INTRODUCTION

Let us begin this thesis by recalling some definitions.

Definition 1: An algebra A over a field K is a ring A(with no identity element) which is at the same time a vector space over K.

Moreover the scalar multiplication in the vector space and the ring multiplication are required to satisfy the axiom

$$\alpha(ab) = (\alpha a)b = a(\alpha b)$$
, $\forall \alpha \in K, \forall a, b \in A$.

Definition 2: An algebra A over a field K is nilpotent if there exists a positive integer m such that $A^m = \{0\}$.

Definition 3: Let A be an algebra with multiplication o and B be an algebra with multiplication * . Then the algebras A and B are isomorphic iff there exists a linear, 1-1, function f of A onto B such that $f(x \circ y) = f(x) * f(y)$.

Definition 4: The center C of an algebra A is the set $C = \{x \in A \mid xy = yx = 0, \forall y \in A\}.$

By the left-center \mathbf{C}_{L} of A and the right-center \mathbf{C}_{R} of A we mean that

$$C_{L} = \{x \in A \mid xy = 0, \forall y \in A \}$$

and

$$C_{p} = \{x \in A \mid yx = 0, \forall y \in A \}.$$

Proposition 5: Let A and B be finite dimensional algebras over a field K with multiplication o and * respectively. Suppose that these two algebras are isomorphic, and let $f: A \rightarrow B$ be an isomorphism, then f takes the center (left center, right center)C(C_L,C_R) of A isomorphically onto the center (left center, right center) $C'(C_L^{\bullet},C_R^{\bullet})$ of B.

The proof of this proposition can be found in [1] page 57.

Definition 6: A field k is algebraically closed if every polynomial in k[X] of degree \geq 1 has a root in k.

This thesis is a continuation of Prapa's Thesis ([1]).

In Chapter I, we prove that the theorem in [1] is true for arbitrary fields. This chapter also gives the classification of 3-dimensional nilpotent algebras A over an algebraically closed field K of characteristic \neq 2 with dimension Λ^2 = 1 and Λ^3 = {0}.

In Chapter II, we present some partial results in classifying the nilpotent algebras of dimension 4 over an arbitrary field.