> N we have
d(xn, xn') < ZOrN o E °
Then .{xj& is a Cauchy sequence in R, Since R is complete, there exists
x € R such that

1im d(x , x) = 0
n— o0 .
or

lim x = x|
n-s> o

00
Thus x & N S8 + In fact, S contains every point of the sequence { x }
n=l "n n n

ocxcept possibly the points Xgo Xt ¢ o v s Xy o Hence x is a limit

point of every spherc 35 . But Sn is closed, anc hence xesn for all n,
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Conversely, suppose every nested sequence of closed spheres in R with

radii converging to zero has a nonempty intersection, and let { xn} be any

Cauchy sequence in R,
We choosc a term xnl of {xn’x such that

oo Kf2

dlxe. , x
BNy

for all n» n .

Let 81 = S-[»Xn1’ 1] + Next, we choose a term x_ of {xni such

dx % ) < 1/2°
2

for all n >n,,
Let 8 = S Y211 "
2 n,+ M7/}

Continue this construction indefinitely, i.e., once having chosen

terms xnl, xnz, an, R e ,xnk (n< n, <y <o v o< nk)' choose a
term Xn ] such that np 4> n and
) e RPN B 1 gk
9 4
n g .
- Y
for all n> Mo 0 and let Sy 7 S[Xnkq-l’ 1/2 1, and so on,

This gives a nested sequence {Sn} of closed spheres with radii
converging to zero, By hypothesis, thesc sphercs have a nonempty intersection,
i.e., there is a point x in all the spheres,

We claim that

lim d(x,» x) = 0,
Nay o0

Given g % 0, let N be such that
N-1
1/2 £ &z,



23

Then for all n>» Ny We have

d(x,xn) < Al _)+ dix.. i £y

Y R
! = B N-17, d( » &k -1 &
Slnlce x & SN = S l'an, 1/2 ] X KHN) < 1f2 < &f2

: N N-1
Since n>ng, d(xnﬂ, xn) (1/‘2. <1l/2 .« &f2,
Then d(x,xn) c&l2+ E[2 = §.
Honce 1lim d(x, x) = 0, d.,c., lim x. = x,
n—s o n Taeas

Thus the theorem is proved,

2.23 Theorem, Let {xnlsbe a weakly convergent sequence of elements in
—_— \

a normed vector space E, Then {xn?i is bounded, i.c., there is a constant

C such that

[I%al] € € M 1,2.5..),

Proof. Suppose that { xn’& is unbounded, Then {xn‘ is unbounded

on every closed sphere

in B*, in the sense that the set of numbers
(8 ) s reslnge] o=t}
is unbounded for every S [fo' 5] C DB*, In fact, if the sequence %Xn}
is bounded 'on S [__fo' E,_] s then it is also' bounded on the sphere S [:O,e]
= { g ¢ Hg”éai, since if gg S [0,8] » then |jg)} g¢» and so

“f0+g"f0” ‘= £ .
Thus £, + g €3 [£,4€ ], and



24

(g! Xn) e (fo *+ 2 Xn) = (fov Xn)
where the number (fo,xn) arc bounded, by the weak convergence of {Xn} .
Since f  + g €35 {%,6] . (fo + g, xn) are bounded, and then (g, xn) are
bounded, But if } (g, x )| £ C for a1l ge 5 [0,€] , then by the
isometry of the natural mapping of E into E** (Thcorem 2,10)
x|l = su (g, x ) = L . sup |(g, x )l gC

“ n "g“\Z]_! A £ ng\<5| Sols \*z
(n - 1’21v00)0
Then {xn% is bounded, contrary to assumption, It follows that if {xn‘

is unbounded, then {xnxis unbounded on every closed sphere in E*,

Next, choosing any closed sphere S, C E*, ve find an integer ny

and an element f € S/ such that
| (s, x"l) ey 14,
Since (f, x) depends continuously on x, there exists S1 £ So such that
[ (£, ) | > 1

for all f & Sl-
By repeating this argument, we find an integer n2 and the closed
sphere SZC 54 such that
I(f, xn?) ' > 2
for all f 32 y and so on, where in general there is an integer n and
a closed spherc SkC Sk—l such that
| (s, %) | >
for all f & Sk s We can sec that the radius of the sphere Sk approaches

2ero as K —» 00
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By theorem 1,4, E* is complete, it follows from the nested sphere theorem
06

that there is an element .I-"G; But then

M
k=1 S

b w91 > B (ks i)
Ic

contrary to the assumed weak convergence of the sequence { xn} .
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