CHAPTER VI

THE FUNCTIONAL EQUATION f(x o f(y)) = f£(x) # f(y).

The materials of this chapter are drawn from referencesI;EI',
(5}, ana [ .

In this chapter, we shall be concerned with the following

functional equations

(6.1) f(x « £(y)) ="Fkx) < £
(6.2) f(x + £(y)) = f(x) + £(y)
(6.3) £f(x + £(y)) 7=/ LI A y)
(6.4) flx . £(y)) # E(IBFE(y)

Of course, the domain and range of f neéd to be chosen in accordance
with the specific equation. Moreover, these equations have been

treated in references (3] and { h] .

Eq (6.1) and Eq (6,2) :

Suppose f maps a group (Go,*f) with zero into itself and

satisfies the equation

¢ :
(6.1) fix= £(y)) = 12(x) »£(y).

Proposition 6,1+ If f is constant, then f = O or 1.

Proof. Suppose f° =c ., Then

g = B %o
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Therefore, c = 0 ‘or 1.,
Hence the proposition is proved /

*
Proposition 6.2. f(GO) = f(Go) . {O} is a subgroup of (G , % ).

providing f ? O,
Proof. Since f # 0O and since
£(x) * £y~ = fx w2y

for f(y) # O , f(GO) ~ ILO} is a subgroup of G /

Theorem 6.3. A function f mapping a group (Go,*") with zero into
itself satisfies Eq (6;1{ if and ohly if either f = O or elde there
exists a subgroup M of G and a mapping |

T o: s U{o}_._-..a,mu {o}

such that

T(0) 0O if £ £ 1 and

(6.5) f(x)

T *
£(s_) m_
where each x € G can be written uniquely as

X = s *m (sxé Sy m_ € M)

and S is a set of mepresentatives in G of the left cosets of G by M.

/
Proof., (Necessity). Suppose f # 0 satisfies Eq (6.1). Then
M = f(GO) A {O} is a subgroup of G by Proposition 6.2. Let S be

a set of representatives in G of the left cosets of G by M. For each

x € G,

for a unique Sy € S and a unique m € M. Then

f(x) = f(sx) * om
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by Eq (6.1)/. Let
£(s) if s € 8
T(s) =
0 if s = O (provided f £ 1).
(Note if f ;é O or 1, then £(0) = £(0) ¥ f(y) implies f(0) =0
so that necessarily T(0) = o).
Hence the necessity condition is proved.
(Sufficiency). Suppose we are given M and ?'as stipulated
by the theorem. Let f be defined by Eq (6.5) together with
£(0) = O .+ Suppose

X = 8_ ¥m and y = s_* m
X x y y

with obvious notations. Then
~
f(y) = f(s) % m
% y ~

so that

f(x *f(y))

f(s *xm x £ (s )% m)
x x y y

?'(s YWD (8 ) » m
X X y J

f(x) * £f(y)

~ &
since m_ , f (Sy)’ my € M., Thus Eq (6.1) is satisfied by f /

Of course if the group G is dommufative, we need not worry

about the left or right cosefs because they are identical.

Corollary 6,4, Let G be a commutative group. A function

/
f : G-— G satisfies Eq (6.1) if and only if there exists a

~

subgroup M of G and a mapping f : S -« M such that



50
£(x) = £ (s.) » m
where each x € G can be written uniquely as

X =85 % m (sxeis, m, € M),

where S is a set of representatives in G of G/M /

In the important case where Go =R s we can. obtain quite

strong results.

Theorem 6.5. If f : (R, .)—3(R, .) is a continuous function

satisfying Eq (6.1), then f is of the form
f(x) = 13 f(x) = cx for some ¢ in K

or f(x) = Sup {ax, bx} where a £ 0, b » 0, b > a.
Proof. We may assume that £ # O or 1. Then M = f(R) N {O} is
*
a subgroup of R = TR,\ {O} . Suppose &xn} is a sequence in M
*

converging to a point x in TR .

Then
lim f(xn) < ol Gl 4
n->¢
But
~ 1lim f(xn) = lim f(1). x, = £f(1) . x
N30 Nn—x0
by Theorem 6.3 so ‘that
f(l) ¢« X = f(X)-

Since f(x) = O , ® gl 1) . f(x)-:L is in M by Proposition 6.2 so

that x € M.
¥
Hence M is a closed subgroup of R, . It then follows from Theorem A-6

that
*

Ry i =Ri={xem‘x)o}



or M is discrete.

3 8
Since f is a non-constant continuous function ,f( R
is an interval which is not a singleton so that M
not discrete.

- 2(R) ~ O}is
IrM =R, then iR/ R"

S = {lj in Theorem 6,3 so that

f(x) = f(1) « x = ecx
*

has exactly one coset and we may let

(x € R).,
If M

' *
, then f.D\/M contains exactly two cosets and we
may take S ={- 1, l.‘

1 in Theorem 6.3 so that

(1)

ex  if xe M = Rt
f(x) s
£(-1)(~1)x if x& M.
ax if x € l;—(t
d { bx if x & TRf

where a » 0, b & O since f£(fR) £ MU {O} =R, . In this case

f(x) = Sup{ ax, bx} s & 2 Oand b § O«
If a.c=

= b, then a O and f # O which has already exhibited.
Hence we may assume b > a /

= b =

Theorem 6,6.

0

(R, +) — (R, +) is a continuous function
satisfying Eq (6.2) , then

f = 0 or flx) =
Proof.,

x + a for some a in R .
As in the proof of Theorem 6.5, the set M
closed subgroup of (K , +),

= f(IR) is a
But M is connected, being the continuous
image of the connected set 7‘% sy B0 that M is a singleton or M is
non-discrete. Since the only constant functiom f
fying Eq (6.2) is f = 0, M

: IR —»> R satis-
f(R ) being a singleton implies f = O.
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If M is non-discrete, then M =R by Corollary A-4 so that we may
take S = {0} in Theorem 6.3.
Hence
f(x) = f(0) +x = a+x

in this case /
As an application, we prove the following :

Theorem 6.7. A continuous function f : R— R is demi-multiplicative

symmetric, i.e.,

(6.6) f(x £(y)) = f£(£(x) f(y))

if and only if f is of one of the following forms
f(x) = a  for any constant a in R
or f(x) =
or f(x) = Sup { ax, ¥ } in-£ O
or f(x) = = |x| for all x in R .

Proof. Assume f is a non-constant continuous DMS function. Then
Theorem 5.2 dimplies that f or -f is SMS. Therefore Theorem 6.5

assures that f or -f is of the forms :

f{ix) = ax
or =-f(x) = ax
or fix) = B8up { ax bx}' ad O, b2 0, b> a,
or =f(x) = Sup{ax, bx} 8 £ 0,9 5 0,92 a,

If follows from the first two cases that f is of the form
f(x) = ex (xeR)

for some ¢ in /R . But f is DMS, Eq (6.6) and the. last equation give
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f(l.c.l) £le.1.0.1)

c(1lecl) c(el.cl)

M

so that ¢ = 1. Hence the only DMS function of the form f(x) = cx is
when ¢ = 1. Thus

Next éonsider function of the form f(x) = Sup {ax, bgl with

a £ 0, b2 Oand b > a. Then Eq (6.6) gives

f(1.£(1)) = f£(b) = b=,
But f£(1.£(1)) = f£(£(1). £(1)) =1’ so that b = 1. Thus
(6.8) f(x) = Sup {ax, x} (x € R)

with a £ O.

Finally, the case ~f(x) = Sup{ax. bx} a § O, b > 0 and

b > a. As in the preceding case, we can show that

-f(x) = Sup {ax 2 x} (x ¢ R) , a £ O.
That is :
(6.9) f(x) = Inf {cx, -x} (x € R), ¢ > 0.
We claim that Eq (6.9) satisfies DMS property only if ¢ = 1. By
Eq (6.6) again, f(-1.f(~1)) = = ¢ and
£(-1 . £(~1)) = £(£(-1) . £(-1)) = - ¢°
so that ¢ = O or 1, Since f(x) = =-x does not satisfy Eq (6.6),
c = +1l.
Hence
(6.10) f(x) = Inf{ X, -x]?

= - ’ X' (X € ﬁe )o
Obviously, functions given by Eq (6.7), (6.9) and (6.10) satisfy
Eq (6.6).
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Thus the theorem is now completely proved /

It is worth noting that the MS, DMS and SMS functions over

R ( > 0) are much simpler than those over (IR,.).

Theorem 6.8, A continuous function f : R (> 0) — R ( » 0) is

i) MS if and only if f is of the forms :

f(x) = aor f(x) = ax (a > 0).

ii) SMS if and only if f is of the forms &
f(x) = lor f(x) = ax (a > 0). {f‘
iii) DMS if and only if f is of the forms :

f(x) 2 a(a>0)or flx) = x.

Proof, (i) follows at once from Theorem 4.6 when x and its values
are in R (> 0). Similarly, (ii) obtains from Theorem 6.5 and

(iii) also obtains from Theorem 6.7 /

Eg (6.3) and Eq (6.4).

Here we are mainly concerned with functions f :[K — e where
K is a field of characteristic zero, and satisfying one of the follow-
ing equations :
(6.3) f(x + £(y))
(6.4) f(x £(y))

f(x) £f(y)

f(x) + £(y).
As for Eq (6,4), we have
£(0) = f£(0. £(x)) = f£(0) + f(x)
for any x ¢ K, so that the only function f : K — IK satisfying

Eq (6.4) is the zero function.
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From now on, we shall assume that the function f :|K — 1K
satisfies Eq (6.3). Then we immediately get
f(x + 2) = 2zf(x) (xe K , 2z ¢ £(IK))

and

f

f(f(x)) £(0) f(x) (x € IK).
Moreover, if f is identically k < [K , then
k = f(0 + £(0)) = .f(O) . £(0) = k

so that k = O or 1.

Proposition 6.9. If f is identically constant, then f = O or f = 1.

Suppose now that f(xo) = 0 for some X, in K then for any
x & IK

f(x) = f(x +0) = f(x + f(xo))

"

f(x) f(xo) = 0

and we have proved :

Proposition 6.,10. If f is O at one point of IK , then f is identically

O

Henceforth we shall further assume that f‘;s non-vanishing.

Proposition 6,11. For any x ¢ K , f(x - £(x)) = 1,

Proof. For any x ¢ IK ,
f(x) = £f(x « £(x) + £(x)) = £(x = £(x))  £(x)

so that the proposition is obtained /
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Now
f(x + 1) = f(x + £(0 = £(0))} = £(x) £(0 ~ £(0))
= f(X) . 1
and we have just proved :
Proposition 6.12. For any x € (K, f(x + 1) = f(x) .

Proposition 6.13. If f : |K —> K satisfies Eq (6.3) and does not

vanish identically, then f( 1K) is a multiplicative subgroup of

K = IK\{O}.

Proof, Since 1 = £(O0 - £(0)} by Propcsition 6.11, 1 & f( {K).
Let g, and g, be in f( 1K ). Then

£f(0 - £(0) + g1+ ga) = f£(0 - £(0)) . 8185

35 glgz
so that g,g, € £( 1K ),

I1If g & f£(IK) P¢hen

£(0) f(-£f(0) - g + g +:£(0))

it

£(-£(0) = g) . gf£(0).
Since £(0) ?é 0, multiplying both side of the above equation by f(O)"l
to obtain
T = £(=-£(0) - g) « g
That is
-1 ®
g~ is in £(IK).

Hence f( |K ) is a subgroup of IF? /



57

Let /A be the additive abelian group on the generators f ( K ),
i.e.y /A consists of all finite linear combinations of elements from
f( 1K) with coefficients inZ . Then /A  is a subgroup of the addi-

tive group K .

Theorem 6.14., If f(IK) %&O}‘the mapping 8 : A —> f(IK ) defined

by B(N) = £f(-£(0) + A ) is a homomorphism from (#\ , +) onto
(£(IK), .) satisfying :

Ble) = g ror a1l RWIPA).
Proof. Clearly § is well-defined. By Eq (6.3) and g e TOK 3,

#(g)
But f£(~£(0))

£(-£(0) +g) = £(-£(0)). g .

£f(-£f(0) + 0) = 1 by Proposition 6.11. Hence @(g) = g

for all g ¢ £( K ).
n
Now let A = Zaigi with g, € f(IK ) anad aiéz , and
=1 '
assume, for instance, that ai> Ofor 1 £ i { k, and a; = --bi < O
for k + 1 ¢ i £ n. Ve claim that

k a n
i=1 k+l

QPN

For n ='33

!

5 (R) f(-£(0) + a,g.) = £(-£(0)) 8y g (0) gy -

n
n

181

Assume the claim true for lesser value of n. Then

n
f(-£(0) + taigi - Z bigi)

6(A) =
i=1 i=k+1
n k-1
= f(-£f(0) - z . bog, * § , A.8.+ a. g )
" b Bag ki i k®k
i=k+1 i=1

£(-£(0) - ): b.g; + Z a;85) 8
i=k+1 i=1
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by Eq (6.3). 1It now follows from the induction hypothesis that

R Wi
f(«£f(0) = b.g, + ‘2~,aigi) By

BCA) =
i=k+1 ‘ i=1
n
— k;f ai ak
= p (= ‘D“‘bigi) l 81" 8y
i=k+1 1=
d n K ay
i=k+1 i=1
Hence the claim is proved.

Since @(0) = f(-f(0) + 0) = 1 by proposition 6.11 and the claim,

B (- bigi) ( 17 84 )

k+1 k+1
n AL n
ot . M &
gi = gi
k+1 k+1
so that
; k a n -b
g () R T e
il i=k+1
n a
ol
i=1

Therefore for any o and QX in /A s We can show that

B (el + ) gty . 80X

Thus @ is a homomorphism from (A ,+ ) onto (f(IK ),.).

Hence the theorem is proved /

Observe that if f # O is a solution of Eq (6.3), then the

associated homomorphism
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oy om —S880 5 a0 )

must be well-defined. This means that if

is any representation of O in #\ , then

1 = ¢ (0) g ( _iiaigi)
A

a.
.1
B

i=y *

n

must hold. Thus we arrive at the consistency condition

n

n
(*.) Ea.g. = O implies Trg
‘ Ser i=1

a.
i
X

= %
for all gié £f(IK) and aié Z.

Theorem 6.15. If f satisfies BEq (6.3) with £( IK) #£ 0, x ¢ IK and

A € /\, then :
f(x + A) KT P TAJ.

n
Proof. Suppose K& = zlaigi with a ¢ 7, g; € f(lK). As in the
1=

proof of Theorem 6.14, we obtain

f(x + ig.aigi)

n a
£(x) T] g.i
; i
izl

f(x + )

Hence the theorem is proved /

This theorem enables us to give a lot of examples.. Even more

the previous necessary conditions for a subset G of IK to be the range
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f(IK ) of a solution of Eq (6+3) appear to be sufficient.

Theorem 6,16. Given a mltiplicative subgroup G of I}f such that the

additive abelian group 2\ geﬁerated by G satiéfies the consistency
(a-e), let § be a sst of representatives of IK //A4 in K , so that
any x € K may be written as x = s + A where s ¢ S and Ae€/A
with a unique s and define

f(x) = f£(s) B8 (A)
where' £(s) = g, € G and @ is the natural homomorphism
/R ‘(//\ , #) (G, .) D existence of which is ensured by (% ).
(If x = s + ;\/, then A-ﬂ/ =0 andkzﬁ(}\- '}\/) = 1, because of

( # ), and f is unambiguously defined). Obviously f satisfies Eq (6.3)/

Example 6.17. Let K = IR y- & a transcendental number, g (X ) the

cyclic group generated by o . Condition ( *) is verified, since if

n
Zaio("" = O, then ai=0 for i = Mmykisey, No /A is the free

i=m

abelian group /¢ g (x) > and x ¢ |K has a unique representation

X =5+ A « We may define, without ambiguity
n 1‘ rdt
L1+ Z:La.
f(x) = f(s + zaid) = X i
i=m

The function f defined in this way satisfies Eq (6.3). The definition
of the set of representatives S relies on the axiom of choice. In fact,
if we assume that S C f O,hl[ 4 which is possible because of Proposi-
tion 6.12, it appears that S is basically the best known example of a
non-measurable set in fb , with outer measure /L* (8) > O and inner
measure .}A*(S) = 0. (See for example Halmos [2] )e The reciprocal

image of £ ', Y = f-l(°( ) is the countable union of the S + A ,
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where A runs throﬁgh the countable set :
, i n
‘{iaio( ‘ aiez, Ziai = O}.
=m l=m

We have/u*(z) = 0, since the sum of any series with all terms
* * '

equal to zero, is zero, but/a( (1) 2/“( (s) > 0. We have just

shown that the reciprodal image of the (closed) set {o(} is not

measurable so that the function f itself is not measurable.

Example 6.18. There exists non-measurable unbounded solutions for

Eq (6.2) in the case IK = B . Let & ©be a transcendental number,
& (L ), /A and S have the same meaning as in Example 6.17. For each

x€ JR , x has the unique representation

n A
i
X i LE g zaid ,sG:S,aiégZ
i=m
- ==
Define f(x) = of + - a—
i=m

Obviously f satisfies Eq (6.2) and is non-measurable and unbounded.

Example 6.19. There exists discontinuous solutions for Eq (6.1)

with IK = TR . o and e (e ) being as previously, let E be a set
* * A
in IR of representatives of R /@(x).

Now define :

n
O

0 it x

fix) =

0(k+l i 5

Obviously, f satisfies Eq (6.1) and is not continuous.

L]

k
e, where e ¢ E, k & Z

From now on, take K = TR and proved :
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Theorem Glgol If £ :IR ——5 R is a function satisfying

(6.3) f(x + £(¥)) < f(x) f(y).

Then f£( IR ) contains no algebraic numbers except O or 1 (but not both).
Proof. Suppose that f(x) is algebraic for some x in IR . Then there
e
exist integers By Byaeeey B such that

a + a, f(x) + a £(x)Z 4 vee +a £(x)T = O

o} 1 2 ' n

so that
n+1

|
O

a £(x) + a, T(EeE . Q +Thx)
(o] n

1
Thus

£(0)

n
| X,
A/ Ti% [f(x>n] ¢ )

.zo(i+l)ai
£(0) . [ £} ™

"

by Theorem 6.15. If f(0) = O, then f is identically O by Proposition
6.10 and the theorem holds in this case , Assume that f(O) #: O.e

Then the obove equality gives

N
(6.11) 1 = [£0]
e
where N = il(i + 1) a; 1is an integer. Then Eq (6.11) holds if
i=0

£(x) = 1 or - L.
If there exists an x in IR such that f(x) = - 1, then by
Proposition 6.11 and 6.12, we obtain
<1 =f(x) = flx+1) =flx-f(x)) =1
which is impossible so that f(x) = 1.

Hence the theorem is now completely proved /
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And as an application of this theorem, we will prove the

following :

Theorem 6:21. If f : R — IR is a continuous function satisfying

(6.3) f(x + £f(y)) = f£(x) £(y) (x,y€ R ), p

then f is identically O or 1.

A

Proof. Suppose f is neither the O function nor the funct 3&;:”“’
s Q“"

R sazat

follows from Proposition 6.9+ that f cannot be a constant function so
that there exist x and y in IR  such that f(x) # f(y). Since f is
continuous, f must assume some algebraic number, different from 1
between f(x) and f(y). This contradicts Theorem 6.20 so that the

conclusion of the theorem must hold /

It seems that f = O or 1 are the only possible regular solu-
tions ,of Eq (6.3). Although we can not confirm this, we give more

support to it.
Lemma 6.22. Let Xy Xg4 Xgpeeey X be any element in 'R , then

i 1]
(6.12) f(x + ‘ﬂ'f(xi)) = f(x) | f(xi),

i=1 i=1

Proof. For k = 1, Eq (6.12) is just Eq (6.3). Assume that Eq (6.12)

holds for lesser value of k. Then by induction hypothesis and Eq (6.3)

1% k=2
flx + M£0x)) = £l + N flx) .« £lx g+ £(x)))

i=1 _ =1

k=2 p
Yo, H o) o 2, v A2 D)
i=1



.
N
R

6L
ke2

£(x) . H ) o Mxooo) o 2UR)

£(x) . -ﬁ £(x,).

n

The conclusion of the lemma follows /

Proposition 6.23. Let x4 X19 Xpaeeey X be any element in IR and n

is any integer‘, then

e n
(6.13) £(x + n TTf(x » = a0 | T f(xi)] ;
i=1 i=1
provided Tr f(x ) # 0.
i=1
Proof. We will prove Eq (6,13) first for n > O by induction on

n. Since Eq (6.13) is true for n = O and is Eq (6.12) for n = 1,
assume Eq (6.13) holds for lesser values of n. Then by Lemma 6.22

and the induction hypothesis,

k
£x +n T £(x;)) = £(x + (n=-1) T £(x,) + “lf(x )

i=1 1

£(x # (n = 1) T £(x,)) - Tl'f(x )

i=1l

£(x) [ Tf(x )]n-l ﬁ'f(x )

"

o [ ﬁf(xi) ] :
iz

k
providing |1 f(x ). # 04 Eq (6.13) holds for n > O,
$a
If n is positive integer, then from the first part of the

proof

!?T

n
——

=i*

e

f(x.) +n |
% 1 i

i=

f(x) f(x = n f(xi))

1l
e
-

£{x = n

£(x,))s [ﬁ f<xi)]n;
i=

b

e
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so that

=

f [ e ]
f(x = n ‘n;f(xi)) = f(x)- ;zgf(xi) .

k
provided that }Tlf(xi) # 0. Hence Eq (6.13) holds for any integer
i= '

n/

Theorem 6.24. If f :fR —> IR is not a constant function satisfying

(6.3) f(x + fly)) = £(x) £(y)

then f assumes arbitrarily large and arbitrarily small values.

Proof. Since the only constant furdtions satisfying Eq (6.3) are O
and 1, the hypothesis on f together with Proposition 6.9 implies that
there are x'and y in IR sueh that

£f(x') # £(y))
and

() 40 £ £y’ ).
Since f(x) . f(x) = f(x + f(x)) , we may assume that £6x ), f(yi)) Q.
Also assume that f(x ) & f£(y') .
It now follows from Proposition 6.23 that

¥x' - 20y’ ) Fix') £y’ ) M

and

£y’ - £(x')) £(y') . 2(x")"> 1.

Hence there are always x and y in JR such that
G L e L3

and
260

It now follows from Theorem 6.15 that
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n
" e ) (i+1)
N i+l i=0
et (L le] ) =118 (£(0). [P ] )
n-»00 i=0 n->e0
= ©
and that =
3 Z(:’Hl)
o i+l 5 | i:o
un 1 L lew] ) = e . [ )] )
n»>00 i=0 n- oo
= # C’O .

Hence the conclusion of the theorem now follows /

Corollary 6.25. If f :JR —» IR is a function satisfying Eq (6:3)

and if there exists an & > O such that
fHle) > § (xe M),

7

then £ % 15

Corollary 6.26. If f :TR-—TR is a function satisfying Eq (6. 3)

and if f is uniformly bounded from above, then f 3 O or 1.
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APPENDIX

In this appendix, we will show that the closed subgroups of
(R\{O},-) are :

1) (Rdo},)

i1)  (R(30),4) ana

i11) the discrete subgroups
where R is the set of real numbers. To show thisy we will prove
first that every closed proper subgroup of the additive group (\R,+)

is of the form :
aZ ={an v el } (2 €R( JoN.

Loemma A-1. Let A be any subgroup of (R,+). If A is not discrete,

then A is dense in “L -

Proof. Suppose A is not discrete. Then there exists a &€ A such

that for every neighborhood (nbhd) N of a in Tr\, we have N {1 A -
contains elements of A\{a} :  In particular, for any given £ » 0,
there exists x

&

We claim that for cach £)» O there exists a x £ O in A

# 0 in A such that Xe € (a=€, a+t ).

such that x ¢ (=€ ,E). TFrom above, there exists s € (a=€ ,a+L )
and since A is an additive subgroup of IR, x£ - a €A and
tXE. - a‘ < £ . Therefore x = xg -2 € (-£,8).

Next we claim that A is dense in R. It is enough to show

that every set of the form (r-f, r+§ ) contains a point of A

where € < 1 and r gTR . Without loss of generality, we may
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assume that r 3 O. From the above claim, there exists a(70)
in A such that 2 € (~L,£) so that by Euclidean Algorithm, there
- r -
exists nOQZ()O) such that 2 = ng+ b where |bl<a<§.
2
Therefore r = nja + ba, i.e, ’r-noa‘ = ‘ba\ = }b% a< £ .
But € < 1; hence 82< €. Thus n a€(r-£,vr+€). Since n, a €A,

A is dense in R/
Lemma A,2. BEvery closed proper subgroup of (TR,+) is discretees

Proof., Let A be any closed proper subgroup of (R,a—). Suppose A
is not discrete. Then by Lemma A.1, A is dense in R/. But A is
closed; hence A = & = R, where & is the closure of A, so that A
is not a proper subgroup of R. Thus a proper closed subgroup of

(R,+) must be discrete/

Theorem A-3. Discrete subgroups of (R+) must be of the form :

aZ ={an|nel}.

for some a £TR (30).

Proof. It is clear that a set of the form a% is a discrete
subgroup of (WR,+). To prove the converse, let D be a discrete
subgroup of (R,+). 1D = {o} , then D = Oef,e

If D # fLo}, let D_ = {déD { a )0}, ThenD+¥cp
and bounded below by C. Therefore the infimum of D+, say a, exists
as a number in MR ( 20)e Since a = inf D, , for any given € >0
there exists x € D+ such that |x-a| < § which implies that the

distance d(a, D+) = O, Hence a €& 5+ » the closure of D inR.
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Since D+ is discrete in i{, D+ = D+ and a € D+.

We claim that D = a4, « Since D is an additive subgroup of
(Ry+), a% € D. To prove the converse, suppose there is a d € D
such that d § aZi « Since both d and -d are in Dy, we can assume
that 4 » O. By the property of real numbers and the choice of a,
there exist n & Z (> 0) such that

an € d < a(n+1).
Since d < a(n+1), d=an < a. But d-an » 0 and d-an € D so that
a is not the infimum of'D+, a contradiction. Therefore. we must
have Dc aZ .

Now the theorem is completely proved/

Then follows from Lemma A-2 and Theorem A-3, we immediately obtain

the following corollary :

Corollary A-4, Every closed proper subgroup of (TR,+) is of the

form :

alls = {_an‘ n‘EZZ» }

for some a in IR ( >, 0),

Before showing anything else, let us define some notations

which will be used from now one.

A

_* *
Notations. Let ‘WK denote the set ‘“{\ {Oi and ﬁ2+ denote the set

3
R (Do),
Next we will prove that every closed preper subgroup of
*
(“{+,')is discrete. In order to prove this, we consider the exponen-

tial mapping :



g : (Ry+) —5 (R4

X
X p—> e .

Since g is group isomorphism and homeomorphism, there is a one=to=-
one correspondence between closed subgroups of (W{,+) and those of
* . «
(§Z+,'). By Corollary A=k, cvery closed proper subgroup of (TR,+)
*

is of the form a/Z 3 hence all proper closed subgroups of (“{4,')
are of the form

glaz) ={g(an) \nGZ} = {(ea)nt n el,} ={7{1tne/2} for

some A €R. Hence we have proved :

*
Theorem A-5. Every closed proper subgroup of (ﬂk+,.) is discrete,

Before we get the final theorer of this appendix, let us
construct some functions which are neceéssary for the proof of the
desired facts.

Let {-1,1} be a set with binary operation " « ' defined

by the table :

° | 1 _.1
151 ot
-1 |=1 1

Then ( {-1, 1},-) is a discrete topological group. Since the

mappings
3 — *

4 > K

-+
X p—3 {x}
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and

R {10 1]
X ocinidy Ti—;

are continuous, onto and a group hamomorphism, the map :

£ ITR*M.A;‘ RtX(.-n 1}

is continuous, onto and a group homomorphism. Actually f is one-to-

one, for if £(x,) = f(x,) then (Ix.{, _*1) = Ux,| 3 2 ) which
[EA 5
implies that ‘x1!= lx?\ and/ /9 = % so that x, = x,
p P*qi x5

To show that f is open it suffices to prove that f£((a,b)) is open
* A

for any open interval (a,b) CJR . This is clear, since f((a,b))

is the union of an open set 1n'ﬁ{ ﬁi{j and an open set in

“2 x-{ 1} Therefore f is a homeomorphlsm and a group isomorphism.

Next consider the profection mapping :

T & {1 s ('Rt,d

(xy04) t—3 x .

This mapping is a continuous homomorphism and since {-1, 1}‘ is
compact, .Tris closed,
3*
Now let M be a closed subgroup of (R ,+). Then & = I o [i]
¥ * 2
is a closed subgroup of (ﬂ2+,-) which is just M(T“{+. Since flof

is closed, A being discrete will imply that M is discrete aiso.
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, : * *
Assume A is not discrete, then A = Mhﬁ{+ ='WK+ by Theorem A=5,
* *
If -1€ M, then ~1-R C -1 M€ M ana ¥ =R,
3

*
If -1§ M, then -1 R_N 4= g andM=R+.

We have thus proved the following theorem :

Theorem A-6. The only closed subgroups of (K{f‘) are :
*
i) (R'.)
%
ii) (ﬁ(+,-)

and iii) the discrete subgroups.
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