CHAPTER VI

THE FUNCTIONAL EQUATION $f(x \circ f(y)) = f(x) * f(y)$.

The materials of this chapter are drawn from references [2], [3], and [4].

In this chapter, we shall be concerned with the following functional equations :

(6.1)
$$f(x \cdot f(y)) = f(x) \cdot f(y)$$

(6.2)
$$f(x + f(y)) = f(x) + f(y)$$

(6.3)
$$f(x + f(y)) = f(x) \cdot f(y)$$

$$(6.4)$$
 $f(x \cdot f(y)) = f(x) + f(y)$.

Of course, the domain and range of f need to be chosen in accordance with the specific equation. Moreover, these equations have been treated in references [3] and [4].

Eq (6.1) and Eq (6.2):

Suppose f maps a group $(G_0, *)$ with zero into itself and satisfies the equation

(6.1)
$$f(x * f(y)) = f(x) * f(y).$$

Proposition 6.1. If f is constant, then $f \equiv 0$ or 1.

Proof. Suppose f = c. Then

Therefore, c = 0 or 1.

Hence the proposition is proved /

Proposition 6.2. $f(G_0)^* = f(G_0) \setminus \{0\}$ is a subgroup of (G, *). providing $f \neq 0$.

Proof. Since $f \neq 0$ and since

$$f(x) * f(y)^{-1} = f(x * f(y)^{-1})$$

for $f(y) \neq 0$, $f(G_0) \setminus \{0\}$ is a subgroup of G /

Theorem 6.3. A function f mapping a group $(G_0,*)$ with zero into itself satisfies Eq (6.1) if and only if either $f \neq 0$ or else there exists a subgroup M of G and a mapping

$$\tilde{f}: S \cup \{0\} \longrightarrow M \cup \{0\}$$

such that

$$\widetilde{f}(0) = 0 \quad \text{if } f \neq 1 \text{ and}$$

$$(6.5) \qquad f(x) = \widetilde{f}(s_y) * m_y$$

where each x & G can be written uniquely as

$$x = s_x * m_x (s_x \in S, m_x \in M)$$

and S is a set of representatives in G of the left cosets of G by M.

Proof. (Necessity). Suppose $f \neq 0$ satisfies Eq (6.1). Then $M = f(G_0) \setminus \{0\}$ is a subgroup of G by Proposition 6.2. Let S be a set of representatives in G of the left cosets of G by M. For each $x \in G$,

$$x = s_x * m_x$$

for a unique $s_x \in S$ and a unique $m_x \in M$. Then

$$f(x) = f(s_x) * m_x$$

by Eq (6.1). Let

$$\widetilde{f}(s) = \begin{cases} f(s) & \text{if } s \in S \\ 0 & \text{if } s = 0 \text{ (provided } f \neq 1). \end{cases}$$

(Note if $f \not\equiv 0$ or 1, then f(0) = f(0) * f(y) implies f(0) = 0 so that necessarily f(0) = 0).

Hence the necessity condition is proved.

(Sufficiency). Suppose we are given M and \hat{f} as stipulated by the theorem. Let f be defined by Eq (6.5) together with f(0) = 0. Suppose

$$x = s_x * m_x$$
 and $y = s_y * m_y$

with obvious notations. Then

$$f(y) = \hat{f}(s_y) * m_y$$

so that

$$f(x * f(y)) = f(s_x * m_x * \widetilde{f}(s_y) * m_y)$$

$$= \widetilde{f}(s_x) * m_x * \widetilde{f}(s_y) * m_y$$

$$= f(x) * f(y)$$

since m_x , $\widetilde{f}(s_y)$, $m_y \in M$. Thus Eq (6.1) is satisfied by f /

Of course if the group G is commutative, we need not worry about the left or right cosets because they are identical.

Corollary 6.4. Let G be a commutative group. A function $f: G \longrightarrow G$ satisfies Eq (6.1) if and only if there exists a subgroup M of G and a mapping $\widehat{f}: S \longrightarrow M$ such that

$$f(x) = \widetilde{f}(s_x) * m_x$$

where each x & G can be written uniquely as

$$x = s_x * m_x (s_x \in S, m_x \in M),$$

where S is a set of representatives in G of G/M /

In the important case where $\mathbf{G}_{_{\mathrm{O}}} = \mathbb{R}$, we can obtain quite strong results.

Theorem 6.5. If $f:(\mathbb{R}, .) \longrightarrow (\mathbb{R}, .)$ is a continuous function satisfying Eq (6.1), then f is of the form

$$f(x) \equiv 1$$
; $f(x) = cx$ for some c in \mathbb{R}

or $f(x) = \sup \{ax, bx\}$ where $a \le 0, b > 0, b > a$.

Proof. We may assume that $f \not\equiv 0$ or 1. Then $M = f(\mathbb{R}) \setminus \{0\}$ is a subgroup of $\mathbb{R} = \mathbb{R} \setminus \{0\}$. Suppose $\{x_n\}$ is a sequence in M converging to a point x in \mathbb{R}^* .

Then

$$\lim_{n\to\infty} f(x_n) = f(x).$$

But

$$\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(1) \cdot x_n = f(1) \cdot x$$

by Theorem 6.3 so that

$$f(1) \cdot x = f(x).$$

Since $f(x) \neq 0$, $x^{-1} = f(1)$. $f(x)^{-1}$ is in M by Proposition 6.2 so that $x \in M$.

Hence M is a closed subgroup of \mathbb{R}^* . It then follows from Theorem A-6 that

$$M = \mathbb{R}^*, M = \mathbb{R}_+^* = \left\{ x \in \mathbb{R} \mid x > 0 \right\}$$

or M is discrete. Since f is a non-constant continuous function $f(\mathbb{R})$ is an interval which is not a singleton so that $M = f(\mathbb{R}) \setminus \{0\}$ is not discrete.

If M = \mathbb{R}^* , then $\mathbb{R}^*/\mathbb{R}^*$ has exactly one coset and we may let S = {1} in Theorem 6.3 so that

$$f(x) = f(1) \cdot x = cx \quad (x \in \mathbb{R}).$$

If $M = \mathbb{R}_+^*$, then \mathbb{R}_M^* contains exactly two cosets and we may take $S = \{-1, 1\}$ in Theorem 6.3 so that

$$f(x) = \begin{cases} f(1) \cdot x & \text{if } x \in M = \mathbb{R}_+^* \\ \\ f(-1) \cdot (-1)x & \text{if } x \notin M. \end{cases}$$

$$= \begin{cases} ax & \text{if } x \in \mathbb{R}_+^* \\ \\ bx & \text{if } x \notin \mathbb{R}_+^* \end{cases}$$

where $a \ge 0$, $b \le 0$ since $f(\mathbb{R}) \subset M \cup \{0\} = \mathbb{R}_+$. In this case $f(x) = \sup\{ax, bx\}$, $a \ge 0$ and $b \le 0$. If a = b, then a = b = 0 and $f \ne 0$ which has already exhibited. Hence we may assume b > a

Theorem 6.6. If $f:(\widehat{\mathbb{R}},+) \longrightarrow (\mathbb{R},+)$ is a continuous function satisfying Eq (6.2), then

$$f \equiv 0$$
 or $f(x) = x + a$ for some a in \mathbb{R} .

<u>Proof.</u> As in the proof of Theorem 6.5, the set $M = f(\mathbb{R})$ is a closed subgroup of $(\mathbb{R}, +)$. But M is connected, being the continuous image of the connected set \mathbb{R} , so that M is a singleton or M is non-discrete. Since the only constant function $f : \mathbb{R} \to \mathbb{R}$ satisfying Eq (6.2) is $f \equiv 0$, $M = f(\mathbb{R})$ being a singleton implies $f \neq 0$.

If M is non-discrete, then M = \mathbb{R} by Corollary A-4 so that we may take S = $\{0\}$ in Theorem 6.3.

Hence

$$f(x) = f(0) + x = a + x$$

in this case /

As an application, we prove the following:

Theorem 6.7. A continuous function $f : \mathbb{R} \to \mathbb{R}$ is demi-multiplicative symmetric, i.e.,

(6.6)
$$f(x f(y)) = f(f(x) f(y))$$

if and only if f is of one of the following forms:

f(x) = a for any constant a in \mathbb{R}

or f(x) = x

or $f(x) = Sup \{ax, x\}$, a < 0

or f(x) = -|x| for all x in \mathbb{R} .

<u>Proof.</u> Assume f is a non-constant continuous DMS function. Then Theorem 5.2 implies that f or -f is SMS. Therefore Theorem 6.5 assures that f or -f is of the forms:

$$f(x) = ax$$

or
$$-f(x) = ax$$

or $f(x) = Sup \{ax, bx\} a \leq 0, b > 0, b > a,$

or $-f(x) = \sup \{ax, bx\} a \leq 0, b > 0, b > a.$

If follows from the first two cases that f is of the form

$$f(x) = cx (x \in \mathbb{R})$$

for some c in \mathbb{R} . But f is DMS, Eq (6.6) and the last equation give

$$f(1.c.1) = f(c.1.c.1)$$

 $c(1c1) = c(c1.c1)$

so that c = 1. Hence the only DMS function of the form f(x) = cx is when c = 1. Thus

$$(6.7) f(x) = x (x \in \mathbb{R}).$$

Next consider function of the form $f(x) = \sup \{ax, bx\}$ with $a \le 0$, $b \ge 0$ and $b \ge a$. Then Eq (6.6) gives

$$f(1.f(1)) = f(b) = b^2.$$

But $f(1.f(1)) = f(f(1).f(1)) = b^3$ so that b = 1. Thus

(6.8) $f(x) = \sup \{ax, x\} \quad (x \in \mathbb{R})$

with a < 0.

Finally, the case $-f(x) = \sup\{ax, bx\} \ a \le 0, b > 0$ and b > a. As in the preceding case, we can show that $-f(x) = \sup\{ax, x\} \ (x \in \mathbb{R}), a \le 0$.

That is

(6.9)
$$f(x) = Inf\{cx, -x\} (x \in \mathbb{R}), c > 0.$$

We claim that Eq (6.9) satisfies DMS property only if c = 1. By

Eq (6.6) again, f(-1.f(-1)) = -c and

$$f(-1 \cdot f(-1)) = f(f(-1) \cdot f(-1)) = -c^2$$

so that c = 0 or 1. Since f(x) = -x does not satisfy Eq (6.6), c = +1.

Hence

(6.10)
$$f(x) = Inf\{x, -x\}$$
$$= -|x| \quad (x \in \mathbb{R}).$$

Obviously, functions given by Eq (6.7), (6.9) and (6.10) satisfy Eq (6.6).

Thus the theorem is now completely proved /

It is worth noting that the MS, DMS and SMS functions over (R.) are much simpler than those over (R.).

Theorem 6.8. A continuous function $f : \mathbb{R} (> 0) \to \mathbb{R} (> 0)$ is

i) MS if and only if f is of the forms:

$$f(x) \equiv a \text{ or } f(x) = ax (a > 0).$$

ii) SMS if and only if f is of the forms : $f(x) \equiv 1 \text{ or } f(x) = ax (a > 0).$

iii) DMS if and only if f is of the forms : $f(x) \equiv a (a > 0) \text{ or } f(x) = x.$

<u>Proof</u>, (i) follows at once from Theorem 4.6 when x and its values are in \mathbb{R} (> 0). Similarly, (ii) obtains from Theorem 6.5 and (iii) also obtains from Theorem 6.7 /

Eq (6.3) and Eq (6.4).

Here we are mainly concerned with functions $f: |K \to |K|$ where |K| is a field of characteristic zero, and satisfying one of the following equations:

(6.3)
$$f(x + f(y)) = f(x) f(y)$$

(6.4)
$$f(x f(y)) = f(x) + f(y)$$
.

As for Eq (6.4), we have

$$f(0) = f(0, f(x)) = f(0) + f(x)$$

for any $x \in \mathbb{K}$, so that the only function $f : \mathbb{K} \longrightarrow \mathbb{K}$ satisfying Eq (6.4) is the zero function.

From now on, we shall assume that the function $f:\mathbb{K}\longrightarrow\mathbb{K}$ satisfies Eq (6.3). Then we immediately get

$$f(x + z) = zf(x)$$
 $(x \in K, z \in f(K))$

and

$$f(f(x)) = f(0) f(x) \quad (x \in \mathbb{K}).$$

Moreover, if f is identically $k \in \mathbb{K}$, then

$$k = f(0 + f(0)) = f(0) \cdot f(0) = k^2$$

so that k = 0 or 1.

Proposition 6.9. If f is identically constant, then $f \equiv 0$ or $f \equiv 1$.

Suppose now that $f(x_0) = 0$ for some x_0 in |K| then for any $x \in |K|$,

$$f(x) = f(x + 0) = f(x + f(x_0))$$

= $f(x) f(x_0) = 0$

and we have proved:

Proposition 6.10. If f is 0 at one point of K, then f is identically 0.

Henceforth we shall further assume that f is non-vanishing.

Proposition 6.11. For any $x \in \mathbb{K}$, f(x - f(x)) = 1.

Proof. For any x & IK,

$$f(x) = f(x - f(x) + f(x)) = f(x - f(x)) \cdot f(x)$$

so that the proposition is obtained /

Now

$$f(x + 1) = f(x + f(0 - f(0))) = f(x) f(0 - f(0))$$

= $f(x) \cdot 1$

and we have just proved :

Proposition 6.12. For any $x \in \mathbb{K}$, f(x + 1) = f(x).

<u>Proposition 6.13.</u> If $f: |K \to K|$ satisfies Eq (6.3) and does not vanish identically, then f(|K|) is a multiplicative subgroup of $|K| = |K \setminus \{0\}$.

Proof. Since 1 = f(0 - f(0)) by Proposition 6.11, $1 \in f(K)$.

Let g_1 and g_2 be in f(K). Then $f(0 - f(0) + g_1 + g_2) = f(0 - f(0)) \cdot g_1 g_2$ $= 1 \cdot g_1 g_2$

so that $g_1g_2 \in f(\mathbb{K})$.

If $g \in f(|K|)$, then f(0) = f(-f(0) - g + g + f(0)) $= f(-f(0) - g) \cdot gf(0).$

Since $f(0) \neq 0$, multiplying both side of the above equation by $f(0)^{-1}$ to obtain

$$1 = f(-f(0) - g) \cdot g$$
.

That is

 g^{-1} is in f(K).

Hence f(|K|) is a subgroup of $|K|^*$ /

Let M be the additive abelian group on the generators f(K), i.e., M consists of all finite linear combinations of elements from f(K) with coefficients in \mathbb{Z} . Then M is a subgroup of the additive group K.

Theorem 6.14. If $f(K) \neq \emptyset$, the mapping $\emptyset : M \longrightarrow f(K)$ defined by $\emptyset(\lambda) = f(-f(0) + \lambda)$ is a homomorphism from (M, +) onto (f(K), .) satisfying:

$$\emptyset(g) = g$$
 for all $g \in f(IK)$.

Proof. Clearly \emptyset is well-defined. By Eq (6.3) and $g \in f(IK)$,

$$\emptyset(g) = f(-f(0) + g) = f(-f(0)) \cdot g$$

But f(-f(0)) = f(-f(0) + 0) = 1 by Proposition 6.11. Hence $\emptyset(g) = g$ for all $g \in f(\mathbb{K})$.

Now let $\lambda = \sum_{i=1}^{n} a_i g_i$ with $g_i \in f(\mathbb{K})$ and $a_i \in \mathbb{Z}$, and assume, for instance, that $a_i > 0$ for $1 \le i \le k$, and $a_i = -b_i < 0$ for $k+1 \le i \le n$. We claim that

$$\emptyset(\lambda) = \prod_{i=1}^{k} g_i^{a_i} \emptyset(-\sum_{k+1}^{n} b_i g_i).$$

For n = 1,

$$\emptyset(\lambda) = f(-f(0) + a_1g_1) = f(-f(0)) g_1^{a_1} = \emptyset(0) g_1^{a_1}$$

Assume the claim true for lesser value of n. Then

$$\emptyset (\lambda) = f(-f(0) + \sum_{i=1}^{k} a_{i}g_{i} - \sum_{i=k+1}^{n} b_{i}g_{i})$$

$$= f(-f(0) - \sum_{i=k+1}^{n} b_{i}g_{i} + \sum_{i=1}^{k-1} a_{i}g_{i} + a_{k}g_{k})$$

$$= f(-f(0) - \sum_{i=k+1}^{n} b_{i}g_{i} + \sum_{i=1}^{k-1} a_{i}g_{i}) g_{k}^{a_{k}}$$

by Eq (6.3). It now follows from the induction hypothesis that

$$\emptyset(\lambda) = f(-f(0) - \sum_{i=k+1}^{n} b_i g_i + \sum_{i=1}^{k-1} a_i g_i) g_k^{a_k}$$

$$= \emptyset \left(-\sum_{i=k+1}^{n} b_i g_i\right) \prod_{i=1}^{k-1} g_i^{a_i} g_k^{a_i}$$

$$= \emptyset \left(-\sum_{i=k+1}^{n} b_i g_i\right) \prod_{i=1}^{k} g_i^{a_i}.$$

Hence the claim is proved.

Since $\emptyset(0) = f(-f(0) + 0) = 1$ by proposition 6.11 and the claim,

$$\emptyset \left(-\sum_{k+1}^{n} b_{i} g_{i}\right) = \left(\prod_{k+1}^{n} g_{i}^{b_{i}}\right)^{-1}$$

$$= \prod_{k+1}^{n} g_{i}^{-b_{i}} = \prod_{k+1}^{n} g_{i}^{a_{i}}$$

so that

$$\emptyset (\lambda) = \prod_{i=1}^{k} g_{i}^{a_{i}} \cdot \prod_{i=k+1}^{n} g_{i}^{-b_{i}}$$

$$= \prod_{i=1}^{n} g_{i}^{a_{i}} \cdot \prod_{i=k+1}^{n} g_{i}^{-b_{i}}$$

Therefore for any \propto and \nearrow in $/\!\!/$, we can show that

$$\emptyset(\alpha + \lambda) = \emptyset(\alpha) \cdot \emptyset(\lambda).$$

Thus \emptyset is a homomorphism from (//,+) onto (f(//,+)).

Hence the theorem is proved /

Observe that if $f \not\equiv 0$ is a solution of Eq (6.3), then the associated homomorphism

must be well-defined. This means that if

$$0 = \sum_{i=1}^{n} a_{i}g_{i}$$

is any representation of 0 in M, then

$$1 = \emptyset (0) = \emptyset \left(\sum_{i=1}^{n} a_{i} g_{i} \right)$$
$$= \prod_{i=1}^{n} g_{i}^{a_{i}}$$

must hold. Thus we arrive at the consistency condition

$$(*) \qquad \sum_{i=1}^{n} a_{i}g_{i} = 0 \text{ implies } \prod_{i=1}^{n} g_{i}^{a_{i}} = 1$$

for all $g_i \in f(\mathbb{K})$ and $a_i \in \mathbb{Z}$.

Theorem 6.15. If f satisfies Eq (6.3) with $f(K) \neq 0$, $x \in K$ and $\lambda \in \mathbb{N}$, then:

$$f(x + \lambda) = f(x) \emptyset (\lambda).$$

Proof. Suppose $\lambda = \sum_{i=1}^{n} a_i g_i$ with $a_i \in \mathbb{Z}$, $g_i \in f(\mathbb{K})$. As in the proof of Theorem 6.14, we obtain

$$f(x + \lambda) = f(x + \sum_{i=1}^{n} a_{i}g_{i})$$

$$= f(x) \prod_{i=1}^{n} g_{i}^{a_{i}}$$

$$= f(x) \emptyset (\lambda).$$

Hence the theorem is proved /

This theorem enables us to give a lot of examples. Even more the previous necessary conditions for a subset G of IK to be the range

f(1K) of a solution of Eq (6.3) appear to be sufficient.

Theorem 6.16. Given a multiplicative subgroup G of |K| such that the additive abelian group |K| generated by G satisfies the consistency (*), let S be a set of representatives of |K|/|M| in |K|, so that any $x \in |K|$ may be written as $x = s + \lambda$ where $s \in S$ and $k \in |M|$, with a unique s and define

$$f(x) = f(s) \emptyset (\lambda)$$

where $f(s) = g_s \in G$ and \emptyset is the natural homomorphism $\emptyset : (/\!\! / , +) \longrightarrow (G, .)$, the existence of which is ensured by (*). (If $x = s + \lambda'$, then $\lambda - \lambda' = 0$ and $\emptyset (\lambda - \lambda') = 1$, because of (*), and f is unambiguously defined). Obviously f satisfies Eq (6.3)/

Example 6.17. Let $\mathbb{K} = \mathbb{R}$, α a transcendental number, $\delta(\alpha)$ the cyclic group generated by α . Condition (*) is verified, since if $\sum_{i=m}^{n} a_i \alpha^i = 0, \text{ then } a_i = 0 \text{ for } i = m, \dots, n. \text{ } n \text{ is the free abelian group } \mathbb{Z} < \delta(x) \text{ } \text{ and } x \in \mathbb{K} \text{ has a unique representation } x = s + \lambda$. We may define, without ambiguity

$$f(x) = f(s + \sum_{i=m}^{n} a_i \propto^1) = \propto^{1 + \sum_{i=1}^{n} a_i}$$

The function f defined in this way satisfies Eq (6.3). The definition of the set of representatives S relies on the axiom of choice. In fact, if we assume that $S \subset [0,1[$, which is possible because of Proposition 6.12, it appears that S is basically the best known example of a non-measurable set in $\mathbb R$, with outer measure $\mathcal M^*(S) > 0$ and inner measure $\mathcal M_*(S) = 0$. (See for example Halmos [2]). The reciprocal image of $\mathcal M$, $\Gamma = f^{-1}(\mathcal M)$ is the countable union of the $S + \lambda$,

where A runs through the countable set :

$$\left\{ \sum_{i=m}^{n} a_i \propto^i \mid a_i \in \mathbb{Z}, \sum_{i=m}^{n} i a_i = 0 \right\}.$$

We have $\mathcal{U}_*(\Sigma) = 0$, since the sum of any series with all terms equal to zero, is zero, but $\mathcal{M}^*(\Sigma) \geqslant \mathcal{M}^*$ (S) > 0. We have just shown that the reciprocal image of the (closed) set $\{\alpha\}$ is not measurable so that the function f itself is not measurable.

Example 6.18. There exists non-measurable unbounded solutions for Eq (6.2) in the case $\mathbb{K} = \mathbb{R}$. Let ∞ be a transcendental number, $\mathcal{E}(\infty)$, \mathcal{M} and S have the same meaning as in Example 6.17. For each $x \in \mathbb{R}$, x has the unique representation

$$x = s + \sum_{i=m}^{n} a_{i} \propto^{i}, s \in S, a_{i} \in \mathbb{Z}$$
Define
$$f(x) = \propto + \sum_{i=m}^{n} a_{i} \propto^{i}.$$

Obviously f satisfies Eq (6.2) and is non-measurable and unbounded.

Example 6.19. There exists discontinuous solutions for Eq (6.1) with $|K = \mathbb{R}| \cdot \propto$ and $\mathcal{C}(\alpha)$ being as previously, let E be a set in \mathbb{R}^* of representatives of $\mathbb{R}^*/\mathcal{C}(\alpha)$.

Now define :

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{cases} \text{ if } x = e. \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{aligned} \text{ where } e \in E, k \in \mathbb{Z}.$$

Obviously, f satisfies Eq (6.1) and is not continuous.

From now on, take $\underline{IK} = \overline{R}$ and proved:

Theorem 6.1201 If $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a function satisfying (6.3) f(x + f(y)) = f(x) f(y).

Then f(R) contains no algebraic numbers except 0 or 1 (but not both).

<u>Proof.</u> Suppose that f(x) is algebraic for some x in \mathbb{R} . Then there exist integers a_0, a_1, \ldots, a_n such that

$$a_0 + a_1 f(x) + a_2 f(x)^2 + ... + a_n f(x)^n = 0$$

so that

$$a_0 f(x) + a_1 f(x)^2 + ... + a_n f(x)^{n+1} = 0.$$

Thus

X

$$f(0) = f(\sum_{i=0}^{n} a_i [f(x)]^{i+1})$$

$$= f(0) \cdot [f(x)]^{i=0} (i+1)a_i$$

by Theorem 6.15. If f(0) = 0, then f is identically 0 by Proposition 6.10 and the theorem holds in this case . Assume that $f(0) \neq 0$. Then the obove equality gives

(6.11)
$$1 = [f(x)]^N$$

where $N = \sum_{i=0}^{n} (i+1) a_i$ is an integer. Then Eq (6.11) holds if f(x) = 1 or -1.

If there exists an x in \mathbb{R} such that f(x) = -1, then by Proposition 6.11 and 6.12, we obtain

$$-1 = f(x) = f(x + 1) = f(x - f(x)) = 1$$

which is impossible so that f(x) = 1.

Hence the theorem is now completely proved /

And as an application of this theorem, we will prove the following:

Theorem 6.21. If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying $f(x + f(y)) = f(x) f(y) \quad (x, y \in \mathbb{R}),$

then f is identically 0 or 1.

<u>Proof.</u> Suppose f is neither the 0 function nor the function 1. It follows from Proposition 6.9 that f cannot be a constant function so that there exist x and y in \mathbb{R} such that $f(x) \neq f(y)$. Since f is continuous, f must assume some algebraic number, different from 1 between f(x) and f(y). This contradicts Theorem 6.20 so that the conclusion of the theorem must hold /

It seems that $f \equiv 0$ or 1 are the only possible regular solutions of Eq (6.3). Although we can not confirm this, we give more support to it.

Lemma 6.22. Let x, x_1 , x_2 ,..., x_k be any element in \mathbb{R} , then $f(x + \frac{k}{1!} f(x_i)) = f(x) \prod_{i=1}^{k} f(x_i),$

<u>Proof.</u> For k = 1, Eq (6.12) is just Eq (6.3). Assume that Eq (6.12) holds for lesser value of k. Then by induction hypothesis and Eq (6.3)

$$f(x + \frac{k}{||}f(x_{i})) = f(x + \frac{k-2}{||}f(x_{i}) \cdot f(x_{k-1} + f(x_{k})))$$

$$= f(x) \cdot \frac{k-2}{||}f(x_{i}) \cdot f(x_{k-1} + f(x_{k}))$$

$$= f(x) \cdot \frac{k-2}{||}f(x_{i}) \cdot f(x_{k-1} + f(x_{k}))$$

=
$$f(x)$$
 . $\prod_{i=1}^{k-2} f(x_i)$. $f(x_{k-1})$. $f(x_k)$
= $f(x)$. $\prod_{i=1}^{k} f(x_i)$.

The conclusion of the lemma follows /

Proposition 6.23. Let x_1, x_2, \dots, x_k be any element in $\mathbb R$ and n is any integer, then

(6.13)
$$f(x + n \prod_{i=1}^{k} f(x_i)) = f(x) \cdot \left[\prod_{i=1}^{k} f(x_i) \right]^n,$$
provided
$$\prod_{i=1}^{k} f(x_i) \neq 0.$$

<u>Proof.</u> We will prove Eq (6.13) first for $n \ge 0$ by induction on n. Since Eq (6.13) is true for n = 0 and is Eq (6.12) for n = 1, assume Eq (6.13) holds for lesser values of n. Then by Lemma 6.22 and the induction hypothesis,

providing $\prod_{i=1}^{k} f(x_i) \neq 0$. Eq (6.13) holds for $n \gg 0$.

If n is positive integer, then from the first part of the proof

so that

$$f(x - n \prod_{i=1}^{k} f(x_i)) = f(x) \cdot \left[\prod_{i=1}^{k} f(x_i) \right]^{-n}$$

provided that $\prod_{i=1}^{n} f(x_i) \neq 0$. Hence Eq (6.13) holds for any integer n /

Theorem 6.24. If $f: \mathbb{R} \to \mathbb{R}$ is not a constant function satisfying

(6.3) f(x + f(y)) = f(x) f(y),

then f assumes arbitrarily large and arbitrarily small values.

<u>Proof.</u> Since the only constant functions satisfying Eq (6.3) are 0 and 1, the hypothesis on f together with Proposition 6.9 implies that there are x'and y'in \mathbb{R} such that

$$f(x') \neq f(y')$$

and

$$f(x') \neq 0 \neq f(y')$$
.

Since $f(x) \cdot f(x) = f(x + f(x))$, we may assume that f(x'), f(y') > 0. Also assume that f(x') < f(y').

It now follows from Proposition 6.23 that

$$f(x' - f(y')) = f(x') f(y')^{-1} < 1$$

and

$$f(y' - f(x')) = f(y') \cdot f(x')^{-1} > 1.$$

Hence there are always x and y in \mathbb{R} such that

and

It now follows from Theorem 6.15 that

$$\lim_{n\to\infty} f\left(\sum_{i=0}^{n} \left[f(x)\right]^{(i+1)}\right) = \lim_{n\to\infty} \left(f(0), \left[f(x)\right]\right)^{i=0}$$

$$= 0$$

and that

$$\lim_{n\to\infty} f\left(\sum_{i=0}^{n} [f(y)]^{i+1}\right) = \lim_{n\to\infty} (f(0) \cdot [f(y)]^{i=0})$$

Hence the conclusion of the theorem now follows /

Corollary 6.25. If $f : \mathbb{R} \to \mathbb{R}$ is a function satisfying Eq (6.3) and if there exists an $\mathcal{E} > 0$ such that

then f ₹ 1.

K

Corollary 6.26. If $f : \mathbb{R} \to \mathbb{R}$ is a function satisfying Eq (6.3) and if f is uniformly bounded from above, then $f \not\equiv 0$ or 1.

In this appendix, we will show that the closed subgroups of $(\mathbb{R} \{ 0 \}, \cdot)$ are :

- i) (R(0),.)
- ii) $(\mathbb{R}(>0),.)$ and
- iii) the discrete subgroups

where \mathbb{R} is the set of real numbers. To show this, we will prove first that every closed proper subgroup of the additive group $(\mathbb{R},+)$ is of the form:

$$aZ = \{an \mid n \in \mathbb{Z}\}\$$
 $(a \in \mathbb{R}(>0)).$

Lemma A-1. Let A be any subgroup of (\mathbb{R}_{+}) . If A is not discrete, then A is dense in \mathbb{R}_{+} .

Proof. Suppose A is not discrete. Then there exists a \in A such that for every neighborhood (nbhd) N of a in \mathbb{R} , we have N \cap A contains elements of A \setminus $\{a\}$: In particular, for any given \in \ni 0, there exists $\times_{\mathcal{E}} \neq 0$ in A such that $\times_{\mathcal{E}} \in (a-\mathcal{E}, a+\mathcal{E})$.

We claim that for each \mathcal{E} 0 there exists a $x \neq 0$ in A such that $x \in (-\mathcal{E}, \mathcal{E})$. From above, there exists $x \in (a-\mathcal{E}, a+\mathcal{E})$ and since A is an additive subgroup of \mathbb{R} , $x \in -a \in A$ and $|x \in -a| < \mathcal{E}$. Therefore $x = x \in -a \in (-\mathcal{E}, \mathcal{E})$.

Next we claim that A is dense in \mathbb{R} . It is enough to show that every set of the form $(r-\xi, r+\xi)$ contains a point of A where $\xi < 1$ and $r \in \mathbb{R}$. Without loss of generality, we may

assume that r > 0. From the above claim, there exists a(>0) in A such that $a \in (-\mathcal{E}, \mathcal{E})$ so that by Euclidean Algorithm, there exists $n_0 \in \mathbb{Z}(>0)$ such that $\frac{r}{a} = n_0 + b$ where $|b| < a < \mathcal{E}$. Therefore $r = n_0 a + ba$, i.e., $|r-n_0 a| = |b| a < \mathcal{E}^2$. But $\mathcal{E} < 1$; hence $\mathcal{E}^2 < \mathcal{E}$. Thus $n_0 a \in (r-\mathcal{E}, r+\mathcal{E})$. Since $n_0 a \in A$, A is dense in $\mathbb{R}/$

Lemma A.2. Every closed proper subgroup of (R,+) is discrete.

<u>Proof.</u> Let A be any closed proper subgroup of $(\mathbb{R},+)$. Suppose A is not discrete. Then by Lemma A.1, A is dense in \mathbb{R} . But A is closed; hence $A = \overline{A} = \mathbb{R}$, where \overline{A} is the closure of A, so that A is not a proper subgroup of \mathbb{R} . Thus a proper closed subgroup of $(\mathbb{R},+)$ must be discrete/

Theorem A-3. Discrete subgroups of $(\mathbb{R},+)$ must be of the form: $a \mathbb{Z} = \{an \mid n \in \mathbb{Z} \}.$

for some a $\in \mathbb{R}$ (>0).

<u>Proof.</u> It is clear that a set of the form a \mathbb{Z}_{-} is a discrete subgroup of (\mathbb{R}_{+}) . To prove the converse, let D be a discrete subgroup of (\mathbb{R}_{+}) . If $D = \{0\}$, then $D = 0 \cdot \mathbb{Z}_{+}$.

If $D \neq \{0\}$, let $D_+ = \{d \in D \mid d > 0\}$. Then $D_+ \neq \emptyset$ and bounded below by 0. Therefore the infimum of D_+ , say a, exists as a number in $\mathbb{R}(>0)$. Since $a = \inf D_+$, for any given E > 0, there exists $x \in D_+$ such that |x-a| < E which implies that the distance $d(a, D_+) = 0$. Hence $a \in \overline{D}_+$, the closure of D_+ in \mathbb{R} .

Since D₊ is discrete in \mathbb{R} , $\overline{D}_+ = D_+$ and $a \in D_+$.

We claim that $D = a\mathbb{Z}$. Since D is an additive subgroup of (\mathbb{R}_{+}) , $a\mathbb{Z}$ C D. To prove the converse, suppose there is a $d \in D$ such that $d \notin a\mathbb{Z}$. Since both d and -d are in D, we can assume that d > 0. By the property of real numbers and the choice of a, there exist $n \in \mathbb{Z}$ (>0) such that

$$an < d < a(n+1)$$
.

Since d < a(n+1), d-an < a. But $d-an \ne 0$ and $d-an \ne D$ so that a is not the infimum of D_+ , a contradiction. Therefore, we must have $D \subset a\mathbb{Z}$.

Now the theorem is completely proved/

Then follows from Lemma A-2 and Theorem A-3, we immediately obtain the following corollary:

Corollary A-4. Every closed proper subgroup of $(\mathbb{R},+)$ is of the form:

$$a\mathbb{Z} = \{an \mid n \in \mathbb{Z} \}$$

for some a in \mathbb{R} (> 0).

3

Before showing anything else, let us define some notations which will be used from now on.

Notations. Let \mathbb{R}^* denote the set $\mathbb{R} \setminus \{0\}$ and \mathbb{R}_+^* denote the set $\mathbb{R}^*(\)$ 0).

Next we will prove that every closed proper subgroup of $(\mathbb{R}_+^*, \bullet)$ is discrete. In order to prove this, we consider the exponential mapping:

$$g:(\mathbb{R},+)\longrightarrow(\mathbb{R}_{+}^{*},\cdot)$$
 $x\longmapsto e^{x}$

Since g is group isomorphism and homeomorphism, there is a one-to-one correspondence between closed subgroups of $(\mathbb{R}_+,+)$ and those of $(\mathbb{R}_+^*,+)$. By Corollary A-4, every closed proper subgroup of $(\mathbb{R}_+,+)$ is of the form a \mathbb{Z} ; hence all proper closed subgroups of $(\mathbb{R}_+^*,+)$ are of the form

$$g(a\mathbb{Z}) = \{g(an) \mid n \in \mathbb{Z}\} = \{(e^a)^n \mid n \in \mathbb{Z}\} = \{\chi^n \mid n \in \mathbb{Z}\} \text{ for some } \lambda \in \mathbb{R}. \text{ Hence we have proved :}$$

Theorem A-5. Every closed proper subgroup of (\mathbb{R}^*_+, \cdot) is discrete.

Before we get the final theorem of this appendix, let us construct some functions which are necessary for the proof of the desired facts.

Let $\{-1,1\}$ be a set with binary operation " \cdot " defined by the table :

Then $(\{-1, 1\}, \cdot)$ is a discrete topological group. Since the mappings :

$$\mathbb{R}^* \longrightarrow \mathbb{R}^*_+$$

$$\begin{array}{c}
\mathbb{R}^* \longrightarrow \{-1, 1\} \\
\times \longmapsto \frac{x}{|x|}
\end{array}$$

are continuous, onto and a group homomorphism, the map :

$$f: \mathbb{R}^* \longrightarrow \mathbb{R}^*_+ \times \left\{ -1, 1 \right\}$$

$$\times \longmapsto (i \times i, \frac{x}{i \times i})$$

is continuous, onto and a group homomorphism. Actually f is one-to-one, for if $f(x_1) = f(x_2)$ then $(|x_1|, \frac{x_1}{|x_1|}) = (|x_2|, \frac{x_2}{|x_2|})$ which implies that $|x_1| = |x_2|$ and $\frac{x_1}{|x_1|} = \frac{x_2}{|x_2|}$ so that $x_1 = x_2$.

To show that f is open it suffices to prove that f((a,b)) is open for any open interval $(a,b) \subset \mathbb{R}^*$. This is clear, since f((a,b)) is the union of an open set in $\mathbb{R}_+^* \times \{1\}$ and an open set in $\mathbb{R}_+^* \times \{-1\}$. Therefore f is a homeomorphism and a group isomorphism.

Next consider the profection mapping :

$$\Pi: \mathbb{R}_{+}^{*} \times \{-1,1\} \longrightarrow (\mathbb{R}_{+}^{*}, \cdot)$$

$$(x, \wedge) \longmapsto x \cdot$$

This mapping is a continuous homomorphism and since {-1, 1} is compact, Tis closed.

Now let M be a closed subgroup of (\mathbb{R}^*, \cdot) . Then $A = \mathbb{T}$ of [M] is a closed subgroup of (\mathbb{R}^*_+, \cdot) which is just $M \cap \mathbb{R}^*_+$. Since \mathbb{T} of is closed, A being discrete will imply that M is discrete also.

Assume A is not discrete, then $A = M \cap \mathbb{R}_+^* = \mathbb{R}_+^*$ by Theorem A-5.

If $-1 \in M$, then $-1 \cdot \mathbb{R}_+^* \subset -1 \cdot M \subset M$ and $M = \mathbb{R}_+^*$.

If $-1 \in M$, then $-1 \cdot \mathbb{R}_+^* \cap M = \emptyset$ and $M = \mathbb{R}_+^*$.

We have thus proved the following theorem:

Theorem A-6. The only closed subgroups of (\mathbb{R}_{*}^{*}) are :

- i) (TR,•)
- ii) (R₊,•)

and iii) the discrete subgroups.