CHAPTER I \ &

T
3-DIMENSIONAL NILPOTENT ALGEBRAS OVER AN ALGEBRICALLY

CLOSED FIELD OF CHARACTERISTIC # 2.

In this chapter we classify the nilpotent algebras of
dimension 3 over arbitrary algebraically closed fields of
characteristic #Z 2 up to isomorphiﬁm. The material of this chapter

is drawn from reference fgl;r y ==
./ 4

Let A be a nl%théhﬁ algebra of dimension 3 over a field k.

Then there exists a m/f/l ych‘that A" - {0}. Let k be the smallest

such m. We claim thaf/A;;/

n+l

/*z....JA = {0}, Suppose that

AR AT for some T¢éan see that
An+2 % jﬂﬁp’An
AR+3 «U;;An
o & et Aa—ee
Ak & An’
which implies that 4 {0}. But this contradicts to the smallest

of k. Therefore A :)A2:3A3:3... :lAk = {0}, Thus we see that

dimension A2= 2 or 1 or O. Dimension A2= 0 is the trivial case,
so we just consider the case where dimension A2= 1, or dimension

2 i ; 2 -

A= 2, If dimension A= 1, then A“= {0}, If dimension A2 is 2,

then dimension A3 is 1 or O and Au = {0}.
The case where the dimension of A2 is 2 and A3 = {0} is
impossible., ©See proof in [1] page 41,

Next, we shall consider the other cases of a nilpotent

algebra of dimension 3.



Remark: The following theorem is true for arbitrary fields.

In [1] it was proven only for R.

Theorem: Let A be a nilpotent algebra of dimension 3 over the

L
field K, If dimension of A° is 2 and dimension of A= 1, A= {0},
then the multiplication in A is uniquely determined up to isomor-
phism,

Proof: Since the dimension of A is 3, dimension of A2 = 2

i b

dimension of A”= 1 and A'= {0}, we let {el,ez,eB} be a basis in

A such that {GZ’GB} is;afbﬁéis of A% and e, is a basis of AB.

7 3
> 77N
For each x, y in A we have ///
.A/’/// / ’.".E_
3 /;“2,' ==
X = Z a.e.’ y = y /b .g i'a. ,b.}C:K, i'j = 1’2’30
j=1 * % =1 Jpjf A\
Hence 7/ @
3 e
xy = LEaizanbiese. .
Y tar
: 2 7S 5_
Since e, e1€zs e3eltﬂh :~{0},;@2e3,e3e25 A“= {0} and
e% € A6 = {0}, we have

2
Xy E a1b1e1+ alb2e1e2+ a2b192e1 ¥,

. 2 2 : 5. . .
Since eye A, we can write ey = k102+k2e3 for some kl,k2 in K

. 3
and since €1€59 eaels A" we get e

k3e3 and eael= kl}e3 for

some k3’ k4 in K, Thus xy can be expressed in the form

1%

() xy = kja;bie +(k,a by vkaa,bovkasb, ey .
Now we consider kl’k2’k3’k4' Since dimension of A2= 2y
the case k1= 0O and the case k2= k3= k4= 0O c¢an not occur. The

proof proceeds with 7 cases. The proof of case 1 to case 6 is
the same as [l] page 45-47., Now we consider the last step of

proof.
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Case 7. Assume that all k., i=1,2,3,4 are not zero.

eyt et

Then the multiplication (*) is

(7.1) xy = kja;bies+ (k2a1b1+ k3alb2+ kuazbl)eE %

3 )
let 2= Z c e ZK. Then (7.1) implies that

1 &% . {°1}2=1.2,3

[(3 )(3 )](3 )
. oa.e, s N o - L C,€
g3 2 4=2 9 4=3 = *

~~
M

L
~
N
||

’ 3
[klalbleaf(k2a1b1+ k3a1b2+ khazbl)eB](zzlclel)

kq§5151b1)°1?3

g 3 3
whereas, x(yz) ( Z/aiei){( T b.e)(X czezﬂ
SAA P50 0

/

L (iE{aieiéikiblcloz+(k2b101+k3b102+k4b201)e3]

(?3algki?félye3 .

Since A is an assogiative algebra, we must have that

klkhalblcl =4 k1k3alblcl' That -is k3 = ku. Hence the multipli-

cation (7.1) becomes

(7+2) Xy = klalb1e2+ (kzalbl+ k3a1b2+ k3a2b1)e3.

We claim that this multiplication is isomorphie to the

multiplication in case 4. In case 4 we have that

- thipg! 1Hht Ttht '
(4,1} xoy.. = alble2+ (a1b2+ aabl)e3
3 3 _
Where X = 2 aie]!.’ y = -r b&eé’ {ai,b:'j} rK, i'j = 1'2'3.

i=1 =1



To prove this, let £ : A > A be the linear map defined by

1}

e

1
f(ef) 1!
1 s
f(ea) = kje,+ kZe3 ¢
f(eé) = klk333 ' kl’ka’kB € K.
We have that
% 0 0
det ] = a0 /4 k) | = ¥k, # 0
N N <A 1°3 :
0 0 k1k3

Therefore, f is 1-1 and onto. (4.1) implies that

f(xoy)

3 3
[ 2 ageo( B

ble!) ]
ie1 jop 39

thle! '
f[afbyess (ajbl+ asdides]

1 1 1 1 1
1+ klk3a1b2+ klk3a2bl)e

» "

- Th e 1
k.alble + (kaalb

~~17171°2 37

on the other hand, (7.2) gives

f(x)£(y)

3 3
r ale! Y ble!
f(i=1alei) f(j=1 JeJ)

[aie1+k1aée2+(kzaé+klk3a%)e3]lbie1+klbée2

+(k2bé+klk3bé)e3]

= 1Hht t
= k1a1b1e2+ (kzaibi+k1k3aib2+klk3aébi)e3‘

That is f(xoy) = f(x)f(y). Therefore,this two multiplications

are isomorphic.



Hence, we have already proved that the multiplication
in a nilpotent algebra A of dimension 3 over the field K with
dimension A® & 2, dimension A% = 1 and AI+ = {0} is uniquely

determined up to isomorphism. #

Suppose A is a nilpotent algebra of dimension 3 with

g

dimension A%= 1 and A%= {0}: Let {e 21°3 } and {el,ea,e%} be

1°¢
bases in A such that e3 and eé are in AZ. If £ ¢+ A+ A disg an
isomorphism, then f : A2 ¥*A2. Therefore, f(e3) € Aa.

Consequently, we may~writ67

f(el) = mje +m2eé+m3 £

f(e,) = pqe 1*p2 *93 9

f(63) = qe%, {miip39q} C K, i,j = 1,2,3,
q # O in Ko

The classification oﬁﬂB:&imensional nilpotent algebras A over R
with dimension A2= 1 has already done in [1]. Now we begin to
discuss the classification of 3-dimensional nilpotent algebras
A over arbitrary algebraically closed fields K of characteristic
# 2 such that dimension A2= 1, by choosing a basis el,ea,e3 in
A sﬁch that e, e AZ. First, note that it isn't‘necessary to check

3

associativity in this case since A = {0}. For each x, y in A

we have
3
X = b ¥ a. i '
i=1
2 < 2
y = z bjej, {ai,bj}c K’ 1’3 = 1,2’30

(=N
et



It follows that

0%
Xy = p) 2. 8a;bjgecey o
Jal el Y E 1)
Since e.€.,4€.€.,6.€5,9€,8, € A3 = {0} and e2 € Ah= {0}, we have
b b R0 b T e L6 > y
that
Xy = #50 e2+ a.b.e,e.+ a.b.ee.+ a, b e2
1Ll I#2°) 2 2 1 2°% 2°2 8

2 2 2 .
Since el,elez,ezel,eae A=, we can write

e = kle3 4
ele2 = k2e3 '
eseq = k393 .
eg = kheB y for some k;e K, 1= 1,243,k4.
Therefore, .
(*x) | Xy = (kiélbl* k,a,b,+ k3a2b1+ kuaaba)ej .

Now we begin to classify the multiplications xy by studying ki
in K, i = 1,2,3,4%, Since dimension of A2= 1, the case kl= k2=

k= k4= 0 cannot occur. Therefore, we consider the following

3

casesSe

Case 1l. If kl¢ 0 and k,= k,= k= O, then the multipli-

2% 3
cation (**) becomes

Xy = klalble3

1 L - -
As in [}], we choose a new basis eq= €y e3= €5 eé_ k1e3.



Therefore,
Xy = a'b'(e')2+a'b'e'e'+a'b'e'e'+a'b'(e')2
4 L e | g da 12 2121 22ve" !
3 3
. te! = 1at ' bt . 4 = .
for x = iil alel 4 ¥y = jzl bjej’ {ai,bj} cKy £y §J = 1,2,3
2 2
5 , B Tha - -_ !
Since (el) =e == kle3 = e},
2
1 & o 1! = - S =
ejey = k2e3 = 0 , ele]= k3e3 = 0, (ea) = kue3 0,
we have
oy thtal
(1,10 bxy = a1b1e3,

k, = O, then the multipli-

Case 2. If k%.% 0 and k= k= 3

cation (**) can be written as

(2.1) =xoy = k4a2b233 .

proof in [1] page 52.

Case 3. n If k3 # O and ky= k,= k,= O, then from (**) we
have that

Xy = k3a2b193

Like the other cases we choose a new basis ei: el,eé= €59

e% = k3e3 and get the result,
- Tthtle!
(}ll) Xy - a2b1e3 9
) 3
where x = I ale! , y= I b!eé y {ai, bé} €K, i,5 = 1,2,3.

j=1 9
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Notice that A is not a commutative algebra over K with
respect to this multiplication, but A is commutative with respect
to the multiplication (1l.1) in case 1. Therefore, the multipli-
cation in this case is not isomorphic to the one in case 1 (and

hence in case 2.).

Case 4. Assume that k2¢ 0 and k;= k;= k,= O. The

3

multiplication (**) becomes

(4.1) x?y s kaalbze3 .

This multiplication is"isomorphic to (3.1) in case 3. The proof

i

is the same as [1] pﬁéy”;j,
- 4271

J ] '
Case 5. Supﬁb§e that k1¢ 0, sz O and k,= k)= @. Then

3'.:

the multiplication (#x) is

(5.1) »%ﬁg\< = (kya;byskiaiby)es o

This multiplication is isomorphic to- (3<1l) in case 3. The proof

is the same as [1] page 5b4.

Case 6. Let k3¢ 0y ky# O, ko= k,= O. Then from (x%)

we have that
(6.1) X0y . = (k3a2bl+ k432b2)63 .

By the same proof as [1] page 55, we have that (6.1) is isomor-

.phic to (3.1) in case 3.
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Case 7. Assume that kl# 0, kB# 0 and k,= k= Oe

Then the multiplication (**) is
(7.1) : xoy = (kja b+ k3a2b1)e3 ‘
As in the above case, this multiplication is isomorphic

to (3.1) in case 3. The proof is the same as [}] page 56
Case 8. In this case we take kZ# 0, kkf 0 and k;= k3= 0
in (**), Then from (**) we have that
(8.1) X0y = (k2a1b2+ khazba)eB :
This multiplicatién is'isomorphic to (3.1) in case 3. The
proof is the same as |1] /page 57.
Case 9. Suppose  that kZ# 0,4 kB# 0 and k1= k)= O, Then
we have from (*x) that
X0y = (k2a1b2+ k3a2b1)63 .

Like the previous cases, we choose a new basis e{: ey

" - W
es = e2, 83 = k2e3 such that
,k3
- AR SR "nmpn "
X0y = (alb2+ 'E;'aabl)e3 "
% 3
= nNatt = gt 1" _pn = >
for x i=1aie:.L e ¥ jilbjej ’ {ai,bjj}C Ky 143 1,2,3
ks
Let 1 k" = il then we have
2

(9.1) X0y = (a§b5+ k"agbg)eg , k" # 0 in K.



12

We can prove that (9.1) is not isomorphic to the multi-
plications in case 1 and case 3. The proof is the same as [1]
page 60,

Suppose that ei,eé,eé is another basis of A such that

(9.2) xX*y = (aibé+ k'aébi)eé , k' # 0 in K,
3 3
for 'x. = I ale! 5.y = L bte! , {a!yb'} € K.
el i 3=1 J o

By the same proof &s [1] page 61-64, we conclude that
the multiplications (9¢1) and (9.2) are isomorphic iff k' = k"
1

or k! = e

Case 10. Let k;# O, ky#/0 and k,= ky= O. Then (%)

ey 3
becomes
* P
% ?, = (k1a1b1+ k4a2b2)e3
' 2 %1
Let k', k" be the roots of the polynomial x - T Now choose
» 4

one of these numbers. Let: k' denote the choice. Choose a new

basis ,eé,e' such that el= el,eé= k’ea,e'= k.e., and get

"

3 1 L IR 3
{10.2) X *y = (aibi+ aébé)eé ;
3 g
= e
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This multiplication is not isomorphic to the multipli-
cation in case 1. Since the center C of A under the multipli-
cation in case 1 is C = [e2’83] and dimension of C is 2, whereas
the center C' of A under the multiplication (10.1) is C'= [e3]
and dimension of C' is 1. Moreover, the algebra A is not commu-
tative under the multiplication (3.1) of case 3, but A is commu-

tative under the multiplication (10.1). Therefore, the multipli-

cations (10.1) and (3.1) cannot be isomorphic.

Recall that the multiplication (9.1l) of case 9 is

(9.1) xoy = (agbg+ k"agbg)eg , k" £ 0 in X,
3 3 . :
for x = z a'te" s ¥ = b bite! , ~a'.',b'! C K' i’j = 1,2,3.
P j=1 33 1

We claim that the multiplicatioms (10.1) and (9.1) are
isomorphic iff k" = 1. First we assume that the multiplications
(10.1) and (9.1) are isomorphic. Therefore, we can find a linear,
1-1, onto function f: A =+ A such that

f(x »y) = f£(x) o £f(y) .

This function f is in the form

- 1 1
f(ei) = mlei+ m2e5+ mBeB .
1 e ]
g i PRl Bosis DRy
f(eé) = qeg ’ {miqu’q 1€ K, i,] = 1,2,3, ‘

q#o in K.



14

Therefore, (10,1),(9.1) and the fact that f(x*y) = £f(x) o £(y)

imply that, for x = ei. ¥y o= ei

(1) m1m2(1+k") = q .
i %= ei, ¥ = eé y then
1 p|
(2) miPo+ k"m,py = O .
Ifi x & eé, ¥y = ei., then
n —
(3) mopy+ k'mip, =0 .
It x= eé, Y = eé y then
(4 p{R(THEM) = q .

Since q # 0, equation (1) implies that k" # -l. From (2)

and (3) we have that

(5) T -1) =A0

{1 P2
Since m; ¥ 0y P, # 0 and k" # =1, (5) implies that

k. 1 = O

k" = 1.

Conversely, suppose that k" = 1. We let f: A+ A be

the linear map defined by

" "
e1+ 92 9

ieg— ie!,

f(ei)

f(eé)

i}

f(e%) 2ey, i=vy-1 in K.



Then

det [f]

Since characteristic K £ 2, det [fj = =4i # 0. Hence f is 1-1

and onto. The multipli

f(x * y)

whereas, (9.1) implies

3
f( = ai
i=1

f(x)of(y)

1

2(alb!

1

; 1
= det |i ~i 0 = =2i=21i
0 0 2

cation (10.1) implies that

]

£ [(agbl+ agbs)es]

2(aibi+ aébé)eg §

il

that

3
ei)o f(jflbﬁeé)

[(a +1a')e"+(a'-1a')e"+2a'e" [(b'+ib )e"

+(b'—1b')e"+2b e"]

[(ay+ias)(by=ibs)+(as=ial)(bl+ib))] o}

t ] "
a2b2)e3 "

That is f(x +y) = f£(x) o f(y) for k" = 1.

Case 11l. Assume that k2 # 0, k3 £ 0, kl+ # 0 and k.=

Then from (**) we have

X*y =

that

(k2a1b2+ k3

000061

a2b1+ kuaaba)e3

O.
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k
L
3 B e e = =
Choose a new basis e1 = k2 el, e2 €59 e3 k4e3,
then it is immediate that
¥
pon Ttht 1tht thHt ]
X *y = (a1b2+ E;a2b1+ a2b2)e3 §
3 3
for x= T ale!, y= T ble!, {a!',b'} € K, i,j = 1,2,3.
jo1 11 A i’7]

k
Letik® = 5 then

o S

e tath? 1ht)et ' s
(11.1) X * 3y flg§%b2+ ktalb's a2b2)e3 , for k' # O in K.
By using thé samg /proof as [J] page 67 we conclude that
if k' # -1, then thig multiplication is isomorphic to (9.1) of
case 9 whenever k' =‘ﬁ"; :

I k' = =1, phéﬁ (I1.1) becomes

(11.2) X * ¥ = (éTbé- albl+ arb!l)e!

We can easily see that the algebra A is not commutative
under the multiplication (11.2) while A is commutative under the
multiplication in case 1. Therefore, the multiplication (11.2)
cannot be isomorphic to the multiplication in case l. Moreover,
the left center C; of A under the multiplication (11.2) is [§3]
and hence CL has dimension 1. Therefore, the multiplication
(11.2) cannot be isomorphic to the multiplication (3.1l) where the
left center Ci = [91,e3] and has dimension 2. Furthermore, the

multiplication (11.2) is not isomorphic to the multiplication

(9.1) in case 9. The proof is the same as Il] page 68.
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Case 12. Suppose that klf 0, kZ# 0, k3# 0 and k= O.

Then from ( xx) we have that

X0y = (k1a1b1+ k,a, b+ k3a2bl)e3
Like the other cases, we choose a new basis eg= ey
k
Wi __]. LI
e3 ka €59 e3 kle3 and get
o
- npn nun i 1"Ht "
X0y = (aib1+ alb2+ X, aabl)e3 ‘
3 3 .
for ® = .E ageg e bgeg ’ {ag,bg} C K, 1,3 = 1,2,3.
1= j=1
k
Let k" = Eé s then
2
- npupn "nH" AP A " " 3
(12.1) xoy = (alb1+ a1b2+ k azbl)e3 y k" £ 0 in K.

By the same proof-as [1] page 69, we can prove that

this multiplication is isomorphic to the multiplication (11.1)

in case 11 whenever k' =~%" .

Case 13. Assume that k1# 0, k3¢ 0, kM# 0 and k.= O.

2:

Then the multiplication (**) can be written as

X*y = (kla1b1+ k3a2bl+ kuazbz)e3 .
k1
We can choose a new basis e{': ey e2"'= E; €5
eg'z kle3 such that
klk4
x+y = (af''dI'+ alrbi'+ _;E— ag'bg‘)eg' '

3
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3 3
- HEPS IR - Mnegtre nr pe K = 1.2,3
for x iilai ef's ¥ jilbj e:j . {a:L 10y YC K, i,] 1243
ky ko, i
Let k"' = oy then we have that
k
3
(13.1) xxy = (ay'blitsal by +k"aliby)eyt, k"'#£ O in K.

We can prove that the multiplication (13.1) and (9.1)

are isomorphic iff k"' = -k s k" #+1. See proof in [1]
(1-k")°
page 71-73.
-k"
(1-k")

that for a given number k"' we ean find k" to make (13.1) isomor-

Under the assumption above the k'"' = 5 We can see

phic to (9.1) only if k"' # O and k"' # % . Therefore we have

to consider (13.1) when k'"''= 1/).

By the same proof as | [1]; we can show that

the multiplications (13.1) and (11.2) are isomorphic iff k"'= 1/4-

Case 1lk4. Suppose that klf 0, kzﬁ 0, k4% 0 and k3= O

Then the multiplication (**) is

X0y = (k1a1b1+ k2a1b2+ khazba)eB.
As in the other cases, we may choose a new basis ei: ey
kle
) = s 0" .5 :
ey = kz €y €3 kle3 and obtain
k1k4
= L} ] ) ] ] ]
X0y = (a1b1+ a1b2+ 5 a2b2)e3 , for
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3 3
X = izlaiei, y = jzlbéeé ) {ai,bé'}C.K, i3 = 14253
k. k
Let —155 = k', then
g
) | ] ' 1 ] 1 1] 3
(14.1) X0y = (albi+ a1b2+ k aébé)e3 , k' £ 0 in K.

We claim that (14.1) is isomorphic to (13.1) in case 13
iff k' = k"', To prove this, we first assume that these two
multiplications are isomorphic. Therefore, there exists a linear

mapping f: A +A defined by

1 o~ n"ne 1
f(el) =/ dyeft+ m2e5‘+ mBei' )
£(e}) = /ppey'+ pref'+ Pzez' o
f(eé) = qeg', qg £0 in K , {mi,p.}<: Koo '

ivj=1i293

such that f(xoy) f(x) »£f(y).

{1

Hence, for x = ei, y = e! , we have that

1
2 1" 2 e
(1) my+ momyk kUtnS =g
For x = ei, Yy = eé , we have that
1" _
(2) m Py+ mypy+ k"'mop, = g .
For x = eé, b AR ei , we have that
"ne o
(3) m)p,+ m Py k"'m,p, = O .

Yy = eé s we have that

(&) pi+ PP+ k"'pi = k'qg .



Take (2)-(3), we get that
(5) mzpl- mlp2 = q .
Take P, x(1) - my x(3), we get that
= proy "
Ppa = (mypy= mypy)(mys k'tmy).
This and (5) imply that
s "
(6) py = my+ K"'m, o
Take m, x (4) - Py x(3),; we get that
mlk'q = k"'pa(mlpz— mzpl).
This, together with (5), gives us the result that
(7) mlk' L/ S ka"'.
Take m, x(3) - P, x (1), we get that
- P Vs m (WP, = WD)
This and (5) imply that
(8) =g, A=l

Take m, x(4) - P, x(2), we get that

I =
q(mak pa) pl(mzp1 mlpz).

Thus we have that

(9) mak" p2 Pl °

If my = O, then p, = 0 from (8). Therefore, (6) and (9)
that

k! = kM

20

imply
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If m # 0, then (7) and (8) imply that
k' = kMt

Conversely, if k!

k"', let f: A * A be the linear

map defined by

f(ei:') = e]‘. [
flef') = ey- e,
f(eg') = e% "

Then [l] page 78 proves that (14%.1) and (13.1) are isomorphic.

Case 15. In this final case we assume that all kl’kz'

k3,k4 are not zero.  Then the multiplication (**) is

+ k.a.b. .+ k_a

x+y "5 Liaghas koa b+ ksasby+ kyaybsles .

As in case 15 [ﬂ page 79 we choose a new basis ei,eé,eé

¥ e e - P =
such that e1= €18y = kael klez. e3 ez and get that

(15.1) X xY

[klaibi+kl(k2—k3)aébi+k1(klk4-k2k3)aébé]eé ;

3

for x = 2T alely ¥y
151 j=1 93

1
MW
o’

te! ,{al,bt}, . C K.
Je ! al’ J 1,3=1,2,3

We have no term of the form aibé so we are back to case 13.

In conclusion, we see that the multiplications in a
3-dimensional nilpotent algebra A with dimension A°%= 1 and A%= {0}
over an algebraically closed field X 6f characteristic K # 2 can
be divided into 4 classes. Let M,N be any subsets of K-{0,1,-1}

such that



MAN

MUN

4

K -1{0,1,-1}

and k € M iff k_1¢ M. For each x

{ai'bi} CK, i,j = 1,2,3, we have that

1)
2)

3)
4)

Xy

Xy

Xy

Xy

albleB’

8,0185s

(a.b.+ ka

1°2

(a-b.= a.b

1=2

2

2b1)e3’ k = 1,~1 or k € M,

155

ba)e

3 9

22

are non-isomorphic and every nilpotent algebra is isomorphic to

one of the above.
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