CHAPTER II

PRELIMINARIES

In this thesis, we assume a basic knowledge of topological vector space. However, this chapter will give some definitions and theorems which will be a basic tool for our investigation.

The conjugate space

- 2.1 <u>Definition</u>. Let T be a topological space, inparticular a metric space. Then by a <u>real function</u> on T we mean a mapping of T into the space \mathbb{R}^1 (the real line). Suppose T is a function space, i.e., a space whose elements are functions. Then a real function on T is called a functional.
- 2.2 <u>Definition</u>. Let f and g be two functionals defined on a topological vector space E, and let ∞ be any number. Then by the sum of f and g denoted by (f+g), is meant the functional whose value at every point $x \in E$ is the sum of the values of f and g at x, while by the product of ∞ and f, denoted by (∞f) , is meant the functional whose value at every point $x \in E$ is the product of ∞ and the value of f at x. More coincisely,

$$(f+g)(x) = f(x) + g(x),$$

 $(\infty f)(x) = \alpha(f(x)), (x \in E)$

Clearly, if f and g are linear functionals, then so are (f+g) and (%f), since

$$(f+g)(ax+by) = f(ax+by) + g(ax+by)$$

$$= a(f(x)) + b(f(y)) + a(g(x)) + b(g(y))$$

$$= a(f(x) + g(x)) + b(f(y) + g(y))$$

$$= a((f+g)(x)) + b((f+g)(y)),$$

and

$$(xf)(ax+by) = x(af(x) + bf(y))$$

$$= a(xf(x)) + b(xf(y))$$

$$= a(xf)(x) + b(xf)(y)$$

for all $x,y \in E$ and arbitrary numbers a,b. Moreover, if f and g are bounded (and hence continuous), so are (f+g) and (x f).

2.3 <u>Definition</u>. Let E be a topological vector space. The space E*, called the <u>conjugate space</u> of E, is the set of all continuous linear functionals on E.

It is clear that the space E* is itself a vector space, when equipped with the operations of addition of functionals and multiplication of functionals by numbers.

Next, we shall introduce a topology in E*. We first consider the particularly simple case where the original space E is a normed vector space.

Let f be a continuous linear functional on a normed vector space $E_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ The norm of f equal to

$$\|f\| = \sup_{x \neq 0} \frac{|f(x)|}{\|x\|}$$

or equivalently

$$\|f\| = \sup_{\|x\| \le 1} |f(x)|.$$

Hence the space E* conjugate to E can be made into a normed vector space by simply equipping each functional $f \in E^*$ with its norm $\|f\|$. The corresponding topology in E* is called the strong topology in E*.

2.4 Theorem. If E is a normed vector space, then the conjugate space E* is complete.

Proof. Let $\{f_n\}$ be any Cauchy sequence of functionals in E*. Then for any given $\xi > 0$, there is an integer N such that for all n, n'> N implies

Since
$$\|f_n - f_{n'}\| < \mathcal{E}$$
.

$$\|f_n - f_{n'}\| = \sup_{x \neq 0} \frac{|f_n(x) - f_{n'}(x)|}{\|x\|},$$

$$|f_n(x) - f_{n'}(x)| \leq \|f_n - f_{n'}\| \cdot \|x\| < \mathcal{E}\|x\|$$

for every $x \in E$. Therefore the sequence $\{f_n(x)\}$ is Cauchy and hence convergent for every $x \in E$. Let

$$\lim_{n\to\infty} f_n(x) = f(x).$$

Then f is linear, since

$$f(ax+by) = \lim_{n \to \infty} f_n(ax+by)$$

$$= \lim_{n \to \infty} (af_n(x) + bf_n(y))$$

$$= af(x) + bf(y).$$

Moreover, choosing n so large that $\|f_n - f_{n+p}\| < 1$ for all $p \ge 0$, we have $\|f_{n+p}\| < \|f_n\| + 1$ for all $p \ge 0$, and hence

$$|f_{n+p}(x)| \leq (||f_n|| + 1)||x||.$$

It follows that

$$\lim_{p \to \infty} |f_{n+p}(x)| = |f(x)| \leq (||f_n||+1)||x||.$$

so that f is bounded and hence continuous.

To complete this proof, we now show that the functional f is the limit of the sequence $\{f_n\}$, i.e., that

$$\lim_{n \to \infty} \|f_n - f\| = 0. \qquad(1)$$

Given any $\xi > 0$, let n be so large such that

$$\|\mathbf{f}_{\mathbf{n}}^{-\mathbf{f}_{\mathbf{n}+\mathbf{p}}}\| < \varepsilon/3 \qquad \dots (2)$$

for all $p \ge 0$. By the definition of norm in E*, there is a nonzero element $x_n \in E$ such that

$$||f_{n}-f|| \leq \frac{|f_{n}(x_{n,\epsilon}) - f(x_{n,\epsilon})| + \varepsilon/3}{||x_{n,\epsilon}||}$$

$$= |f_{n}(u) - f(u)| + \varepsilon/3$$

where $u = \frac{x_{n,\epsilon}}{\|x_{n,\epsilon}\|}$.

Therefore
$$\|f_{n}^{-f}\| \le \|f_{n}(u) - f_{n+p}(u)\| + \|f_{n+p}(u) - f(u)\| + \mathcal{E}/3$$

$$\le \|f_{n} - f_{n+p}\| \|u\| + \|f_{n+p}(u) - f(u)\| + \mathcal{E}/3$$

$$= \|f_{n} - f_{n+p}\| + \|f_{n+p}(u) - f(u)\| + \mathcal{E}/3.$$

Then
$$\|f - f\| \le \|f_{n+p}(u) - f(u)\| + 2\mathcal{E}/3$$
(3)

after using (2) and the fact that ||u|| = 1. But

$$\lim_{p\to\infty} f_{n+p}(u) = f(u).$$

Hence, by taking the limit as $p \rightarrow \infty$ in (3), we get

$$\|f_n - f\| < \varepsilon$$

which implies (1), since ξ is arbitrary. Thus the theorem is proved.

The strong topology in the conjugate space

Let E be a normed vector space. Then we have seen that, the conjugate space E* is itself a normed vector space, and a neighborhood of zero in E* means the set of all continuous linear functional on E satisfying the condition $||f|| < \mathcal{E}$ for some $\mathcal{E} > 0$. In other words, for a neighborhood base at zero in E* we can take the set of all functionals in E* such that $|f(x)| < \mathcal{E}$ when x ranges over the closed unit sphere $||x|| \le 1$ in the space E.

Suppose E is a topological vector space, but not a normed vector space. Then in defining the topology in E* it seem natural to start from an arbitrary bounded set AC E, since there is no longer a "unit sphere."

2.5 <u>Definition</u>. Let E be a topological vector space, with conjugate space E*. Then by the <u>strong</u> topology in E* is meant the topology generated by the neighborhood base at zero consisting of all sets of the form

$$U_{A,\xi} = \{f: |f(x)| \leq \xi \text{ for all } x \in A \}$$

for some number £>0 and bounded set ACE.

The second conjugate space

Let E be a topological vector space, and E* be the set of all continuous linear functionals on E. Since E* itself a topological vector space, we can also talk about the "second conjugate space" $E^{**} = (E^*)^*$, i.e., set of all continuous linear functionals on E*.

2.6 Theorem. Given a topological vector space E with conjugate space E*, let x be any fixed element of E. Then

$$F_{x}(f) = f(x)$$

for f E*, is continuous linear functional on E*.

Before the proof of this theorem, we need the following definition and lemma:

Let E and F be normed vector spaces, and T a map from E to F, then the norm of T is defined by

$$||T|| = \sup_{x \neq 0} \frac{||T(x)||}{||X||}$$
.

- 2.7 Definition. The mapping T is said to be bounded if there exists a number B>0 such that $\|T(x)\| \leq B\|x\|$ for all $x \in E$.
- 2.8 Lemma. Let E and F be normed vector spaces, and if T is a linear map from E to F. Then the following statements are equivalent:
 - (i) T is continuous at some point $x \in E$
 - (ii) T is continuous through out E
 - (iii) T is bounded on E.

Proof. (i) \Longrightarrow (ii) Suppose that T is continuous at $x \in E$. Given $\epsilon > 0$, there exists $\delta > 0$ such that

$$\|T(x_0) - T(y)\| < \varepsilon$$

whenever $\|x_0 - y\| < \delta$. Let x be any point in E. Then for all $y \in E$ with $\|x - y\| < \delta$, we have $\|x_0 - (y - x + x_0)\| = \|x - y\| < \delta$. Then

 $\|T(x_0) - T(y-x+x_0)\| < \xi \quad \text{,and so} \quad \|T(x) - T(y)\| < \xi \quad .$ Hence, T is continuous at x, and then on E , since x is arbitrary.

(ii) \Longrightarrow (iii) Suppose by contrary that T is not bounded on E. Then for any $n = 1, 2, 3, \ldots$, there exists x_n such that

$$\| T(x_n) \| > n \|x_n\|$$
.

Set $y_n = (1/n) \frac{x_n}{\|x_n\|}$. Then $\|y_n\| = 1/n$ and $\{y_n\}$ converges to 0, while

$$\|T(y_n)\| = \frac{\|T(x_n)\|}{\|n\|\|x_n\|} > \frac{\|n\|\|x_n\|}{\|n\|\|x_n\|} = 1.$$

Then $\{T(y_n)\}$ dose not converge to 0. Consequently, T is not continuous at 0, a contradiction.

 $(iii) \Longrightarrow (i)$ Suppose T is bounded on E. Then there exists a number B > 0 such that

$$\|T(x)\| \leq B\|x\|$$
.

Then T is continuous at 0. In fact, for any given $\varepsilon > 0$, we choose $\delta = \varepsilon/B$. Then whenever $\|x\| < \delta$, we have $\|T(x)\| < \varepsilon$. This proves the lemma.

Proof. (of Theorem 2.6) The linearity is obvious, since

$$F_{x}(af + bg) = (af + bg)(x)$$

$$= af(x) + bg(x)$$

$$= aF_{x}(f) + bF_{x}(g),$$

for all f,g E* and arbitrary numbers a,b.

Next, to show the continuity, given $\epsilon>0$, let A be a bounded subset of E containing x, and let $U_{A,\epsilon}$ be the neighborhood defined as definition 2.5 . Then

$$|F_{\mathbf{x}}(\mathbf{f})| = |f(\mathbf{x})| < \xi \text{ if } f \in U_{\Lambda, \xi}$$

Then the functional F_{x} is continuous at 0, and hence by Lemma 2.8, F_{x} is continuous on E. Thus the theorem is proved.

From the above theorem, we have the mapping

$$\pi(x) = F_x(f) = f(x),$$

called the natural mapping of E into E**, is the mapping of the whole space E onto some subset $\pi(E)$ of the second conjugate space E**.

Clearly K is linear, in the sense that

$$\pi(ax + by) = F_{ax+by}(f)$$

$$= f(ax + by)$$

$$= af(x) + bf(y)$$

$$= aF_{x}(f) + bF_{y}(f)$$

$$= a\pi(x) + b\pi(y)$$

for all x,y∈E and arbitrary numbers a,b.

2.9 <u>Definition</u>. If $\pi(E) = E^{**}$, the space E is said to be <u>semireflexive</u>. If E is semireflexive and if π is continuous, the space E is said to be reflexive and π then establishes a homeomorphism between the space E and E**.

In the case of reflexive, each element $x \in E$ can be identified with the corresponding element $\pi(x) \in E^{**}$, and hence it is convenient to denote the value of a functional $f \in E^{*}$ at the point $x \in E$ by the more symmetric notation

$$f(x) = (f,x)$$

Thus (f,x) can be regarded as a functional on E for each fixed $f \in E^*$, and as a functional on E* for each fixed $x \in E$ (in the latter case, x also acts like an element of E**).

2.10 Theorem. If E is a normed vector space (so that in particular E* and E** are also normed vector spaces), then the natural mapping of E into E** is an isometry.

Proof. Given an element $x \in E$. Let ||x|| denote the norm of x in E, and $||x||^{**}$ denote the norm of its image in E^{**} . We want to show that

$$||x|| = ||x|| **$$
.

Let f be any element of E*. Since

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||},$$

$$|f(x)| = |(f,x)| \leqslant ||f||...||x||,$$
i.e.,
$$||x|| \geqslant \frac{|(f,x)|}{||f||} \quad (f \neq 0),$$

and since the left-hand side is independent of f.

$$\|x\| \ge \sup_{f \in E^*} \frac{|(f,x)|}{\|f\|} = \|x\|^{**} \dots (1)$$

On the other hand, by the Hahn-Banach Theorem, for every x E there is a linear functional f such that

$$|(f_0, x_0)| = ||f_0|| \cdot ||x_0|| \cdot \dots (2)$$

In fact, to construct such a functional, we need only set $f_o(x) = \lambda$ for all $x \in E$ where

$$E_o = \{x : x = \lambda x_o\}.$$

Then

$$\|f_0\|_{E_0} = \sup_{\lambda} \frac{|f(x)|}{\|x\|} = \sup_{\lambda} \frac{|\lambda|}{\|\lambda x_0\|}$$
$$= \sup_{\lambda} \frac{1}{\|x_0\|} = \frac{1}{\|x_0\|},$$

and then extend f_0 to a functional on the whole space E (without changing its norm), i.e.,

$$\|f_{0}\| = \frac{1}{\|x_{0}\|},$$

$$\|f_{0}\|\|x_{0}\| = 1 = |f(x_{0})| = |(f_{0}, x_{0})|, \text{ implies (2).}$$

It follows from (2) that

$$\|x\|^{**} = \sup_{f \in E^*} \frac{|(f,x)|}{\|f\|} \ge \|x\|.$$
 (3)

Comparing (1) and (3), we get

$$||x|| = ||x|| **$$

and proves the theorem.

2.11 Theorem. Every reflexive normed vector space is complete.

<u>Proof.</u> If E is reflexive normed vector space, then $E = E^{**}$. But $E^{**} = (E^{*})^{*}$ is complete, by Theorem 2.4. This proves the theorem.

The weak topology

Let E be a topological vector space, with conjugate space E*. Given any $\xi > 0$ and any finite set of continuous linear functionals f_1, f_2, \ldots, f_n in E*, the set

$$U = U_{f_1, f_2, \dots, f_n; \varepsilon} = \left\{ x : |f_1(x)| < \varepsilon, \dots, |f_n(x)| < \varepsilon \right\}$$
$$= \bigcap_{i=1}^{n} \left\{ x : |f_i(x)| < \varepsilon \right\} \dots (1)$$

is open in E and contains the point zero, i.e., U is a neighborhood of zero.

Let $\mathcal{L}_{o} = \{U_{a}\}$, be the system of all sets of the form (1). Then \mathcal{L}_{o} is a neighborhood base at zero, generating a topology in E which is again the topology of a topological vector space. This topology is called the weak topology in E.

We note that every subset of E which is open in the weak topology is also open in the original topology of E. (In fact, if O is any open set in the weak topology, then O can be represented as a union of sets in which is open in the original topology.) But the converse may not be true, i.e., L may not be neighborhood base at zero for the original topology in E. In other words, the weak topology is weaker than the original topology, and the weak topology in E is the weakest topology with the property that every linear functional continuous with respect to the original

topology is also continuous with respect to T

Weak convergence and weak compactnees

2.12 <u>Definition</u>. Let E be a topological vector space. A sequence $\{x_n\}$ in E is said to be <u>weakly convergent</u> if there is an x in E with $\lim_{n\to\infty} f(x_n) = f(x)$ for every $f \in E^*$. The point x is called a <u>weak limit</u> of the sequence $\{x_n\}$ and the sequence $\{x_n\}$ is said to converge weakly to x, denoted by $x_n \to x$.

Clearly, convergence implies weak convergence, since if $\{x_n\}$ is a sequence which converges to x, i.e., $\lim_{n\to\infty} x_n = x$. Then for every $f\in E^*$, we have $f(\lim_{n\to\infty} x_n) = \lim_{n\to\infty} f(x_n) = f(x)$, and hence $x_n \to x$. But the converse may not be true.

2.13 Example. Consider the Hilbert space l_2 of square, summable sequences. The sequence $\{x^1, x^2, \dots\} = \{(1,0,0,\dots), (0,1,0,\dots), \dots\}$ converges weakly to 0 because if we identify functionals f in l_2^* with points in l_2 of the form (f_1, f_2, \dots) , we must have that $\lim_{n\to\infty} f_1 = 0$. (Otherwise $\sum_{i=1}^{\infty} f_1^2$ would diverge.)

Thus for each $f \in l_2^*$, $f(x^n) = [f,x^n]$, where $[f,x^n]$ is the inner product of f and x^n . Thus

$$\lim_{n\to\infty} f(x^n) = \lim_{n\to\infty} f_n = 0 = f(0)$$

for all $f \in l_2^*$, and consequently x = 0.

However, we have $\|x^n\| = 1$ for all n. This shows that the weak convergence does not imply convergence.

2.14 Definition. A set $A \subset E$ is said to be weakly sequentially compact if every sequence $\{x_n\}$ in A contains a subsequence which converges weakly to a point in E.

2.15 Remark. The Etelein-Smulian Theorem in [5] on page 430 has shown that, A is a weakly sequentially compact if and only if A, the closure of A is weakly compact.

2.16 Theorem. Bounded subsets of a reflexive Banach space E are weakly compact.

To prove this theorem we need the following lemmas:

2.17 Lemma. Let M be a subspace of the normed linear space E, and \mathbf{x}_0 a point of E not in the closure of M. Then there exists a point $f \in E^*$ such that $f(\mathbf{x}_0) = 1$ and f = 0 on M.

<u>Proof.</u> Let M_1 denote the linear hull of $M \cup \{x_0\}$. An arbitrary element z is uniquely represented as $y + tx_0$, where $y \in M$, $t \in \mathbb{R}^1$. Set f'(z) = t, clearly, f' is linear on M_1 . In fact,

$$f'(az_1 + bz_2) = f'[a(y_1 + t_1x_0) + b(y_2 + t_2x_0)]$$

$$= f'[(ay_1 + by_2) + (at_1 + bt_2) x_0]$$

$$= at_1 + bt_2$$

$$= af'(z_1) + bf'(z_2)$$

for all z_1 , $z_2 \in M_1$ with $z_1 = y_1 + t_1 x_0$, $z_2 = y_2 + t_2 x_0$, and arbitrary numbers a, b.

It is also bounded, for if $t \neq 0$,

$$||z|| = ||y + tx_0|| = |t| \cdot ||\frac{y}{t} + x_0|| \ge |t| \cdot d.$$

$$(||f| - (\frac{y}{t})| = y \in M, \text{ then } ||y - x_0|| = ||-\frac{y}{t} - x_0|| = ||\frac{y}{t} + x_0||, \text{ and }$$

$$||f| - (\frac{y}{t})| = ||f| - ||x_0|| = d.)$$

Thus $|f'(z)| = |t| \le \frac{||z||}{d}$. Therefore f' is bounded and hence continuous. Hence $f' \in M$.

That is there exists $f' \in M_1^*$ such that $f'(x_0) = 1$ and f' = 0 on M.

To complete the proof, we extend f' to f on E^* , by using Hahn-Banach Theorem.

- 2.18 Lemma. If the conjugate E* of a normed linear space E is seperable, so is E.
- 2.19 Definition. A subset S of a metric space M is said to be dense or dense in M if the closure of S (written S) is M. A metric space is separable if it contains a countable dense subset.

Proof. (of Lemma 2.18)

Let $\{f_n\}$ be dense subset of E*.

Choose $x_n \in E$ so that $||x_n|| \le 1$ and $f_n(x_n) \ge ||f_n||_2$.

Let M be the set of all finite linear combination of elements out of $\{x_n\}$ with rational coefficients. Then M is coutable, and the closure M is a subspace.

Suppose that M is not dense in E, there exists $x_0 \in E$ such that inf $\{||x_0 - x|| : x \in M \} > 0$.

By Lemma 2.17, there exists f & E* such that

$$f(x_0) = 1$$
 and $f(M) = 0$.

Since $\{f_n\}$ is dense in E*, take a sequence $\{f_n\}$ converging to f. Then

$$\| f_{n_{i}} - f \| = \sup_{\|\mathbf{x}_{n_{i}}\|=1} |(f_{n_{i}} - f)(\mathbf{x}_{n_{i}})|$$

$$\geq \|(f_{n_{i}} - f)(\mathbf{x}_{n_{i}})\|$$

$$= \|f_{n_{i}}(\mathbf{x}_{n_{i}})\|$$

$$\geq \frac{\|f_{n_{i}}\|}{2}.$$

Since $\{f_{n_{\dot{1}}}\} \to f$, $\|f_{n_{\dot{1}}} - f\| \to 0$ as $i \to \infty$. Then $\|f_{n_{\dot{1}}}\| \to 0$ as $i \to \infty$, i.e., f = 0, a contradiction.

2,20 Lemma. (Banach - Steinhaus)

Let E be a normed linear space and F a Banach space.

Let $\{A_n\}$ be a sequence in B(E,F), the set of bounded linear mappings from E to F. Assume that for all n, $\|A_n\| \le M$, and $\lim_{n \to \infty} \{A_nx\}$ exists for all x in any set that is dense in E. Then there exists $A \in B(E,F)$ such that $\{A_nx\} \longrightarrow Ax$ for all $x \in E$.

Proof. Suppose D is dense in E. Given an arbitrary $x \in E$, choose $x \in D$ such that $\|x - x'\| < \varepsilon$.

For sufficiently large m and n, we have

 $\|A_mx'-A_nx'\|\leqslant \|A_mx'-X\|+\|X-A_nx'\|\quad \text{, when X is the limit of } \{A_nx\}. \text{ Hence}$

$$\|A_{m}x - A_{n}x\| \leq \|A_{m}x' - A_{n}x'\| + \|A_{m}x - A_{m}x'\| + \|A_{n}x - A_{n}x'\| + \|A_{n}x$$

Then $\{A_m x\}$ is a Cauchy sequence in F.

Since F is complete, there exists $Ax \in F$ such that $\{A_nx\}$ \longrightarrow Ax. To prove that $A \in B(E,F)$.

The linearity is obvious, since

$$A(ax + by) = \lim_{n \to \infty} A_n (ax + by)$$

$$= a \lim_{n \to \infty} A_n x + b \lim_{n \to \infty} A_n y$$

$$= a(Ax) + b(Ay).$$

Moreover,

 $\|Ax\| = \lim_{n \to \infty} \|Ax\| \le \lim_{n \to \infty} \|A_n\| \|x\| \le M \|x\|,$ i.e., A is bounded. Then the lemma is proved.

2.21 Lemma. A closed linear subspace in a reflexive Banach space is a reflexive Banach space.

Proof. Let M denote the subspace, let M* and M** be the conjugate of M and M*, respectively. We take the following for typical elements in the various space we shall discuss: $x \in E$, $f \in E^*$, $g \in E^{**}$, $x' \in M$, $f' \in M^*$, and $g' \in M^{**}$. We write f(x) = (f,x), g(f) = (g,f), etc.

Let \S be the map that sends an element f in E* to its restriction f' in M*. Specifically, take $\S(f)$ so that $(\S(f),x')=(f,x')$ for all $x' \in M$. Since $\|\S(f)\| \leq \|f\|$, $\S(f)$ belongs to M*. Moreover $\S(.)$ is linear on E*.

Since \S is linear on E* and g' is linear on M*, the composition g'g defined by $(g',\S(f))=g'\S(f)$ for all $f\in E*$ is linear on E*. Moreover, $\|g'\S\| \leq \|g'\|$ so that $g'\S\in E**$.

Set
$$\eta(g') = g'g$$
. Thus, if $f \in E^*$.
$$(g', g(f)) = g'g(f) = (\eta(g'), f).$$

Clearly, $\eta: M^{**} \rightarrow E^{**}$.

Now take g_0' arbitrary in M** and set $g_0 = \eta(g_0')$. Given $f' \in M^*$, let f be any extension of f' to E*, so that $f' = \xi(f)$.

For some $x_0 \in E$ and all $f' \in M^*$, we have

 $(g_0^*, f^*) = (g_0^*, g(f)) = (\gamma(g^*), f) = (C(x_0), f) = (f, x_0) \dots (*)$ where C is the natural mapping.

If
$$x_0 \in M$$
, then $(f,x_0) = (f',x_0)$, and thus $(g_0', f') = (f', x_0)$,

and we are done, since go was arbitrary on M**.

Suppose , then, that $x_0 \notin M$. By Lemma 2.17, there exists $f \in E^*$ such that $(f,x_0) \neq 0$ and $(f,x^*) = 0$ for all $x^* \in M$. Since $(g(f),x^*) = (f,x^*) = 0 ,$

$$\xi(f) = 0$$
. Then
$$0 = (g_0^*, \xi(f)) \stackrel{(*)}{=} (f, x_0), \text{ as above.}$$

This contradiction establishes that $x_0 \in M$.

Hence the lemma is proved.

Proof. (of Theorem 2.16)

Let S be a bounded subset of E, and let $\{x(j)\}$ be a sequence in S. Let M denote the linear hull of $\{x(j)\}$, namely, the set of all possible finite linear combinations of $\{x(j)\}$. Then \overline{M} , the closure of M, is closed subspace of E.

Let M_O denote the set of all finite linear combinations of $\{x(j)\}$ with rational coefficients. Then M_O is a countable dense subset of \overline{M} . Hence \overline{M} is separable .

Since M is closed subspace of E and by Lomma 2.21, M is also reflexive Banach space.

Since \overline{M} is seperable and reflexive, \overline{M}^{**} , the second conjugate space of \overline{M} , is also seperable.

Then by Lemma 2.18, M* is seperable.

Let $\{f_1, f_2, \dots\}$ be a dense subset of M^* . Choose a subsequence $\{x(j(i,1))\}$ such that $\{(f_1, x(j(i,1)))\}$ converges.

Let $\{x(j(i,2))\}$ be a subsequence of $\{x(j(i,1))\}$ such that $\{(f_2', x(j(i,2)))\}$ converges; and let $\{x(j(i,n))\}$ be a subsequence of $\{x(j(i,n-1))\}$ such that $\{(f_n', x(j(i,n)))\}$ converges.

The sequence $\{x_i\} = \{x(j(i,i))\}$ has a property that $\{(f_n, x_i)\}$ converges for every $n = 1, 2, \ldots$, because for i > n, we have $\{x(j(i,i))\}$ is a subsequence of $\{x(j(i,n))\}$. Then

$$\lim_{i \to \infty} (f_n^i, x_i) = \lim_{i \to \infty} (f_n^i, x(j(i,n)))$$
$$= \lim_{i \to \infty} (g_i^i, f_n^i)$$

exists for each n., where $g_i^* \in M^{**}$ for all i.

Since $\{f_n^*: n = 1, 2, ...\}$ is dense in M^* and because g_i^* is uniformly bounded, by Lemma 2.20, there exists $g \in M^{**}$ such that

$$\lim_{i \to \infty} (g'_i, f') = \lim_{i \to \infty} (f', x_i)$$

$$= (g, f')$$

for all f' in M*.

Then the limit of (f',x_i) exists for all f' in M^* , and hence a Cauchy sequence. Since M is reflexive, by Theorem 1.11, M is complete. Then there is a point $x' \in M$ such that

$$\lim_{i \to \infty} (f', x_i) = (f', x')$$

for all f' in M*.

Finally, because $x_i \in M$, then for every $f \in E^*$ there corresponds an $f' \in \widetilde{M}^*$ such that $(f, x_i) = (f', x_i)$ and (f, x') = (f', x').

Then

$$\lim_{i \to \infty} (f, x_i) = (f, x^*)$$

for all $f \in E^*$. Hence by definition of weakly convergence, $\{x_i\} \longrightarrow x^*$, which show that S is weakly sequentially compact, and then S is weakly compact. This proves the theorem.

The nested spheres theorem

A sequence of closed spheres

$$S[x_1, r_1]$$
, $S[x_2, r_2]$,..., $S[x_n, r_n]$,...

in a metric space R is said to be nested (or decreasing) if,

$$s[x_1, r_1] \supset s[x_2, r_2] \supset \cdots \supset s[x_n, r_n] \supset \cdots$$

2.22 Theorem. A metric space R is complete if and only if every nested sequence $\{S_n\} = \{S[x_n, r_n]\}$ of closed spheres in R such that $r_n \to \infty$ has a nonempty intersection

 $\bigcap_{n=1}^{\infty} S_n.$

Proof. Assume that R is complete.

Let $\{S_n\}$ be a sequence of nested closed spheres in R such that $r_n \to 0$ as $n \to \infty$. To prove that $\bigcap_{n=1}^{\infty} S_n \neq \emptyset$.

Consider the sequence $\{x_n\}$ of centers of the spheres S_n . For any given E>0, there exists N such that

Since S $\left[x_{N}, r_{N}\right]$ contains all centers x_{i} for all $i \geq N$, for all n, n' > N we have

$$d(x_n, x_n) < 2.r_N < \mathcal{E}$$
.

Then $\{x_n\}$ is a Cauchy sequence in R. Since R is complete, there exists $x \in \mathbb{R}$ such that

$$\lim_{n\to\infty} d(x_n, x) = 0$$

or

1

$$\lim_{n\to\infty} x = x.$$

Thus $x \in \bigcap_{n=1}^{\infty} S_n$. In fact, S_n contains every point of the sequence $\{x_n\}$ except possibly the points x_1, x_2, \dots, x_{n-1} . Hence x is a limit point of every sphere S_n . But S_n is closed, and hence $x \in S_n$ for all n.

Conversely, suppose every nested sequence of closed spheres in R with radii converging to zero has a nonempty intersection, and let $\{x_n\}$ be any Cauchy sequence in R.

We choose a term x_{n_1} of $\{x_n\}$ such that $d(x_n, x_{n_1}) < 1/2$

for all $n \ge n_1$.

Let $S_1 = S[x_{n_1}, 1]$. Next, we choose a term x_{n_2} of $\{x_n\}$ such that $n_2 > n_1$ and that

$$d(x_n, x_{n_2}) < 1/2^2$$

for all $n \ge n_2$.

Let
$$S_2 = S[x_{n_2}, 1/2]$$
.

Continue this construction indefinitely, i.e., once having chosen terms x_{n_1} , x_{n_2} , x_{n_3} , ..., x_{n_k} ($n_1 < n_2 < n_3 < \cdots < n_k$), choose a

term $x_{n_{k+1}}$ such that $n_{k+1} > n_k$ and

$$d(x_n, x_{n_{k+1}}) < 1/2^{k+1}$$

for all $n \ge n_{k+1}$, and let $S_{k+1} = S[x_{n_{k+1}}, 1/2^k]$, and so on.

This gives a nested sequence $\{S_n\}$ of closed spheres with radii converging to zero. By hypothesis, these spheres have a nonempty intersection, i.e., there is a point x in all the spheres.

We claim that

$$\lim_{n \to \infty} d(x_n, x) = 0.$$

Given $\varepsilon > 0$, let N be such that

$$1/2^{N-1} < \varepsilon/2$$
.

Then for all $n > n_{N}$, we have

$$d(x,x_n) \leqslant d(x,x_n) + d(x_n, x_n)$$

Since $x \in S_N = S[x_{n_N}, 1/2^{N-1}]$, $d(x,x_{n_N}) < 1/2^{N-1} < \varepsilon/2$.

Since $n > n_N$, $d(x_{n_N}, x_n) < 1/2^N < 1/2^{N-1} < \varepsilon/2$.

Then $d(x,x_n) < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Hence $\lim_{n\to\infty} d(x, x_n) = 0$, i.e., $\lim_{n\to\infty} x_n = x$.

Thus the theorem is proved.

2.23 Theorem. Let $\{x_n\}$ be a weakly convergent sequence of elements in a normed vector space E. Then $\{x_n\}$ is bounded, i.e., there is a constant C such that

$$||x_n|| \le C$$
 $(n = 1, 2, ...).$

<u>Proof.</u> Suppose that $\{x_n\}$ is unbounded. Then $\{x_n\}$ is unbounded on every closed sphere

$$S[f_o, \varepsilon] = \{f: \|f - f_o\| \le \varepsilon\}$$

in E*, in the sense that the set of numbers

$$\{(f, x_n) : f \in S[f_0, \epsilon], n = 1, 2, ...\}$$

is unbounded for every $S \begin{bmatrix} f_0, \varepsilon \end{bmatrix} \subset E^*$. In fact, if the sequence $\{x_n\}$ is bounded on $S \begin{bmatrix} f_0, \varepsilon \end{bmatrix}$, then it is also bounded on the sphere $S \begin{bmatrix} 0, \varepsilon \end{bmatrix}$ = $\{g: \|g\| \le \varepsilon\}$, since if $g \in S \begin{bmatrix} 0, \varepsilon \end{bmatrix}$, then $\|g\| \le \varepsilon$, and so

Thus $f_0 + g \in S[f_0, \epsilon]$, and

$$(g, x_n) = (f_0 + g, x_n) - (f_0, x_n)$$

where the number (f_0, x_n) are bounded, by the weak convergence of $\{x_n\}$. Since $f_0 + g \in S$ $[f_0, \mathcal{E}]$, $(f_0 + g, x_n)$ are bounded, and then (g, x_n) are bounded. But if $|(g, x_n)| \le C$ for all $g \in S$ $[0, \mathcal{E}]$, then by the isometry of the natural mapping of E into E** (Theorem 2.10)

$$\|\mathbf{x}_n\| = \sup_{\|\mathbf{g}\| \leq 1} |(\mathbf{g}, \mathbf{x}_n)| = \frac{1}{\varepsilon} \sup_{\|\mathbf{g}\| \leq \varepsilon} |(\mathbf{g}, \mathbf{x}_n)| \leq \frac{c}{\varepsilon}$$

$$(n = 1, 2, ...),$$

Then $\{x_n\}$ is bounded, contrary to assumption. It follows that if $\{x_n\}$ is unbounded, then $\{x_n\}$ is unbounded on every closed sphere in E*.

Next, choosing any closed sphere $S_o \subset E^*$, we find an integer n_1 and an element $f \in S_o$ such that

$$|(f, x_{n_1})| > 1.$$

Since (f, x) depends continuously on x, there exists $S_1 \subset S_0$ such that

$$|(f, x_{n_1})| > 1$$

for all $f \in S_1$.

By repeating this argument, we find an integer n_2 and the closed sphere $S_2 \subset S_1$ such that

$$|(f, x_{n_2})| > 2$$

for all $f\in S$, and so on, where in general there is an integer n_k and a closed sphere $S_k\subset S_{k-1}$ such that

$$|(f, x_{n_k})| > k$$

for all $f \in S_k$. We can see that the radius of the sphere S_k approaches zero as $k \longrightarrow \infty$.

By theorem 1.4, E* is complete, it follows from the nested sphere theorem that there is an element $\bar{f}\in\bigcap_{k=1}^\infty S_k$. But then

$$|(\bar{f}, x_{n_k})| > k$$
, $(k = 1, 2, ...)$

contrary to the assumed weak convergence of the sequence $\left\{ x \atop n \right\}$.