CHAPTER IV
THE FUNCTIONAL EQUATION f(x x* f(y)) = f(y » f(x)).

The materials of this chapter are drawn from reference [?].

In this chapter we will prove some relations of a multiplica-
tive symmetric function and a demi-multiplicative symmetric function.
This proposition will be used to solve the functional equation charac-

terizing the multiplicativessymmetric functions.

Before we state and prove our proposition, let us give some

examples of multiplicative-symmetric functions.

Example 4.l. Consider the Dirichlet function defined by

f(x) 0 if x is rational numbers

1 if x is irrational numbers.

Clearly f is everywhere discontinuous and is a measurable function.
To show that f is multiplicative-symmetric function.

Recall : A function f :TR—>5TRis multiplicative symmetric (MS),

it f(x f(y)) = f(y £(x)).
Suppose x and y are any rational numbers; then
f(x £(y)) = £(x.0) = £(0) = 0 = £f(y.0) = £f(y £(x)).

Hence in this case f is MS. Similarly, for the other cases, such
as x and y are both irrational or x is rational, y is irrational,

we can show that f is MS.
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Thus. there exists a measurable, everywhere discontinuous

multiplicative symmetrib function over (TR, .).

Example 4.,2. Let f be a function defined over (R, .) vy

fl{z) = © +» x & O
AE Ly e [751, grf'l[nel,?\)o,

x » 0, and k € L ()0).

Clearly f is continuous for all x £ O and for x 6] 7\n, ){Hl [.
But f is not continuous at the point of the denumerable set
{AIHI l n € l}'

It follows from the definition of MS and the definition of T

that f is MS for all x £ O. Now consider the case when x and y

are both in [7\n, ){Hl [ « Then
£(x £(y)) A flxo 2,

But x & [73, 7i1+1 [, e W P [fmk’ in+k+l[ .

Thus £(x . tudai e )52n+k) hvE

But x and y are arbitrary in [}\n, 7\n+1[ , hence
Hx £ly)) = iy #Hx)) ,

1.6.,. £ i8 MS for all x € [7\“, }{“l [ g

Similarly, for the case x £ 7\n+p, 7\n+p+l[ and

F n+q+1 L
ye*_?in’ }\q [v(nyPaQQZ)orthecasex \(Oand

A [){Hp, ?(n+p+l[ , we can show that f is MS.
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Therefore there exists a multiplicative symmetric function over

(TR,. ) continuous except on a denumerable set.

Example 4.3, There exists a non-measurable bounded multiplicative

symmetric functions in (R, +) [see Example 6.18 of Chapter VI}.

Lemma 4.4. Let (G,*j be a semi-group and f : (G,x* )—(G, * )
a multiplicative symmetric function. Then

f(y »f(z) *.f(X))

]

flz » £(y) » £(x)). /

Proof. Since f is MS,

(4.1) f(xx £y = £(2))) f(y » £(z) » £(x)),

and

f(x x £f(z x £(y))

f(x xf(y %1(z)))

]

flz »f(y) »£(x)).

Therefore the last equation and Eq (4.1) dimply that
fly» £(z) % £(x)) = flz » £(y) » f(x)).

Hence the lemma is proved /

Theorme 4.5. Let f be a non-constant everywhere continuous MS

function on (TR, .). Then there exists an o # O such that f,

or 'foc. is a DMS function.

Proof. By the hypothesis that f is non-constant, we have that
! . /
f ¥ 0 so there exists z, in TR such that f(z.o) % O which by
Lemma' 3.16 implies that zoqé O. Since we can write f(zo) as
1

f(zo) = flz). z; -

there exists k= (f(zo))-l.zo # 0 such that



z
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(4.2) f(zo) = &= .

Since f 46 MS on (R, i) , Lemma 4.l implies that

u

f(y £(z) £(x)) f(z £(y) £(x)).

Put y = ¢ in the last equation to get
(4.3) f(ek £(2) £f(x)) = f(z f(X) £(x)).
Let

(4.4) Z a7, f(x)

then from Eq (4.2),

(4,5) .

"

& £z ) £(x).

By applying f to Eq (4.5),

£(2) = fletf(z ) £(x))
which gives, by Eq (4.3) when 2z = Z s
£(2) = £z £(0L) £(x))
=z f(x) £(a)),
By Eq (4.4),
(4.6) £02) -V =2 () ) S

Note that, from Eq (4.4) and the fact that f is a MS function,

f(zZ £(L) f(y)) = f(zO f(x) f(ol) £(y))

1]

tHy . f(zof(x) f(ee)))

f(y « £(2 £(ol))).

Then by Eq (4.6) ,

£(z £(at) £(y)) f(y. £(2)) = £(2 £(y))

because f is MS. Then
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(4:7) £(z £(ot) £(y))

£f(z £f(y)).
We now claim that

(4e8) £(2)

£(z (£(ee))™) (ne Z (>0)).
Since . Eq (4.8) is Eq (4.6) when n = 1, assume Eq (4.8) holds for

n = k, ioeo'

£(2) = (e ).
Now  £(z(£(e))*h) = £z £(00) (£(a)))
k
= £(2(£(a)))
= £(2)
by the induction hypothesis and Eq (4.7). Hence the casen = k + 1
holds. Therefore by induction on n, Eq (4.8) holds.
If f(&) = 0, then from Eq (4.6) implies that £(z2) = £(0)

which implies, by Lemma 3.16, f(2) = O so that by Eq (4.4) and f
being MS,

0

]

£ (zof(x)) = f(x f(zo))

for all x in 1R\ . Hence for any y in “K

0}

y y. (B )7 £z ) = x £(z)

where x = ¥y (:t‘(zo))-1 , so that

fy) = fx1£(z)) = 0 (y ceR).
Therefore f = O, which we have excluded. Hence f(K) g& 0.
If {£(&K)| {1, choose Z so that £(Z) ¥ O. Then by the

continuity of f and Lemma 3.16,

£(2) = lim £(2(£@)®) = £(Z. 1im f£(o)?) = £(0) =0
n—c0 n-3 ol
which contradicts the choice of Z. Hence |f(X)| p T T
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8§ 4 ‘f(“) * 1, then f(®) > 1 or f(et ) { - 1., Since

by Lemma 3.16, f£f(0) = O and by Intermediate Value Theorem, there

exists a (} between O and of such that [ee® | -1
If f(gé) =1, define g = f(3 and due to Lemma 3.15, g

is MS with g(1) = f(s(l) = f(l.{b) = f(@) = 1. Since g is MS,

g (x g(y)) = gy g(x)) (x, yelR).
Take x = 1 in the last equation, we have

g(Z)(y) = gy g(1)).
But g(1) = 1; he;ace '

O S R £ N
Therefore

b wlih) et NN = gly g2 (x))

1]

glglx) g(y))

by the MS-property of g. Hence g = fp is DMS.
Assume now that f(f§) = -1 . Define g = f(3 , then

g(l) = fp (1) & f(@) = a, L

Now g2 (x) = fff’ () = £(EpIP) = £ BIGH))

= f(x(s f(f&)), by the MS-property of f. But f(p) = -1, hence
e = rxp) - £g (-0

by the definition‘of fa . But fp 3 g ; then

(4.9) R il 0 IS i N )

and

glg (x) gly)) = gly g(Z) (x)) = gy g(-x)).
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By symmetry roles of x and y, we have

(4.10) gy g(=x)) glx gl=y)).

gl=x g(y)).

Since g is MS, g(y g(=x))

Now put h = =g § then h(1l) = -g(1) = -(-1) = 1 and

glyn(x)) = gly. -g(x)) = gl-y g(x)) = glx g(=y))
and by Eq (4.10), we get g(y h(x))= g(y g(-x))
= gl-x g(y)) = g(x. -g(y)) = glx h(y)).

So that =g (y h(x)) -g (x h(y)) ;3 i.e.,

h(y h(x)) h(x h(y)).

Hence h is MS and h(1l)

i

1 which implies that h

{]

-g = -fP is DMS,
Therefore the theorem is now completely proved /

From now on assume that f :-ﬁi‘*éTR « We will solve the

following functional equations @

(4.11) f(x £(y)) = £y £(x))
(4.12) f(x + f(y)) = f(y + £f(x)) and
(4.13) f(x + f&) = £(y . £019.

From these equations, it is clear that the constant functions imme-
diately satisfy these equations. Therefore for the remainder of

this chapter, assume f is non-constant.

In order to solve Eq (4.11), let us assume the validity of

Theorem 5,2 of Chapter V which states that :

Theorem 5.2. If f :]R — TR is a non-constant continuous DMS

function, then fc - -f is SMS.
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Theorem 1+.6._ If f : R —> IR is a non-constant continuous function

satisfying :

(4.11) f(x f£(y)) = f£f(y £(x)),
then f(x) = ox or f(x) = Skp’ {ax, bx} ,a £ 0,b20,b>a
or f(x) = -k-{x! , (k %0).

Proof. Since f is continuous on TR , it follows from Theorem 4.5
that there exists a real number oL > O such that fo< or - fo( is a

DMS function. Since f is continuous, f or -i;x is SMS.

4

¢ & 3 fot is SMS, then by assuming the validity of Theorem 6.5

of Chapter VI, foc is of the form :

£, (X)) = ex for some ¢ e W
or fo‘(x) =/ Sup {ax, bx} o LG P 0,0 ¥ &,

Therefore by definition of f (x) we have

fm(x) = flxesa ) = ox
or fok(X) = f(x.0K) = sup 1ax, bx}, a £0,b 20,0 Sa.
Thus
c i

(4.14) "Nyl = A ky for some k = = in R

or

(4.15) 0y = sw {ev, v} v eR)

where c=2$0,d=o—12>/0 and . 4 5 ¢,

Similarly, the case in which -ir:;( is SMS will give :

\

£f(y) ky for some k = =

L}

[
178
or

(4.16) f(y)

Inf {cy, dy}
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a

where ¢ = “a

20 ,4a .—.-E £0 and ¢ » 4.

Now Eq (4.14) and Eq (4.15) satisfy Eq (4.11). However
Eq (4.16) satisfies Eq (4.11) only if ¢ = - k. To prove this, it
suffices to prove the case when x > 0Oand y £ 0. Eq (4.11) and
Eq (4.16) give
c(xey)

f(x £(y)) f(xcy)

f(y £(x)) d(y dx).

Thus c2 = d2 which implies that either ¢ = d or ¢ = =d. But d £ ¢

from Eq (4.16); hence d = -c and Eq (4.16) becomes
Inf f&cy, —cy}
(4.17) -c |yl (y € W)

for some ¢ 2 O in R Obviously Eq (4.17) satisfies Eq (4.11).

f(y)

I

I

Hence the theorem is now completely proved /

Next we assume that T R—-’R satisfies the equation

(4.12) f(x + £(y)) = fly + £(x)).

The method of solution is to construct a new function which

satisfies Bq (4.11).

Note. From Theorem 4,6, we have seen that if f " %0)-=3TR( Y 0)
satisfies Eq (4.11), then f is of the form
flx) =  &ox (x e R)

and some ¢ 2 O in R .

Theorem ’+.Z.. i g 0 -W\—-)TP\ is a continuous function satisfying :

(hel2) £lx. « £(y)) .= fly + £(x)),
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then f(x) = x + k for some k inTP\ A

Proof. Consider the diagram :

(R, +) fneny TR H)

b -

(R(>0), ) g > (R(>0, )

where

(4.18) glx) = WP (x € R (30)).
Then g is continuous. It follows from Eq (4.18) and Eq (4.12) that

glx « gly)) ef(ln(x »

ef(ln x + £f(1n y))

ef(ln y + £(1n x))

gly g(x)).

Then from the note after Theorem 4.6,
glx) = cx (xg R (>0))
for some ¢ > OinR .

It follows from Eq (4.18) that

SRR e S & o)),
Thus
£{1n x) = Imiex = R+ TR X
Therefore,
£(x) = k+x (xR
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for some k > O in “{ .
Moreover, this fumction satisfies Eq (4.12).

Hence the theorem is now completely proved /

Finally assume that f :K{-——iﬁ{satisfies Eq (4.13)

(4.,13) f(x + £(y)) £y £(x)) .

f(x - £(0) + £(0)) , we have

Since f(x)

f(o, f(x - £(0)))

£(0) (x €R )«

f(x)

Hence we get a theorem :

Theorem 4,8, If f :“{-——)FQ~ is a function satisfies Eq (4.13),

then f is identically constant.
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