THE FUNCTIONAL EQUATION f(x * f(y)) = f(y * f(x)).

The materials of this chapter are drawn from reference [3].

In this chapter we will prove some relations of a multiplicative symmetric function and a demi-multiplicative symmetric function.

This proposition will be used to solve the functional equation characterizing the multiplicative-symmetric functions.

Before we state and prove our proposition, let us give some examples of multiplicative-symmetric functions.

Example 4.1. Consider the Dirichlet function defined by

f(x) = 0 if x is rational numbers

= 1 if x is irrational numbers.

Clearly f is everywhere discontinuous and is a measurable function.

To show that f is multiplicative-symmetric function.

Recall: A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is multiplicative symmetric (MS), if f(x f(y)) = f(y f(x)).

Suppose x and y are any rational numbers; then

f(x f(y)) = f(x.0) = f(0) = 0 = f(y.0) = f(y f(x)).

Hence in this case f is MS. Similarly, for the other cases, such as x and y are both irrational or x is rational, y is irrational, we can show that f is MS.

Thus, there exists a measurable, everywhere discontinuous multiplicative symmetric function over (R, .).

Example 4.2. Let f be a function defined over (\mathbb{R} , .) by

$$f(x) = 0, x \leq 0$$

$$= \lambda^{n+k}, x \in \left[\lambda^{n}, \lambda^{n+1}\right] \left[n \in \mathbb{Z}, \lambda > 0, x > 0, \text{ and } k \in \mathbb{Z}(>0).$$

Clearly f is continuous for all $x \le 0$ and for $x \in]\lambda^n$, λ^{n+1} [. But f is not continuous at the point of the denumerable set $\{\lambda^{n+1} \mid n \in \mathbb{Z}\}$.

It follows from the definition of MS and the definition of f that f is MS for all x \leq 0. Now consider the case when x and y are both in $\begin{bmatrix} \lambda^n, & \lambda^{n+1} \end{bmatrix}$. Then

$$f(x f(y)) = f(x \cdot \lambda^{n+k}).$$

But
$$x \in \begin{bmatrix} \lambda^n, & \lambda^{n+1} \end{bmatrix}$$
, hence $x \cdot \lambda^{n+k} \in \begin{bmatrix} \lambda^{2n+k}, & \lambda^{2n+k+1} \end{bmatrix}$.

Thus
$$f(x \cdot f(y)) = \lambda^{(2n+k) + k}$$
.

But x and y are arbitrary in $\left[\lambda^n, \lambda^{n+1}\right]$, hence

$$f(x f(y)) = f(y f(x)),$$

i.e., f is MS for all
$$x \in \left[\lambda^n, \lambda^{n+1}\right[$$
.

Similarly, for the case x $\in \left[\lambda^{n+p}, \lambda^{n+p+1}\right]$ and

$$y \in \left[\begin{array}{c} n+q \\ \lambda \end{array}, \begin{array}{c} n+q+1 \end{array} \right[$$
, (n, p, q $\in \mathbb{Z}$) or the case x \leq 0 and

y
$$\epsilon \left[\lambda^{n+p}, \lambda^{n+p+1} \right]$$
, we can show that f is MS.

Therefore there exists a multiplicative symmetric function over (R..) continuous except on a denumerable set.

Example 4.3. There exists a non-measurable bounded multiplicative symmetric functions in $(\mathbb{R}, +)$ [see Example 6.18 of Chapter VI].

Lemma 4.4. Let (G, *) be a semi-group and $f : (G, *) \longrightarrow (G, *)$ a multiplicative symmetric function. Then

$$f(y * f(z) * f(x)) = f(z * f(y) * f(x)).$$

Proof. Since f is MS,

(4.1)
$$f(x * f(y * f(z))) = f(y * f(z) * f(x)),$$

and

$$f(x * f(y * f(z))) = f(x * f(z * f(y))$$

= $f(z * f(y) * f(x)).$

Therefore the last equation and Eq (4.1) imply that

$$f(y * f(z) * f(x)) = f(z * f(y) * f(x)).$$

Hence the lemma is proved /

Theorme 4.5. Let f be a non-constant everywhere continuous MS function on $(\mathbb{R}, .)$. Then there exists an $\propto \neq 0$ such that f_{∞} or $-f_{\infty}$ is a DMS function.

<u>Proof.</u> By the hypothesis that f is non-constant, we have that $f \not\equiv 0$ so there exists z_0 in $\mathbb R$ such that $f(z_0) \not\equiv 0$ which by Lemma 3.16 implies that $z_0 \not\equiv 0$. Since we can write $f(z_0)$ as

$$f(z_0) = f(z_0) \cdot z_0^{-1} \cdot z_0$$

there exists $\mathcal{A} = (f(z_0))^{-1} \cdot z_0 \neq 0$ such that

$$f(z_0) = \frac{z_0}{\alpha} .$$

Since f is MS on $(\mathbb{R}, .)$, Lemma 4.4 implies that

$$f(y f(z) f(x)) = f(z f(y) f(x)).$$

Put y = & in the last equation to get

(4.3)
$$f(\alpha f(z) f(x)) = f(z f(\alpha) f(x)).$$

Let

$$(4.4) Z = Z_0 f(x)$$

then from Eq (4.2),

By applying f to Eq (4.5),

$$f(Z) = f(x) f(z_0) f(x)$$

which gives, by Eq (4.3) when $z = z_0$,

$$f(Z) = f(Z_0 f(X) f(x))$$

=
$$f(z_0 f(x) f(x))$$
.

By Eq (4.4),

$$f(Z) = f(Z f(X)).$$

Note that, from Eq (4.4) and the fact that f is a MS function,

$$f(Z f(X) f(y)) = f(Z_0 f(x) f(X) f(y))$$
$$= f(y \cdot f(Z_0 f(x) f(X)))$$

=
$$f(y \cdot f(Z f(x))).$$

Then by Eq (4.6),

$$f(Z f(x) f(y)) = f(y, f(Z)) = f(Z f(y))$$

because f is MS. Then

$$(4:7) f(Z f(x) f(y)) = f(Z f(y)).$$

We now claim that

(4.8)
$$f(Z) = f(Z(f(\infty))^n) (n \in \mathbb{Z}(>0)).$$

Since Eq (4.8) is Eq (4.6) when n = 1, assume Eq (4.8) holds for n = k, i.e.,

$$f(Z) = f(Z(f(\infty))^k).$$

Now
$$f(Z(f(\alpha k))^{k+1}) = f(Z(f(\alpha k))^k)$$

= $f(Z(f(\alpha k))^k)$
= $f(Z)$

by the induction hypothesis and Eq (4.7). Hence the case n = k + 1 holds. Therefore by induction on n, Eq (4.8) holds.

If f(x) = 0, then from Eq (4.6) implies that f(Z) = f(0) which implies, by Lemma 3.16, f(Z) = 0 so that by Eq (4.4) and f being MS,

$$0 = f(z_0f(x)) = f(x f(z_0))$$

for all x in \mathbb{R} . Hence for any y in \mathbb{R}

$$y = y \cdot (f(z_0))^{-1} f(z_0) = x f(z_0)$$

where $x = y(f(z_0))^{-1}$, so that

$$f(y) = f(x f(z_0)) = 0 (y \in \mathbb{R}).$$

Therefore $f \equiv 0$, which we have excluded. Hence $f(\alpha) \neq 0$.

If $|f(\propto)| < 1$, choose Z so that $f(Z) \neq 0$. Then by the continuity of f and Lemma 3.16,

 $f(Z) = \lim_{n \to \infty} f(Z(f(\infty))^n) = f(Z. \lim_{n \to \infty} f(\alpha)^n) = f(O) = 0$ which contradicts the choice of Z. Hence $|f(\alpha)| > 1$.

If $|f(\alpha)| > 1$, then $f(\alpha) > 1$ or $f(\alpha) < -1$. Since by Lemma 3.16, f(0) = 0 and by Intermediate Value Theorem, there exists a β between 0 and α such that $|f(\beta)| = 1$.

If $f(\beta) = 1$, define $g = f_{\beta}$ and due to Lemma 3.15, g is MS with $g(1) = f_{\beta}(1) = f(1.\beta) = f(\beta) = 1$. Since g is MS, $g(x g(y)) = g(y g(x)) \qquad (x, y \in \mathbb{R}).$

Take x = 1 in the last equation, we have

$$g^{(2)}(y) = g(y g(1)).$$

But g(1) = 1; hence

$$g^{(2)}(y) = g(y)$$
.

Therefore

$$g(x g(y)) = g(y g(x)) = g(y g^{(2)}(x))$$

= $g(g(x) g(y))$

by the MS-property of g. Hence g = fg is DMS.

Assume now that $f(\beta) = -1$. Define $g = f_{\beta}$, then

$$g(1) = f_{\beta}(1) = f(\beta) = -1.$$

Now
$$g^{(2)}(x) = f^{(2)}_{\beta}(x) = f(f(x, \beta), \beta) = f(\beta f(x, \beta))$$

= $f(x \beta f(\beta))$, by the MS-property of f. But $f(\beta) = -1$, hence

$$g^{(2)}(x) = f(-x\beta) = f_{\beta}(-x)$$

by the definition of f_{β} . But $f_{\beta} = g$; then

(4.9)
$$g^{(2)}(x) = g(-x)$$
,

and

$$g(g(x) g(y)) = g(y g^{(2)}(x)) = g(y g(-x)).$$

By symmetry roles of x and y, we have

(4.10)
$$g(y g(-x)) = g(x g(-y)).$$

Since g is MS, g(y g(-x)) = g(-x g(y)).

Now put h = -g; then h(1) = -g(1) = -(-1) = 1 and

$$g(yh(x)) = g(y. -g(x)) = g(-yg(x)) = g(xg(-y))$$

and by Eq (4.10), we get g(y h(x)) = g(y g(-x))

$$= g(-x g(y)) = g(x - g(y)) = g(x h(y)).$$

So that -g(yh(x)) = -g(xh(y)); i.e.,

$$h(y h(x)) = h(x h(y)).$$

Hence h is MS and h(1) = 1 which implies that $h = -g = -f_{\beta}$ is DMS.

Therefore the theorem is now completely proved /

From now on assume that $f: \mathbb{R} \to \mathbb{R}$. We will solve the following functional equations :

$$(4.11)$$
 $f(x f(y)) = f(y f(x))$

(4.12)
$$f(x + f(y)) = f(y + f(x))$$
 and

$$(4.13)$$
 $f(x + f(y)) = f(y \cdot f(x)).$

From these equations, it is clear that the constant functions immediately satisfy these equations. Therefore for the remainder of this chapter, assume f is non-constant.

In order to solve Eq (4.11), let us assume the validity of Theorem 5.2 of Chapter V which states that :

Theorem 5.2. If $f : \mathbb{R} \to \mathbb{R}$ is a non-constant continuous DMS function, then f = -f is SMS.

Theorem 4.6. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a non-constant continuous function satisfying:

(4.11)
$$f(x f(y)) = f(y f(x)),$$

then f(x) = cx or $f(x) = Sup \{ax, bx\}$, $a \le 0$, b > 0, b > a or $f(x) = -k \cdot |x|$, (k > 0).

<u>Proof.</u> Since f is continuous on \mathbb{R} , it follows from Theorem 4.5 that there exists a real number $\propto > 0$ such that f_{\propto} or $-f_{\propto}$ is a DMS function. Since f is continuous, f_{\propto} or $-f_{\propto}$ is SMS.

If f_{α} is SMS, then by assuming the validity of Theorem 6.5 of Chapter VI, f_{α} is of the form :

$$f_{\infty}(x) = cx$$
 for some $c \in \mathbb{R}$

or $f_{\infty}(x) = \sup \{ax, bx\}$, $a \le 0$, b > 0, b > a.

Therefore by definition of $f_{\infty}(x)$ we have

$$f_{\alpha}(x) = f(x + x) = cx$$

or $f_{\infty}(x) = f(x.\infty) = \sup \{ax, bx\}, a < 0, b > 0, b > a.$

Thus

(4.14)
$$f(y) = \frac{c}{\propto} \cdot y = ky \text{ for some } k = \frac{c}{\propto} \text{ in } \mathbb{R}$$

or

$$(4.15) f(y) = Sup \{cy, dy\} (y \in \mathbb{R})$$

where $c = \frac{a}{\alpha} \le 0$, $d = \frac{b}{\alpha} > 0$ and d > c.

Similarly, the case in which -f is SMS will give:

$$f(y) = ky$$
 for some $k = -\frac{c}{x}$

or

$$(4.16) f(y) = Inf \{cy, dy\}$$

where $c = -\frac{a}{x} > 0$, $d = -\frac{b}{x} \leq 0$ and c > d.

Now Eq (4.14) and Eq (4.15) satisfy Eq (4.11). However Eq (4.16) satisfies Eq (4.11) only if c = -k. To prove this, it suffices to prove the case when x > 0 and y < 0. Eq (4.11) and Eq (4.16) give

f(x f(y)) = f(xcy) = c(xcy)= f(y f(x)) = d(y dx).

Thus $c^2 = d^2$ which implies that either c = d or c = -d. But d < c from Eq (4.16); hence d = -c and Eq (4.16) becomes

 $f(y) = Inf \{cy, -cy\}$ $= -c \mid y \mid (y \in \mathbb{R})$

for some c \gg 0 in $\mathbb R$. Obviously Eq (4.17) satisfies Eq (4.11). Hence the theorem is now completely proved /

Next we assume that $f : \mathbb{R} \to \mathbb{R}$ satisfies the equation (4.12) f(x + f(y)) = f(y + f(x)).

The method of solution is to construct a new function which satisfies Eq (4.11).

Note. From Theorem 4.6, we have seen that if $f : \mathbb{R}(>0) \to \mathbb{R}(>0)$ satisfies Eq (4.11), then f is of the form

 $f(x) = cx \quad (x \in \mathbb{R})$

and some c > 0 in \mathbb{R} .

Theorem 4.7. If $f: \mathbb{R} \to \mathbb{R}$ is a continuous function satisfying: f(x + f(y)) = f(y + f(x)),

then f(x) = x + k for some k in \mathbb{R} .

Proof. Consider the diagram:

$$(\mathbb{R}, +) \xrightarrow{f} (\mathbb{R}, +)$$

$$\downarrow \text{exp}$$

$$(\mathbb{R}(>0), \cdot) \xrightarrow{g} (\mathbb{R}(>0), \cdot)$$

where

(4.18)
$$g(x) = e^{f(\ln x)} \quad (x \in \mathbb{R} \ (>0)).$$

Then g is continuous. It follows from Eq (4.18) and Eq (4.12) that

$$g(x \cdot g(y)) = e^{f(\ln(x \cdot e^{f(\ln y)}))}$$

$$= e^{f(\ln x + f(\ln y))}$$

$$= e^{f(\ln y + f(\ln x))}$$

$$= g(y \cdot g(x)).$$

Then from the note after Theorem 4.6,

$$g(x) = cx (x \in \mathbb{R} (>0))$$

for some c > 0 in \mathbb{R} .

It follows from Eq (4.18) that

$$e^{f(\ln x)} = cx \quad (x \in \mathbb{R}(>0)).$$

Thus

$$f(\ln x) = \ln cx = \ln c + \ln x$$

Therefore,

$$f(x) = k + x \quad (x \in \mathbb{R})$$

for some k > 0 in \mathbb{R} .

Moreover, this function satisfies Eq (4.12).

Hence the theorem is now completely proved /

Finally assume that $f : \mathbb{R} \longrightarrow \mathbb{R}$ satisfies Eq (4.13): (4.13) f(x + f(y)) = f(y, f(x)). Since f(x) = f(x - f(0) + f(0)), we have f(x) = f(0, f(x - f(0))) $= f(0) (x \in \mathbb{R})$.

Hence we get a theorem :

Theorem 4.8. If $f : \mathbb{R} \to \mathbb{R}$ is a function satisfies Eq (4.13), then f is identically constant.